地球科学  2018, Vol. 43 Issue (4): 1293-1306.   PDF    
0
张广才岭地块早-中二叠世镁铁质侵入岩体的年代学、地球化学及岩石成因
冯光英1, 刘燊2, 牛晓露1, 杨经绥1     
1. 地幔研究中心, 国土资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 大陆动力学国家重点实验室, 西北大学地质学系, 陕西西安 710069
摘要:双凤山基性侵入岩体位于松嫩-张广才岭地块南缘,其岩石组成主要为橄榄辉长岩.锆石LA-ICP-MS U-Pb定年显示该岩体形成于279±4 Ma.岩石矿物组成主要为橄榄石、单斜辉石、斜方辉石、高An值(80.1~87.9)斜长石以及以反应边形式存在的角闪石,矿物学特征指示其母岩浆为经历过充分流体交代的富水岩浆.全岩主微量元素组成揭示其源区物质组成为石榴子石二辉橄榄岩,部分熔融程度约20%,岩浆演化过程中经历了斜长石堆晶作用以及斜方辉石的结晶分异作用.全岩Sr-Nd同位素及锆石Hf同位素研究显示其(87Sr/86Sr)i=0.705 2~0.706 1,并具有正的εNdt)值(0.9~1.3)和εHft)值(0~10.2),表明其来源于亏损的地幔源区,并且岩浆上升过程中没有经历明显的地壳混染.微量元素和同位素特征综合反映岩浆源区经历了古亚洲洋俯冲沉积物熔体和流体交代作用的改造,但起主导作用的是流体.其地球化学特征总体显示MORB以及弧型玄武岩过渡的特征,暗示其形成于弧后伸展环境.研究区基性侵入岩地幔源区的不均一性主要受到古亚洲洋多期次俯冲作用析出熔/流体对上覆地幔楔不同程度的改造.
关键词早-中二叠世    松嫩-张广才岭地块    镁铁质侵入岩    岩石成因    地球化学    
Geochronology, Geochemistry and Petrogenesis of Early-Middle Permian Mafic Intrusion in Zhangguangcai Range, China
Feng Guangying1 , Liu Shen2 , Niu Xiaolu1 , Yang Jingsui1     
1. Center for Advanced Research on Mantle(CARMA), Key Laboratory of Deep-Earth Dynamics of Ministry of Land and Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
Abstract: The Shuangfengshan mafic intrusion crops out in the southern margin of the Songnen-Zhangguangcai range. It is predominantly made of olivine gabbro, which yielded a crystallization age of 279±4 Ma (Early-Middle Permian). These rocks consist mainly of olivine, pyroxene, high-An (80.1-87.9) plagioclase and hornblende as reaction rim. The features of these minerals indicate a high-H2O or water-saturated parental magma which experienced fluid metasomatism in the mantle source. Major and trace elements studies suggest that the mafic magma was derived from partial melting (~20%) of depleted garnet-lherzolite mantle source. Variable degrees of plagioclase accumulation and orthopyroxene crystal fractionation occurred in the process of magma evolution. They are also characterized by relatively low Sr isotopic ratio (0.705 2-0.706 1), positive εNd(t) (0.9-1.3) and εHf(t) (0-10.2) values, confirming that the Shuangfengshan mafic magma was derived from depleted mantle source and apparent crustal contamination was not found during magma upwelling. Combining trace elemental and isotopic results suggest that the parental magmas were likely derived from mantle wedge metasomatized by sedimentary melt and fluid from the subducted Paleo-Asian slab. Moreover, these rocks display transitional properties of MORB and arc basalt, conforming that the studied olivine gabbros were probably formed in back-arc extensional environment. And the mantle heterogeneity beneath the studied area was probably reduced by the multi-stage Paleozoic subduction of the Paleo-Asian Ocean.
Key Words: Early-Middle Permian    Songnen-Zhangguangcai range    mafic intrusion    petrogenesis    geochemistry    

板块俯冲是地壳物质进入地幔的主要动力学机制,同时也是造成地幔不均一性的主要地质过程(Hofmann, 1997; 赵振华等,2004O'Neill and Jenner, 2012; 赵子福等,2015).俯冲板片脱水形成的熔/流体交代地幔楔形成的岩浆岩,特别是镁铁质侵入岩,携带了大量地幔信息,其地球化学特征同地幔源区组成、熔融条件(温度、压力以及含水性)、岩浆演化过程(如部分熔融作用、熔体迁移及堆晶作用以及不同程度的同化混染和分离结晶作用)有关(Duncan, 1987).因此,探讨其岩石成因对于反演地幔源区性质、构造环境演化、壳幔相互作用等地球动力学过程具有重要意义(Polat et al., 2011; Su et al., 2013).

兴蒙造山带属于中亚造山带的东段(图 1a),是由多个微陆块拼合而成的构造堆叠区(图 1b),古生代期间主要受古亚洲洋演化的影响.现有研究表明,古亚洲洋经历了多期次俯冲作用(Windley et al., 2007; 郭锋等, 2009),造成多个微陆块之间的拼合,其中演化历史较为复杂也最具争议的是松嫩-张广才岭地块与佳木斯地块之间的裂解和拼合(Zhou et al., 2009; 许文良等, 2012; Ge et al., 2016).早二叠世佳木斯地块东缘发育一套玄武岩-玄武安山岩-安山岩-英安岩组合(孟恩等,2008Meng et al., 2011),而松嫩-张广才岭地块之上发育一套玄武岩-流纹岩组合,具有典型的双峰式火山岩组合特征,同时期花岗岩不发育.前人对这些火山岩的空间展布以及地球化学特征进行了详细研究,并对研究区的构造演化背景进行了制约(许文良等, 2012),但对同时期镁铁质侵入岩的精细年代学研究、地幔源区矿物组成、地幔交代方式、俯冲板片的不同端元组分(洋壳、沉积物、熔体和流体等)对岩浆源区的可能贡献等问题未做深入探讨,这必将在一定程度上制约对该地区早二叠世岩浆岩成因、构造背景以及地幔源区性质及演化等科学问题的讨论和全面认识.

Download:
图 1 中亚造山带(a)及东北地区(b)构造简图;双凤山镁铁质侵入岩区域地质简图(c) Fig. 1 Simplified tectonic maps of the Central Asian orogenic belt (a) and Northeast China (b) and simplified geological map of the studied area (c) 图b底图据Guo et al.(2016);图c据吉林省地质局(1978)编区域地质调查报告辽源市幅

在松嫩-张广才岭构造带南端,吉林省海龙镇北部与磐石市的交接地带,沿北西向分布一个基性岩带,由大小十多个岩体组成,其中双凤山岩体规模最大.本文对该岩体进行了详细的矿物化学、年代学、元素地球化学以及Sr-Nd-Hf同位素研究,讨论了其岩浆演化过程、地幔源区性质以及壳幔相互作用,在前人研究基础上为兴蒙造山带的构造演化及地幔源区演化提供了新的科学依据.

1 区域地质背景和岩相学特征

兴蒙造山带位于中亚造山带东段,夹持于北部的西伯利亚板块和南部的华北板块之间,是一个古生代到中生代期间由多个微陆块拼合而形成的构造堆叠区(Sengör et al., 1993赵硕等,2016),这些微陆块包括西北部的额尔古纳地块和兴安地块,中部的松嫩-张广才岭地块以及东部的佳木斯地块和兴凯地块.松嫩-张广才岭地块包括北部的小兴安岭构造带、中部的松辽盆地以及东部的张广才岭构造带(Liu et al., 2010),其东西两侧分别以嘉荫-牡丹江断裂和黑河-嫩江断裂为界,与佳木斯地块和兴安地块相连(叶茂等,1994吴福元等,1995).张广才岭构造带为佳木斯地块与松嫩地块的俯冲-碰撞造山带,其基底较为复杂,除前寒武纪基底外,还保留了早古生代、石炭-二叠纪的地层记录(邵济安等,2013).

双凤山岩体位于松嫩-张广才岭构造带西南端,岩体面积约3 km2,研究区侵入岩发育,主要为晚古生代花岗岩(孟杰等,2017),并有少量早古生代花岗斑岩以及侏罗纪钾长花岗岩.地层零星分布,双凤山橄榄辉长岩岩体中有较多的下石炭统鹿圈屯组含石墨变粒岩、角岩及变质砂岩捕掳体,边部多、内部少,大者直径可达100 m.岩体内部晚期构造比较发育,主要为东西向断裂,均被脉岩充填,另外有北西向及近南北向断层(图 1c).

双凤山基性侵入岩体具有一定的分异现象,根据钻孔资料,其岩相大致包括辉长岩、苏长岩和橄榄辉长岩.地表所见橄榄辉长岩为深灰绿色-灰黑色,中细至粗粒辉长结构,块状构造.主要矿物组成为斜长石(>50%),具有明显的聚片双晶和卡纳联合双晶;其次为单斜辉石(20%~25%),主要为他形,充填在橄榄石和斜长石颗粒之间.斜方辉石和橄榄石含量较低,斜方辉石含量约5%,橄榄石含量约5%~10%.橄榄石呈粒状、轻微蚀变呈网状结构(图 2).此外,角闪石仅作为橄榄石和单斜辉石的反应边出现,体积分数小于3%(图 2c, 2d).上述结构特征表明,双凤山橄榄辉长岩为典型的堆晶辉长岩体,其矿物结晶顺序为橄榄石-斜长石-辉石-角闪石.

Download:
图 2 双凤山橄榄辉长岩显微照片(a, b)及电子探针背散射电子图像(c, d) Fig. 2 Photomicrographs (a, b) and back-scattered electron images (c, d) of the Shuangfengshan olivine gabbros Ol.橄榄石;Pl.斜长石;Cpx.单斜辉石;Opx.斜方辉石;Prg.韭闪石
2 分析方法

电子探针分析在中国地质科学院地质研究所大陆构造与动力学实验室进行,仪器型号为JXA-8100,分析过程按照国家电子探针定量分析标准(GB/T 15617-2002).仪器工作条件:加速电压15 kV,探针束流20 nA,束斑直径5 μm,峰值计数时间设定为20 s,背景计数时间设定为10 s.

主微量元素分析在国家地质实验测试中心完成,其中主量元素采用X射线荧光光谱法(XRF)测定(型号:PE300D),并采用等离子光谱和化学法测定进行互检.微量元素和稀土元素采用等离子质谱法(ICP-MS)测定(型号:PW4400),同时分析2个国家标样(GSR3和GSR5)和3个平行样以保证分析结果的准确度.

锆石分选在河北省地矿局廊坊区调队实验室完成,采用常规粉碎、浮选和电磁选方法进行分选.锆石阴极发光(CL)照相在中国地质科学院地质研究所大陆构造与动力学微区阴极发光实验室(SEM-CL-EDS)完成.锆石U-Pb定年在中国地质科学院地质研究所LA-MC-ICPMS实验室完成.定年工作所用的MC-ICP-MS为美国Thermo Fisher公司最新一代Neptune Plus型多接收等离子体质谱仪.采用的激光剥蚀系统为美国Coherent公司生产的GeoLasPro 193 nm.激光剥蚀以氦气作为剥蚀物质的载气,激光剥蚀束斑直径为24~44 μm,通常采用32 μm,激光能量密度为10 J/cm2,频率为8 Hz.锆石中的U和Pb在8 000 ℃以上的高温等离子体中发生离子化,利用动态变焦扩大色散可以同时接收质量数相差很大的U-Pb同位素,从而进行锆石微区U-Pb同位素原位同时测定.每个分析点的气体背景采集时间为4 s,信号采集时间为23 s.数据分析采用国际上通用的锆石标样91500作为参考物质进行仪器的最佳化,数据分析采用中国地质大学刘勇胜博士研发的ICPMSDataCal程序(Liu et al., 2008)和LudwigKR的Isoplot程序(Ludwig,2003);年龄计算以标准锆石91500为外标进行同位素比值分馏.锆石Hf同位素分析采用Neptune Plus多接收等离子质谱和Compex pro.193 nm紫外激光剥蚀系统(LA-MC-ICP-MS),实验过程中采用He作为剥蚀物质载气,根据锆石大小,剥蚀直径采用44 μm或32 μm,测定时使用国际上通用的锆石标样GJ-1作为参考物质,分析点与U-Pb定年分析点为同一位置.相关仪器运行条件及详细分析流程见侯可军等(2009).分析过程中锆石标准GJ-1的176Hf/177Hf测试加权平均值为0.282 015±8(2σn=10),与文献报道值(Elhlou et al., 2006; 侯可军等,2009)在误差范围内完全一致.

Sr-Nd同位素分析在南京大学现代分析中心由英国制造的VG354多接收质谱仪上完成,实验测定采用美国NBS987Sr同位素标准:以86Sr/87Sr=0.119 4为标准化值,测得86Sr/87Sr=0.710 224±8(n=10),对美国LaJolla Nd同位素标准样中143Nd/144Nd的测定值为0.511 860(2σ, n=8);标准化值采用143Nd/144Nd=0.721 9校正(Wang et al., 2007).详细的Rb-Sr、Sm-Nd化学制备,质谱测定方法以及各类标准样品测定结果见Wang et al.(2007b).

3 分析结果 3.1 矿物组成分析结果

双凤山橄榄辉长岩中代表性橄榄石电子探针分析结果见附表1.橄榄石端元组分Fo为74~76.与全岩Mg#(76~77)相比略低,这种解耦可能同岩浆房上升至地壳深度时橄榄石的堆晶作用有关(Guo et al., 2015).斜长石矿物成分较为简单,SiO2含量变化于47.5%~49.6%之间,CaO含量较高,为15.9%~17.8%,其An端元组分含量较高(80.1~87.9)(附表1),全部属于培长石.

单斜辉石的MgO含量为14.68%~15.14%,Mg#=77~80,Al2O3=2.30%~3.20 %,En含量为42.94~44.23,Fs和Wo含量分别变化于10.53~12.70和43.87~46.31(附表1),属于透辉石,或者普通辉石.斜方辉石MgO含量为25.59%~28.56%,Mg#=75~79,Al2O3=1.42%~2.09%,其En端元含量变化为72.95~77.05(附表1),主要为斜顽辉石.

角闪石主要以交代橄榄石和单斜辉石的反应边方式产出,SiO2含量变化于43.32%~45.51%,CaO含量为11.70%~12.83%,Na2O和K2O含量分别为1.80%~2.39%和0.01%~1.02%(附表1).采用Leake et al.(1997)角闪石的分类方案和标准分子式AB2C5T8O22(OH)2,根据B位的Ca含量和Na含量,判断双凤山橄榄辉长岩中角闪石全部为钙质角闪石,再根据Mg/(Mg+Fe2+)比值和T位的Si含量对钙质角闪石进一步分类,全部属于韭闪石(图 3).

Download:
图 3 双凤山橄榄辉长岩角闪石分类 Fig. 3 Classification of hornblende of the Shuangfengshan olivine gabbros 图a底图据文献Leake et al.(1997);图b底图据Beard and Barker(1989)
3.2 锆石U-Pb年代学分析结果及锆石Lu-Hf同位素组成

从>40 kg橄榄辉长岩中挑选出约200粒锆石,锆石颗粒较小(50~100 μm),阴极发光下具有清晰的震荡环带,且所有测试锆石的Th/U比值均大于0.1(0.40~2.10)(附表2),为典型的岩浆锆石.15个分析点均位于U-Pb谐和线上,206Pb/238U加权平均年龄为279±4 Ma(图 4),代表该岩体的结晶年龄,表明双凤山橄榄辉长岩为早-中二叠世岩浆活动的产物,该年龄与Guo et al.(2016)报道的延吉地区前山辉长岩的年龄(273±2 Ma)较为一致.

Download:
图 4 双凤山橄榄辉长岩代表性锆石阴极发光图及LA-ICP-MS U-Pb谐和年龄 Fig. 4 Representative cathodoluminescence (CL) images and the LA-ICP-MS U-Pb age for the zircon grains from the Shuangfengshan olivine gabbros

双凤山橄榄辉长岩锆石Lu-Hf同位素组成见附表3.所有的锆石都具有较低的176Lu/177Hf比值(除点9以外都低于0.002),暗示锆石在形成之后具有较少的放射成因Hf同位素积累(杨进辉等,2006),因此,所测定的176Hf/177Hf比值基本上可代表其形成时体系的Hf同位素组成(吴福元等,2007).锆石176Hf/177Hf比值范围为0.282 607~0.282 896,εHf(t)为正值(0~10.2),平均值为4.7,Hf同位素模式年龄TDM1=514~926 Ma,平均值为731 Ma.

3.3 主微量元素组成

双凤山橄榄辉长岩主微量元素组成见附表4.所有样品都具有较低的SiO2含量(45.46%~46.45 %),在TAS图解中落入苦橄玄武岩区(图 5a),同时具有较低的K2O含量(0.06%~0.07%),属于低钾拉斑系列(图 5b),Na2O=0.88%~1.03%, Na2O>K2O, MgO含量较高(8.80%~11.98%),Mg#=75~76.此外,Al2O3含量介于18.31%~20.81%,而CaO=13.60%~15.21%.

Download:
图 5 双凤山橄榄辉长岩TAS图解(a)、SiO2-K2O图解(b)、稀土元素配分模式图(c)及微量元素原始地幔标准化图解(d) Fig. 5 TAS (a), SiO2 vs. K2O (b), chondrite-normalized REE patterns (c) and primitive mantle-normalized spider diagrams (d) of the Shuangfengshan olivine gabbros 张广才岭构造带早二叠世基性火山岩和酸性火山岩主量元素数据引自Meng et al.(2011);图d据Sun and McDonough(1989)

双凤山橄榄辉长岩具有较为一致的稀土元素和其他微量元素组成,在稀土元素球粒陨石标准化图解中(图 5c),表现出明显的Eu正异常,Eu=1.78~2.28,轻稀土略富集,(La/Yb)N=2.58~3.48.微量元素蛛网图中(图 5d),富集大离子亲石元素(Ba、Sr、K),而亏损高场强元素(Nb、Ta、Zr、Hf和Ti).在主微量元素与MgO含量协变关系图解中,MgO与SiO2、Al2O3、Cao、Na2O、Cr呈负相关关系,而与Fe2O3呈正相关.

3.4 Sr-Nd同位素组成

双凤山橄榄辉长岩代表性样品Sr-Nd同位素组成见附表4,它们都具有较低的Sr同位素初始比值,(87Sr/86Sr)i=0.705 2~0.706 1,以及正的εNd(t)值(0.9~1.3).相对于兴蒙造山带同期基性侵入岩,其(87Sr/86Sr)i较高,而εNd(t)值较低.

4 讨论 4.1 结晶分异与地壳混染

双凤山橄榄辉长岩具有较低的SiO2含量(45.46%~46.45%),属于幔源岩浆岩,同时其Mg#(76~77)较高,与原始岩浆(Mg#=65~75)相近(邓晋福,1987),表明橄榄辉长岩的岩浆演化程度较低.在元素协变图中(图略),MgO同SiO2、Al2O3、CaO、Na2O、Cr具有明显的负相关,而同Fe2O3具有明显的正相关性,反映岩浆在演化过程中主要经历了斜方辉石的结晶分异.另外,双凤山橄榄辉长岩具有明显的Eu正异常和Sr正异常,表明岩浆演化过程中可能经历了斜长石的堆晶作用.通常情况下,Al2O3、Na2O和Eu/*Eu之间的相关性可以用来判别是否存在斜长石堆晶作用(Mitchell et al., 1995; Zhong et al., 2009).在图 6中,Al2O3与Na2O以及Eu/*Eu之间都具有明显的正相关性,暗示斜长石堆晶作用在岩石形成过程中发挥了重要作用.但是,硅酸盐矿物堆晶及结晶分异作用对不相容元素的比值影响较小(Zhang et al., 2009),因此,在地壳混染不明显的情况下,通过不相容元素比值对地幔源区性质进行约束仍然可行.

Download:
图 6 双凤山橄榄辉长岩Al2O3-Na2O以及Al2O3-Eu/*Eu图解 Fig. 6 Al2O3 vs. Na2O (a) and Al2O3 vs. Eu/*Eu (b) diagrams of the Shuangfengshan olivine gabbros

同MORB相比,双凤山早二叠世橄榄辉长岩富集大离子亲石元素和LREE,而亏损高场强元素,同时与张广才岭构造带其他二叠纪基性-超基性岩相比,研究区橄榄辉长岩具有相对富集的Sr-Nd同位素组成(图 7a),暗示岩浆源区经历了富集的过程或者岩浆在上升过程中受到地壳物质的混染.大陆地壳在成分上相对亏损MgO,对于受到地壳混染的镁铁质岩浆,其MgO与(87Sr/86Sr)i之间应具有负相关关系,而MgO与εNd(t)值之间应表现出正相关性,但是研究区橄榄辉长岩并不具有这种相关性,同时其(87Sr/86Sr)i(0.705 2~0.706 1)以及εNd(t)值(0.9~1.3)变化范围都较小,暗示岩浆上升过程中没有受到明显的地壳物质混染.此外,双凤山橄榄辉长岩具有较低的(Th/Yb)PM比值(1.45~2.77),低于下地壳(4.6),并远低于上地壳(Th/Yb)PM比值(28)(Taylor and Mclennan, 1985),同时中上地壳混染会引起岩浆中Th、U含量的显著升高(Taylor and McLenann, 1985),双峰山橄榄辉长岩的Th、U含量相对LREE亏损(图 5d),这些都说明岩浆在上升过程中受到地壳混染的可能性较小.因此,该岩体所显示的主微量元素及同位素特征主要继承自地幔源区,可以用于反演地幔源区特征.

Download:
图 7 双凤山橄榄辉长岩Sr-Nd-Hf同位素组成 Fig. 7 Sr-Nd isotopic compositions of the Shuangfengshan olivine gabbros 延吉地区二叠纪基性侵入岩数据引自Guo et al.(2016);三叠纪红旗岭橄榄辉石岩数据冯光英等(2011);早侏罗世大稗子沟辉绿玢岩数据来自作者未发表数据;East CAOB.中亚造山带东段;YFTB.燕山褶皱系
4.2 地幔源区性质及组成

双凤山橄榄辉长岩具有较低的(87Sr/86Sr)i(0.705 2~0.706 1)以及正的εNd(t)值(0.9~1.3),同时具有正的εHf(t)值(0~10.2),反映该岩体来源于亏损的地幔源区.但是同延吉地区二叠纪基性侵入岩(Guo et al., 2016)相比(图 7a),双凤山橄榄辉长岩具有更为富集的Sr-Nd同位素组成,同松嫩-张广才岭地块三叠纪红旗岭橄榄辉石岩(冯光英等,2011)以及早侏罗世大稗子沟辉绿玢岩(作者未刊)相比具有较为富集的εHf(t)值(图 7b),这种同位素变化的特征体现为地幔源区性质的不均一性.同时双凤山橄榄辉长岩具有更老的TDM1,反映其地幔源区从亏损地幔中分离出的时间较早,此后伴随着古亚洲洋的多期次俯冲,俯冲沉积物熔流体对地幔楔的改造程度逐渐增强.同样的,新疆东天山及北山古生代镁铁-超镁铁质岩地幔源区明显的Sr-Nd-Hf同位素高度不均一性也被认为同俯冲作用对地幔源区的改造密不可分(Su et al., 2012).

镁铁质侵入岩由地幔二辉橄榄岩部分熔融形成,稀土元素在地幔橄榄岩部分熔融过程中表现为中等不相容元素(Johnson, 1998),其含量和比值主要受到地幔源区物质组成以及部分熔融程度的控制(Zhao and Zhou, 2007; Liu et al., 2010),因此可根据稀土元素的丰度和比值判断岩石的地幔源区组成和部分熔融程度.部分熔融过程中,由于尖晶石中La、Sm和Yb的分配系数相似(Dspinel/melt=0.01)(Mckenzie and O'Nions, 1991),而石榴子石中Yb的分配系数明显高于La和Sm,因此,伴随着石榴子石残留而形成的熔体具有低的Yb含量和高的LREE/Yb比值,而尖晶石二辉橄榄岩地幔源区部分熔融则形成相对平坦的熔融趋势.在La/Yb-Sm/Yb和Gd/Yb-Dy/Yb图解中,双凤山橄榄辉长岩与石榴子石二辉橄榄岩部分熔融曲线相一致,且部分熔融程度约为20%(图 8).

Download:
图 8 双凤山橄榄辉长岩La/Yb-Sm/Yb (a)和Gd/Yb-Dy/Yb (b)图解 Fig. 8 La/Yb vs. Sm/Yb (a) and Gd/Yb vs. Dy/Yb (b) diagrams of the Shuangfengshan olivine gabbros
4.3 地幔交代作用

斜长石An值取决于原始岩浆中CaO、Al2O3和H2O的含量,CaO/Na2O和Al2O3/SiO2的比值,以及原始岩浆的压力(Panjasawatwong et al., 1995; Guo et al., 2015).因此,岩浆成分、岩浆中的水饱和程度、结晶压力等都对斜长石的An值有控制作用.岩浆成因的高An值斜长石(An80-100)常出现在岛弧高铝玄武岩(Crawford et al., 1987; Fournelle and Marsh, 1991)以及洋内弧前环境下发育的玻安岩(Danyushevsky et al., 1997)中,此外,大洋中脊玄武岩中也有产出高An值斜长石的实例(Sinton et al., 1993).实验研究表明高An值斜长石的母岩浆具有富水(水近饱和)、亏损(极高的CaO/Na2O和Al2O3/SiO2)的特征,特别是对拉斑玄武岩的实验研究显示大多数高An值斜长石最适宜的结晶条件为2×108~3×108 Pa且水饱和状态(Takagi et al., 2005),因此,笔者推测其具有低钾拉斑系列属性的双凤山橄榄辉长岩中高An值(80.1~87.9,平均值85.5)斜长石的出现暗示地幔源区可能经历过充分的流体交代,其较高的CaO/Na2O(14.63~16.05)以及Al2O3含量意味着源区经历过显著的岩浆抽取.

此外,双凤山橄榄辉长岩富集大离子亲石元素Ba、Sr和K,而亏损高场强元素Nb、Ta、Zr、Hf和Ti,如前所述,研究区这种弧型微量元素特征跟地壳混染的关系不大,而应该是源区受到俯冲板片熔体或者流体交代富集作用的影响.俯冲组分主要包括俯冲沉积物、俯冲流体和俯冲洋壳(Tatsumi and Takahashi, 2006; Ge et al., 2015).俯冲洋壳部分熔融会产生埃达克质的岩石(Defant and Drummond, 1990),因此,可以排除俯冲洋壳对研究区橄榄辉长岩岩浆源区的直接贡献(曾志刚等,2016).此外,研究表明,洋壳俯冲过程中,在弧下80~130 km深度,蚀变玄武岩及其上覆沉积物发生脱水作用形成的流体相对富集水溶性元素(如大离子亲石元素(LILE)和轻稀土元素(LREE))和亏损水不溶性元素(如高场强元素(HFSE)).这些流体交代上覆地幔楔形成蚀变橄榄岩(蛇纹石化和绿泥石化橄榄岩),由该地幔源区部分熔融形成的大洋弧或大陆弧就具有弧型的微量元素分布特征(Peacock, 1993; Tatsumi and Eggins, 1995).因此双凤山橄榄辉长岩所表现出的地球化学特征可能同洋壳俯冲过程中俯冲沉积物以及蚀变玄武岩脱水形成的流体的交代作用有关.此外,俯冲沉积物熔体也有可能对源区产生重要影响.Th、Ba和REEs在俯冲带熔体和流体中显示明显不同的地球化学行为,同时由于这些元素在硅酸盐矿物中分配系数极低(远低于1.0;Rollinson, 1993),因此矿物堆晶作用对其比值产生的影响可以忽略.双凤山橄榄辉长岩Th/Ce和Th/Sm的变化趋势以及高于MORB的Th/Yb和Ba/La比值指示地幔源区经历了俯冲沉积物熔体和流体的加入(图 9a, 9b).此外,通过Ba/Nb和Ba/La同εNd(t)之间的变化趋势,笔者进一步对地幔源区熔体和流体加入的比例进行限制,如图所示(图 9c, 9d),俯冲沉积物熔体和流体可能都参与了对地幔源区的改造,但流体起主导作用.

Download:
图 9 双凤山橄榄辉长岩Th/Sm-Th/Ce (a), Th/Yb-Ba/La (b), Ba/La-εNd(t) (c)和Ba/Nb-εNd(t)(d)图解 Fig. 9 Th/Sm vs. Th/Ce (a), Th/Yb vs. Ba/La (b), Ba/La-εNd(t) (c) and Ba/Nb-εNd(t) diagrams of the Shuangfengshan olivine gabbros 亏损地幔(DM)的Nd同位素组成据贺根山蛇绿岩套中基性岩组分及内蒙古大石寨弧玄武岩(Miao et al., 2008郭锋等,2009);沉积物熔/流体的Nd同位素组成据全球海洋沉积物(GLOSS, Plank and Langmuir, 1998);MORB据Sun and McDonough(1989);延吉地区早中二叠世基性侵入岩据Guo et al.(2016);其他参数参见Guo et al.(2016)

此外,LA-ICPMS锆石U-Pb定年结果显示双凤山橄榄辉长岩中捕获锆石的年龄介于423~438 Ma,该年龄同内蒙古大石寨玄武岩以及内蒙古岛弧闪长岩-石英闪长岩的年龄(451~440 Ma)接近(Jian et al., 2008郭锋等, 2009),同时与张广才岭地块南缘的早古生代张家屯英云闪长岩(443±5 Ma)年龄较为一致(裴福萍等,2014; Pei et al., 2016).这些锆石年龄都记录了早古生代古亚洲洋俯冲活动对研究区岩浆活动的影响,同时该期俯冲过程产生的熔流体很可能参与了地幔源区的改造,而且改造作用随着地幔源区的演化不断增强.

4.4 岩石成因及地质意义

不相容元素组成特征可以对基性岩的形成环境进行限制.在Th-Ta-Hf/3以及Al2O3-MgO-FeOT图解中(图 10),双凤山橄榄辉长岩都显示具有MORB以及弧型玄武岩过渡特征,这些特征通常被认为同弧前(Isu-Bonin)或弧后(Lesser Caucasus和Mariana)的构造环境直接相关.不同的是,俯冲带弧前环境形成的岩浆岩通常显示变化范围较大的主量元素特征,并形成玻安岩-高镁安山岩-安山岩-长英质岩岩浆岩系列(Wang et al., 2007),而目前在松嫩-张广才岭地块尚未有该类型岩石的报道,主要的岩浆岩类型为双峰式火山岩以及基性-超基性岩,同时双凤山橄榄辉长岩具有较为一致的主量元素组成,因此其形成环境不可能为弧前环境,而更可能为弧后环境.

Download:
图 10 双凤山橄榄辉长岩构造判别图 Fig. 10 Tectonic discrimination diagrams of the Shuangfengshan olivine gabbros a.Hf/3-Th-Ta图解,据Wood(1980);b.Al2O3-MgO-FeOT图解,据Pearce et al.(1977)

早二叠世佳木斯地块东缘发育一套中钾钙碱性玄武岩-玄武安山岩-安山岩-英安岩火山岩组合,其微量元素具有大离子亲石元素富集和高场强元素亏损的特征,显示活动大陆边缘火山岩属性(Meng et al., 2011; 许文良等,2012于介江等,2013).同时期的松嫩-张广才岭地块发育一套玄武岩-流纹岩火山岩组合,具有典型双峰式火山岩的组合特征(许文良等,2012),加之双凤山橄榄辉长岩以及同时期出现的A型花岗岩(郭奎城等,2011)都反映此时松嫩-张广才岭构造带应处于弧后伸展拉张的构造背景.结合前文讨论,双凤山橄榄辉长岩的形成与古亚洲洋多期次俯冲作用相关.早二叠世,古亚洲洋西向俯冲于佳木斯地块东侧,使佳木斯地块东缘处于活动大陆边缘的构造环境,而张广才岭构造带此时处于弧后盆地的伸展环境,软流圈上涌加热上覆亏损岩石圈地幔导致其发生部分熔融,岩浆演化过程中经历了斜方辉石的结晶分异以及斜长石的堆晶作用,但没有受到明显的地壳混染,最后上升侵位形成研究区基性岩浆岩.

同时期镁铁质侵入岩在延吉地区也有出露,其侵位时代范围为273~253 Ma(Guo et al., 2016),双凤山橄榄辉长岩锆石LA-ICPMS U-Pb定年结果表明这次镁铁质侵入岩岩浆活动可能开始于279 Ma之前,此时岩石圈处于伸展拉张的构造背景.而同时期不同区域镁铁质侵入岩Sr-Nd-Hf同位素变化的特征(图 7a)可能同古亚洲洋多期次俯冲作用析出熔/流体对地幔源区不同程度的改造相关.

5 结论

(1) 双凤山橄榄辉长岩LA-ICP-MS锆石U-Pb年龄为279±4 Ma,为早-中二叠世岩浆活动的产物.

(2) 矿物学特征及主微量元素组成显示其岩浆源区为经历了古亚洲洋俯冲沉积物熔/流体交代的亏损岩石圈地幔.源区物质组成为石榴子石二辉橄榄岩,部分熔融程度约20%,岩浆在上升过程中没有受到明显的地壳物质混染,但岩浆演化过程中经历了斜方辉石的结晶分异以及斜长石的堆晶作用.

(3) 其地球化学组成显示MORB以及弧型玄武岩过渡的特征,结合研究区构造演化历史以及同时期火山岩的分布特征,笔者认为双凤山橄榄辉长岩形成于古亚洲洋西向俯冲于佳木斯地块之下而在松嫩-张广才岭地块形成的弧后伸展环境,其地球化学特征同古亚洲洋多期次俯冲产生的熔流体对地幔源区的改造密切相关.

致谢 本文野外工作得到高健同学的帮助,锆石CL照相LA-ICPMS锆石U-Pb定年以及电子探针分析过程中得到中国地质科学院地质研究所微区实验室施斌博士、吴才来研究员、雷敏高级工程师、王铮同学和戎合高级工程师的帮助,在此表示诚挚感谢!两位审稿人提出的问题和建议为本文质量的提升起到至关重要的作用,在此深表感谢!

参考文献
Beard, J.S., Barker, F., 1989. Petrology and Tectonic Significance of Gabbros, Tonalites, Shoshonites, and Anorthosites in a Late Paleozoic Arc-Root Complex in the Wrangellia Terrane, Southern Alaska. The Journal of Geology, 97(6): 667-683. DOI:10.1086/629351
Crawford, A.J., Falloon, T.J., Eggins, S., 1987. The Origin of Island Arc High-Alumina Basalts. Contributions to Mineralogy and Petrology, 97(3): 417-430. DOI:10.1007/bf00372004
Danyushevsky, L.V., Carroll, M.R., Falloon, T.J., 1997. Origin of High-An Plagioclase in Tongan High-Ca Boninites:Implications for Plagioclase Melt Equilibria at Low P(H2O). The Canadian Mineralogist, 35(2): 313-326.
Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. DOI:10.1038/347662a0
Deng, J.F., 1987. Petrographical Facies Equilibrium and Petrogenesis. Wuhan College of Geology Press, Wuhan, 45-63.
Duncan, A.R., 1987. The Karoo Igneous Province-A Problem Area for Inferring Tectonic Setting from Basalt Geochemistry. Journal of Volcanology and Geothermal Research, 32(1-3): 13-34. DOI:10.1016/0377-0273(87)90034-5
Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. DOI:10.1016/j.gca.2006.06.1383
Feng, G.Y., Liu, S., Feng, C.X., et al., 2011. Zircon U-Pb Age, Sr-Nd-Hf Isotope Geochemistry and the Petrogenesis of the Ultramafic Pluton in Hongqiling, Jilin Province. Acta Petrologica Sinica, 27(6): 1594-1606.
Fournelle, J., Marsh, B.D., 1991. Shishaldin Volcano-Aleutian High-Alumina Basalts and the Question of Plagioclase Accumulation. Geology, 19(3): 234-237. DOI:10.1130/0091-7613(1991)019<0234:svahab>2.3.co;2
Ge, M.H., Zhang, J.J., Liu, K., et al., 2016. Geochemistry and Geochronology of the Blueschist in the Heilongjiang Complex and Its Implications in the Late Paleozoic Tectonics of Eastern NE China. Lithos, 261: 232-249. DOI:10.1016/j.lithos.2015.11.019
Ge, S.S., Zhai, M.G., Safonova, I., et al., 2015. Whole-Rock Geochemistry and Sr-Nd-Pb Isotope Systematics of the Late Carboniferous Volcanic Rocks of the Awulale Metallogenic Belt in the Western Tianshan Mountains (NW China):Petrogenesis and Geodynamical Implications. Lithos, 228-229: 62-77. DOI:10.1016/j.lithos.2015.04.019
Guo, F., Fan, W.M., Li, C.W., et al., 2009. Early Paleozoic Subduction of the Paleo-Asian Ocean:Geochronological and Geochemical Evidence from the Dashizhai Basalts, Inner Mongolia. Science in China (Earth Sciences), 39(5): 569-579.
Guo, F., Li, H.X., Fan, W.M., et al., 2015. Early Jurassic Subduction of the Paleo-Pacific Ocean in NE China:Petrologic and Geochemical Evidence from the Tumen Mafic Intrusive Complex. Lithos, 224-225: 46-60. DOI:10.1016/j.lithos.2015.02.014
Guo, F., Li, H.X., Fan, W.M., et al., 2016. Variable Sediment Flux in Generation of Permian Subduction-Related Mafic Intrusions from the Yanbian Region, NE China. Lithos, 261: 195-215. DOI:10.1016/j.lithos.2015.11.030
Guo, K.C., Zhang, W.L., Yang, X.P., et al., 2011. Origin of Early Permian A-Type Granite in the Wudaogou Area, Heihe City. Journal of Jilin University (Earth Science Edition), 41(4): 1077-1083.
Hofmann, A.W., 1997. Mantle Geochemistry:The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. DOI:10.1038/385219a0
Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492.
Jian, P., Liu, D.Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for Continental Growth. Lithos, 101(3-4): 233-259. DOI:10.1016/j.lithos.2007.07.005
Johnson, K.T.M., 1998. Experimental Determination of Partition Coefficients for Rare Earth and High-Field-Strength Elements between Clinopyroxene, Garnet, and Basaltic Belt at High Pressures. Contributions to Mineralogy and Petrology, 133: 60-68. DOI:10.1007/s004100050437
Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997. Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 35: 219-246. DOI:10.1180/minmag.1997.061.405.13
Liu, S., Hu, R.Z., Gao, S., et al., 2010. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of Permian Granodiorite and Associated Gabbro in the Songliao Block, NE China and Implications for Growth of Juvenile Crust. Lithos, 114(3-4): 423-436. DOI:10.1016/j.lithos.2009.10.009
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004
Ludwig, K.R., 2003. User's Manual for Isoplot/Ex, Version 3.00.A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 1-70.
McKenzie, D., O'Nions, R.K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. DOI:10.1093/petrology/32.5.1021
Meng, E., Xu, W.L., Pei, F.P., et al., 2011. Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province, NE China:Zircon U-Pb-Hf Isotopes and Geochemical Evidence. Journal of Asian Earth Sciences, 41(2): 119-132. DOI:10.1016/j.jseaes.2011.01.005
Meng, E., Xu, W.L., Yang, D.B., et al., 2008. Chronology of Late Paleozoic Volcanism in Eastern and Southeastern Margin of Jiamusi Massif and Its Tectonic Implications. Chinese Science Bulletin, 53(8): 956-965.
Meng, J., Liu, X.Y., Liang, Y.H., et al., 2017. U-Pb Dating and Trace Elements Composition of Tadong Group from Jilin Province and Their Geological Implication. Earth Science, 42(4): 502-510.
Miao, L.C., Fan, W.M., Liu, D.Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex:Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. DOI:10.1016/j.jseaes.2007.11.005
Mitchell, J.N., Scoates, J.S., Frost, C.D., 1995. High-Al Gabbros in the Laramie Anorthosite Complex, Wyoming:Implications for the Composition of Melts Parental to Proterozoic Anorthosite. Contributions to Mineralogy and Petrology, 119(2-3): 166-180. DOI:10.1007/s004100050034
O'Neill, H.S.C., Jenner, F.E., 2012. The Global Pattern of Trace-Element Distributions in Ocean Floor Basalts. Nature, 491(7426): 698-704. DOI:10.1038/nature11678
Panjasawatwong, Y., Danyushevsky, L.V., Crawford, A.J., et al., 1995. An Experimental Study of the Effects of Melt Composition on Plagioclase-Melt Equilibria at 5 and 10 kbar:Implications for the Origin of Magmatic High-An Plagioclase. Contributions to Mineralogy and Petrology, 118(4): 420-432. DOI:10.1007/s004100050024
Peacock, S.M., 1993. The Importance of Blueschist→Eclogite Dehydration Reactions in Subducting Oceanic Crust. Geological Society of America Bulletin, 105(5): 684-694. DOI:10.1130/0016-7606(1993)105<0684:tiobed>2.3.co;2
Pearce, T.H., Gorman, B.E., Birkett, T.C., 1977. The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters, 36(1): 121-132. DOI:10.1016/0012-821x(77)90193-5
Pei, F.P., Wang, Z.W., Cao, H.H., et al., 2014. Petrogenesis of the Early Paleozoic Tonalite in the Central Jilin Province:Evidence from Zircon U-Pb Chronology and Geochemistry. Acta Petrologica Sinica, 30(7): 2009-2019.
Pei, F.P., Zhang, Y., Wang, Z.W., et al., 2016. Early-Middle Paleozoic Subduction-Collision History of the South-Eastern Central Asian Orogenic Belt:Evidence from Igneous and Metasedimentary Rocks of Central Jilin Province, NE China. Lithos, 261: 164-180. DOI:10.1016/j.lithos.2015.12.010
Plank, T., Langmuir, C.H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. DOI:10.1016/s0009-2541(97)00150-2
Polat, A., Appel, P.W.U., Fryer, B.J., 2011. An Overview of the Geochemistry of Eoarchean to Mesoarchean Ultramafic to Mafic Volcanic Rocks, SW Greenland:Implications for Mantle Depletion and Petrogenetic Processes at Subduction Zones in the Early Earth. Gondwana Research, 20(2-3): 255-283. DOI:10.1016/j.gr.2011.01.007
Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Harlow, United Kindom, 352.
Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature, 364: 299-307. DOI:10.1038/364299a0
Shao, J.A., Li, Y.F., Tang, K.D., 2013. Restoration of the Orogenic Processes of Zhangguangcai Range. Acta Petrologica Sinica, 29(9): 2959-2970.
Sinton, C.W., Christie, D.M., Coombs, V.L., et al., 1993. Near-Primary Melt Inclusions in Anorthite Phenocrysts from the Galapagos Platfrom. Earth and Planetary Science Letters, 119(4): 527-537. DOI:10.1016/0012-821X(93)90060-M
Su, B.X., Qin, K.Z., Santosh, M., et al., 2013. The Early Permian Mafic-Ultramafic Complexes in the Beishan Terrane, NW China:Alaskan-Type Intrusives or Rift Cumulates?. Journal of Asian Earth Sciences, 66: 175-187. DOI:10.1016/j.jseaes.2012.12.039
Su, B.X., Qin, K.Z., Sun, H., et al., 2012. Subduction-Induced Mantle Heterogeneity beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes. Lithos, 134-135: 41-51. DOI:10.1016/j.lithos.2011.12.011
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oeanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Takagi, D., Sato, H., Nakagawa, M., 2005. Experimental Study of a Low-Alkali Tholeiite at 1-5kbar:Optimal Condition for the Crystallization of High-An Plagioclase in Hydrous Arc Tholeiite. Contributions to Mineralogy and Petrology, 149(5): 527-540. DOI:10.1007/s00410-005-0666-7
Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge, 211.
Tatsumi, Y., Takahashi, T., 2006. Operation of Subduction Factory and Production of Andesite. Journal of Mineralogical and Petrological Sciences, 101(3): 145-153. DOI:10.2465/jmps.101.145
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publication, Oxford, 46.
Wang, Y.J., Zhao, G.C., Fan, W.M., et al., 2007a. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province:Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1-2): 107-124. DOI:10.1016/j.precamres.2006.12.010
Wang, Y.X., Yang, J.D., Chen, J., et al., 2007b. The Sr and Nd Isotopic Variations of the Chinese Loess Plateau during the Past 7Ma:Implications for the East Asian Winter Monsoon and Source Areas of Loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 351-361. DOI:10.1016/j.palaeo.2007.02.010
Windley, B.F., Alexeiev, D., Xiao, W.J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. DOI:10.1144/0016-76492006-022
Wood, D.A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. DOI:10.1016/0012-821x(80)90116-8
Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220.
Wu, F.Y., Ye, M., Zhang, S.H., 1995. Geodynamic Model of the Manzhouli-Suifenhe Geoscience Transect. Earth Science, 20(5): 535-539.
Xu, W.L., Wang, F., Meng, E., et al., 2012. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province, NE China:Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389.
Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006. In-Situ U-Pb Dating and Hf Isotopic Analyses of Zircons from Volcanic Rocks of the Houcheng and Zhangjiakou Formations in the Zhang-Xuan Area, Northeast China. Earth Science, 31(1): 71-80.
Ye, M., Zhang, S.H., Wu, F.Y., 1994. The Classification of the Paleozoic Tectonic Units in the Area Crossed by M-S GGT. Journal of Changchun University of Earth Sciences, 24(3): 241-245.
Yu, J.J., Hou, X.G., Ge, W.C., et al., 2013. Magma Mixing Genesis of the Early Permian Liulian Pluton at the Northeastern Margin of the Jiamusi Massif in NE China:Evidences from Petrography, Geochronology and Geochemistry. Acta Petrologica Sinica, 9(9): 2971-2986.
Zeng, Z.G., Zhang, Y.X., Chen, Z.X., et al., 2016. Geological Tectonics, Magmatism and Seafloor Hydrothermal Activity in the Back-Arc Basins of the Western Pacific. Studia Marina Sinica, (0): 3-36.
Zhang, Z.C., Mao, J.W., Saunders, A.D., et al., 2009. Petrogenetic Modeling of Three Mafic-Ultramafic Layered Intrusions in the Emeishan Large Igneous Province, SW China, Based on Isotopic and Bulk Chemical Constraints. Lithos, 113(3-4): 369-392. DOI:10.1016/j.lithos.2009.04.023
Zhao, J.H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China):Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. DOI:10.1016/j.precamres.2006.09.002
Zhao, S., Xu, W.L., Tang, J., et al., 2016. Neoproterozoic Magmatic Event and Tectonic Attribution of the Erguna Massif:Constraints from Geochronological, Geochemical and Hf Isotopic Data of Intrusive Rocks. Earth Science, 41(11): 1803-1829.
Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015. Two Types of the Crust-Mantle Interaction in Continental Subduction Zone. Science China:Earth Sciences, 45(7): 900-915.
Zhao, Z.H., Wang, Q., Xiong, X.L., 2004. Complex Mantle-Crust Interaction in Subduction Zone. Bulletin of Mineralogy, Petrology and Geochemistry, 23(4): 277-284.
Zhong, H., Zhu, W.G., Hu, R.Z., et al., 2009. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of the Panzhihua A-Type Syenitic Intrusion in the Emeishan Large Igneous Province, Southwest China and Implications for Growth of Juvenile Crust. Lithos, 110(1-4): 109-128. DOI:10.1016/j.lithos.2008.12.006
Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2009. The Onset of Pacific Margin Accretion in NE China:Evidence from the Heilongjiang High Pressure Metamorphic Belt. Tectonophysics, 478: 230-246. DOI:10.1016/j.tecto.2009.08.009
邓晋福, 1987. 岩石相平衡与岩石成因. 武汉: 武汉地质学院出版社, 45-63.
冯光英, 刘燊, 冯彩霞, 等, 2011. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因. 岩石学报, 27(6): 1594-1606.
郭锋, 范蔚茗, 李超文, 等, 2009. 早古生代古亚洲洋俯冲作用:自内蒙古大石寨玄武岩的年代学与地球化学证据. 中国科学(地球科学), 39(5): 569-579.
郭奎城, 张文龙, 杨晓平, 等, 2011. 黑河市五道沟地区早二叠世A型花岗岩成因. 吉林大学学报(地球科学版), 41(4): 1077-1083.
侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原味U-Pb定年技术. 矿床地质, 28(4): 481-492.
孟恩, 许文良, 杨德彬, 等, 2008. 佳木斯地块东缘及东南缘二叠纪火山作用:锆石U-Pb年代学、地球化学及其构造意义. 科学通报, 53(8): 956-965.
孟杰, 刘晓旸, 梁一鸿, 等, 2017. 吉林省塔东群锆石U-Pb定年、微量元素研究及其地质意义. 地球科学, 42(4): 502-510.
裴福萍, 王志伟, 曹花花, 等, 2014. 吉林省中部地区早古生代英云闪长岩的成因:锆石U-Pb年代学和地球化学证据. 岩石学报, 30(7): 2009-2019.
邵济安, 李永飞, 唐克东, 2013. 张广才岭造山过程的重构及其大地构造意义. 岩石学报, 29(9): 2959-2970.
吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴福元, 叶茂, 张世红, 1995. 中国满洲里-绥芬河地学断面域的地球动力学模型. 地球科学, 20(5): 535-539.
许文良, 王枫, 孟恩, 等, 2012. 黑龙江省东部古生代-早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389.
杨进辉, 吴福元, 邵济安, 等, 2006. 冀北张-宣地区后城组、张家口组火山岩锆石U-Pb年龄和Hf同位素. 地球科学, 31(1): 71-80.
叶茂, 张世红, 吴福元, 1994. 中国满洲里-绥芬河地学断面域古生代构造单元及其地质演化. 长春地质学院学报, 24(3): 241-245.
于介江, 侯雪刚, 葛文春, 等, 2013. 佳木斯地块东北缘早二叠世六连岩体的岩浆混合成因:岩相学、年代学和地球化学证据. 岩石学报, 29(9): 2971-2986.
曾志刚, 张玉祥, 陈祖兴, 等, 2016. 西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动. 海洋科学集刊, (0): 3-36.
赵硕, 许文良, 唐杰, 等, 2016. 额尔古纳地块新元古代岩浆作用与微陆块构造属性:来自侵入岩锆石U-Pb年代学、地球化学和Hf同位素的制约. 地球科学, 41(11): 1803-1829.
赵振华, 王强, 熊小林, 2004. 俯冲带复杂的壳幔相互作用. 矿物岩石地球化学通报, 23(4): 277-284.
赵子福, 戴立群, 郑永飞, 2015. 大陆俯冲带两类壳幔相互作用. 中国科学:地球科学, 45(7): 900-915.