地球科学  2018, Vol. 43 Issue (4): 1321-1332.   PDF    
0
琼东南晚二叠世I型花岗岩成因及其构造指示
赵国锋1, 刘汇川1, 钱鑫1, 张爱梅2, 何景文1, 何慧莹1, 王岳军1     
1. 广东省地球动力作用与地质灾害重点实验室, 中山大学地球科学与工程学院, 广东广州 510275;
2. 国家海洋局第三海洋研究所, 福建厦门 361005
摘要:海南岛地处东古特提斯构造域东缘,是研究古特提斯东缘演化的重要地区.对海南岛东南部长征和陵水花岗闪长岩的LA-ICP-MS锆石U-Pb定年结果显示两者的结晶年龄分别为251±2 Ma和256±1 Ma,指示其形成于晚二叠世.样品的K2O/Na2O比值较低(0.2~0.9),铝饱和指数(A/CNK)为0.74~0.96,FeOT/MgO约为0.90,CIPW计算结果中标准矿物刚玉分子含量0.00~0.18%,小于1%,岩石薄片镜下可见大量角闪石,而未见白云母、堇青石和石榴子石,并具有相对负的εNdt)值(-6.0~-3.2)和锆石原位εHft)值(-4.4~+0.2),属于准铝质钙碱性I型花岗岩.长征和陵水花岗闪长岩源岩为亚碱性变基性岩,其形成与金沙江-哀牢山-松马-邦溪-晨星古特提斯弧后盆地的闭合有关.
关键词海南岛    古特提斯演化    I型花岗岩    晚二叠世    印支运动    岩石学    
Petrogenesis of Late Permian I-Type Granites in SE Hainan Island and Its Tectonic Implication for Paleotethyan Evolution
Zhao Guofeng1 , Liu Huichuan1 , Qian Xin1 , Zhang Aimei2 , He Jingwen1 , He Huiying1 , Wang Yuejun1     
1. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
2. Third Institute of Oceanographyh, State Oceanic Administration, Xiamen 361005, China
Abstract: Hainan Island is located in the convergence zone of the Pacific and Tethys tectonic domains and is a key area for investigating the Pacific and Tethyan evolution of the Indochina and South China blocks. In this paper, a set of new zircon U-Pb and Lu-Hf isotopic data, along with whole-rock elemental and Sr-Nd isotopic analytical results for the Changzheng and Lingshui granitoid plutons in Southeast Hainan Island are presented. The Changzheng and Lingshui granodiorites yield Late Permian LA-ICP-MS zircon U-Pb ages of 251±2 Ma and 256±1 Ma, respectively. They show K2O/Na2O=0.2-0.9, FeOT/MgO ratios of 0.90, A/CNK=0.74-0.96 with 0.00-0.18% corundum. Their εNd(t) values range from -6.0 to -3.2 and in-situ zircon εHf(t) values from -4.4 to +0.2. Such signatures, in combination with the absence of muscovite, cordierite and garnet, suggest that these Late Permian granodiorites are I-type granites. The Changzheng and Lingshui granites were derived from the subalkaline metabasites in response to the closure of the Jinshajiang-Ailaoshan-Songma-Bangxi-Chenxing branch/back-arc basin during Paleotethyan evolution.
Key Words: Hainan Island    Paleotethyan evolution    I-type granite    Late Permian    Indosinian orogeny    petrology    

现今从欧洲阿尔卑斯到亚洲喜马拉雅一线是特提斯洋闭合并伴随大陆碰撞所形成的巨型构造带,伴随这一事件终结的标志为印支运动(Lacassin et al., 1998; Li et al., 2006; Lepvrier et al., 2008).印支运动最早是依据越南北部上三叠统红层沉积与下伏中三叠统以及更老变质岩石之间的不整合面提出的,代表了印支与扬子陆块的碰撞产物.上三叠统红层沉积与下伏地层的不整合接触给出了印支运动的上限时间,但印支运动何时开始,即金沙江-哀牢山-松马古特提斯分支或弧后盆地开始关闭的时间长期存在争论.Liu et al.(2015)认为思茅-印支块体拼贴到华南板块的时间为晚二叠世(~252 Ma; Liu et al., 2012),标志着印支期造山运动的开始;Jian et al.(2009)认为哀牢山构造带在245.6 Ma已经转化为碰撞后构造环境;Zi et al.(2012a)指出三江造山带白马雪山的花岗岩类结晶年龄为253~248 Ma(平均年龄为249 Ma),代表着东古特提斯关闭时间.

海南岛地处古特提斯构造域东段,同时也是太平洋构造域的交汇地带(图 1),因此,是联系和理解印支和华南陆块构造演化的重要地区,也是解决亚洲东部大陆增生、华南大陆边缘演化及古特提斯东延等重大地学问题的关键地带(Li et al., 2002, 2006; Li and Li, 2007; Tang et al., 2013a, 2013b; Jiang et al., 2015).那么,海南岛上是否存在与古特提斯演化有关的岩浆记录?如存在,则其闭合时限和过程又如何理解?对此,本文在前人研究的基础上,针对海南岛东南部的长征和陵水花岗闪长岩展开了全岩地球化学、锆石U-Pb年代学和原位Hf同位素组成研究,以期为全面理解海南岛古特提斯构造演化提供新的资料.

Download:
图 1 华南南缘大地构造简图(a)和研究区地质图及采样点(b) Fig. 1 Geological sketch in southern South China (a) and geological sketch of the study area showing the sampling locations (b) 图a和b均改编自Zhang et al.(2011)He et al.(2017)
1 区域地质和样品岩石学特征

海南岛地处华南大陆西南缘,由北向南发育有4条近东西向隐伏断裂,分别是王五-文教、昌江-琼海、尖峰-吊罗和九所-陵水断裂;由西向东发育北东向的戈枕断裂和白沙断裂(Zhang et al., 2011).

岛内地层除侏罗系外,中元古界至第四系均见出露,分布面积约6 000 km2,只占全岛面积20%左右.其中,出露最老的地层为海南岛中部的抱板群和石碌群,由元古宇高绿片岩相-角闪岩相变质岩组成.古生界地层主要包括分布在九所-陵水断裂以北的泥盆系砂岩、石炭系的板岩和变火山岩、下二叠统灰岩以及中二叠统砂岩等(温淑女, 2013).

海南岛侵入岩以海西-印支期花岗岩类为主,其次为燕山晚期的花岗岩类,岩石类型主要为花岗闪长岩和黑云母二长花岗岩.喷出岩以分布在王五-文教断裂以北新生代玄武岩为主(李献华等, 2000a, 2000b; 何慧莹等, 2016; He et al., 2017; Li et al., 2017).本次研究的两个片麻状花岗岩岩石样品(11SY-27、11SY-28)分别采自琼中长征以东采石场和陵水东侧(图 1).样品岩性均为花岗闪长岩(图 2),主要矿物包括斜长石Pl(35%~40%,体积百分数)、石英Qtz(25%~35%,体积百分数)、碱性长石Af(~5%,体积百分数)、黑云母Bt(~5%,体积百分数)和角闪石Hb(~5%,体积百分数),副矿物有磷灰石、锆石及少量不透明矿物.

Download:
图 2 琼东南晚二叠世花岗质岩石的花岗岩手标本(a)和镜下照片(b) Fig. 2 Photographs (a) and microsraph (b) of the Late Permian granites in SE Hainan Island Bt.黑云母;Pl.斜长石;Qtz.石英;Hb.角闪石

本文用于对比的二叠纪岩体的样品形成于272~254 Ma,数据来自温淑女(2013),样品采自岛北部儋州地区至南部三亚地区的14个岩体,包括:大岭岩体、长塘岭岩体、石碌岩体、石岭岩体、南坤岩体、大田岩体、行干岩体、东岭岩体、通什岩体、大炮岭岩体、抱郎岩体、志仲岩体、道票岭岩体、安罗岩体.这些岩体主要呈北东-北北东向分布在王五-文教断裂与九所-陵水断裂之间.多数为中小型侵入体,侵入抱板群、石碌群、上奥陶统南碧沟组、下志留统陀烈组、上石炭统青天峡组和下二叠统峨查组地层中.岩石类型主要为(角闪)黑云母二长花岗岩、花岗闪长岩及少量的石英二长闪长岩.岩石具似斑状或斑状结构,斑晶主要为肉红色钾长石和灰白色斜长石.

2 分析方法及实验结果

从野外采集新鲜的岩石样品,委托河北廊坊诚信地质有限公司进行切片,并用人工重砂法进行锆石的分选.锆石阴极发光图像在中国科学院广州地球化学研究所的JXA-8100电子探针仪器上完成.锆石U-Pb定年及Lu-Hf同位素测定、以及全岩主微量元素和Sr-Nd同位素测定所用仪器和方法与文献Liu et al.(2015)所采用的相同,具体可参考该文献.

2.1 LA-ICP-MS锆石U-Pb定年结果

样品11SY-27:针对该样品进行了25个分析点的测试,其中11个分析点的Th/U值小于0.1,集中于0.03~0.09,其余14个分析点的Th/U值均大于0.1,集中于0.12~0.36.CL图像显示,锆石为长柱状,具明显的振荡环带(图 3),为岩浆锆石特征.分析测试点的206Pb/238U年龄分布于241±7 Ma~259±8 Ma.由图 3可见所有分析点都落在谐和线上,加权平均年龄为251±2 Ma(MSWD=1.5).获得的加权平均年龄可以代表该岩体的形成年龄.

Download:
图 3 琼东南晚二叠世花岗质岩石的锆石U-Pb定年谐和图与锆石CL图像 Fig. 3 U-Pb concordia diagrams and cathodoluminescence images for the Late Permian granites in SE Hainan Island

样品11SY-28:对该样品的25个锆石颗粒(图 3)进行了LA-ICP-MS U-Pb同位素分析(表 1),其中7个分析点的Th/U值小于0.1,集中于0.03~0.07,其余18个分析点的Th/U值均大于0.10,集中于0.10~0.33.长柱状的锆石CL图像显示出明显的振荡环带(图 3),为典型的岩浆锆石.16号分析点的年龄偏大,解释为捕获锆石,其捕获年龄为278±4 Ma.其余24个分析点分布于谐和线上或谐和线附近.分析点给出的206Pb/238U加权平均年龄为256±1 Ma(MSWD=0.27;图 3),为该岩体的结晶年龄.

表 1 LA-ICP-MS锆石U-Pb定年结果 Table 1 U-Pb zircon LA-ICP-MS chronological data
2.2 Lu-Hf同位素分析

锆石具有较高的Lu-Hf同位素封闭温度与Hf含量,同时还具有低的176Lu/177Hf值(自锆石形成时就保持稳定,由176Lu衰变而产生的同位素变化极小),因此适合用于Hf同位素的研究(吴福元等, 2007).本文样品锆石Lu-Hf同位素测试结果见表 2.

表 2 锆石Lu-Hf同位素测试结果 Table 2 Laser zircon Lu-Hf isotopic analytical results

(1) 11SY-27样品:共测得25颗锆石,其176Hf/177Hf值为0.282 51~0.282 61,176Lu/177Hf为0.000 27~0.002 44,表明锆石形成无明显的放射性成因Hf的积累(吴福元等, 2007).以这25颗锆石的形成年龄t=251 Ma进行计算,结果显示其176Hf/177Hf值为0.282 51~0.282 61,εHf(t)为-4.0~-0.6,均值为-2.5,二阶模式年龄TDM2为1.32~1.54 Ga,均值为1.44 Ga(图 4).

Download:
图 4 琼东南晚二叠世花岗质岩石的锆石εHf(t)和TDM2与成岩时间关系图解 Fig. 4 εHf(t)-age and TDM2-age for the Late Permian granites in SE Hainan Island 亏损地幔演化线的数据来自文献Nowell et al.(1998),平均地壳组分数据参考文献Griffin et al.(2004);其中黑色菱形为本文数据,空心圆温淑女(2013)

(2) 11SY-28样品:共测得25颗锆石,其中16号分析点为继承锆石,εHf(t)为-3.2,TDM2为1.49 Ga.其余24颗锆石的176Hf/177Hf值为0.282 49~0.282 63,176Lu/177Hf值为0.000 26~0.001 68,无明显的放射性成因Hf的积累(吴福元等, 2007).以形成年龄t=256 Ma进行计算,结果显示这24颗锆石的176Hf/177Hf值为0.282 50~0.282 63,εHf(t)为-4.4~0.2,均值为-2.8,二阶模式年龄TDM2为1.27~1.56 Ga,均值为1.46 Ga(图 4).

2.3 主微量元素和Sr-Nd同位素组成

本文样品主微量元素和Sr-Nd同位素分析测定结果见表 3.在QAP图解上(图 5a),样品主要落入花岗闪长岩与英云闪长岩的范围,与笔者野外观察及镜下的薄片鉴定结果基本一致.样品的SiO2含量较低,MgO含量较低(MgO=1.7%~2.0%),K2O/Na2O值较低(0.2~0.9),全碱含量较高(K2O+Na2O=3.0%~6.0%),铝饱和指数(A/CNK)为0.74~0.96,小于1.1(图 5b).样品具有低的FeOT/MgO(~0.90),不同于A型花岗岩.CIPW计算结果中标准矿物刚玉分子含量小于1%,含有角闪石(图 2),未见白云母、堇青石或石榴子石出现,这些特征不同于澳大利亚Lachlan褶皱带内S型花岗岩,而与澳大利亚Lachlan褶皱带内I型花岗岩(Chappell, 1999)相似(图 5b).在原始地幔标准化的微量元素蛛网图(图 6a)上显示出Nb、Ta、Ti强烈负异常,球粒陨石标准化的稀土元素配分图(图 6b)上可见轻稀土富集、重稀土亏损和中等程度Eu负异常(Eu/Eu*=0.17~0.23).样品11SY-27与11SY-28对应的(87Sr/86Sr)t分别为0.708 38和0.708 73,εNd(t)分别为-6.0和-3.2(表 3图 7).

表 3 主量(%)、微量(10-6)元素及Sr-Nd同位素测试结果 Table 3 Major elements (%), trace elements (10-6) and Sr-Nd isotopic analytical results
Download:
图 5 琼东南晚二叠世花岗质岩石的QAP(a)和A/NK-A/CNK图解(b) Fig. 5 QAP (a) and A/NK-A/CNK (b) for the Late Permian granites in SE Hainan Island 图a据Streckeisen(1976);图b中黑色菱形为本文数据,空心圆温淑女(2013);A/CNK=Al2O3/101.9/(CaO/56.1+Na2O/62.0+K2O/94.2),A/NK=Al2O3/101.9/(Na2O/62.0+K2O/94.2)
Download:
图 6 琼东南晚二叠世花岗质岩石的微量元素蛛网图(a)和稀土元素配分图(b) Fig. 6 Primitive mantle-normalized spidergram (a) and chondrite-normalized REE pattern (b) for the Late Permian granites in SE Hainan Island 原始地幔和球粒陨石数据来自文献Sun and McDonough(1989)
Download:
图 7 琼东南晚二叠世花岗质岩石的(87Sr/86Sr)t-εNd(t)关系 Fig. 7 Relation of (87Sr/86Sr)t-εNd(t) for the Late Permian granites in SE Hainan Island 蛇绿岩数据来自文献Xu and Castillo(2004),岛弧玄武岩数据来自文献Fan et al.(2010),Lachlan褶皱带I型和S型花岗岩范围参考文献Healy et al.(2004);其中黑色菱形为本文数据,空心圆温淑女(2013)
3 讨论 3.1 琼东南晚二叠世花岗质岩石成因

琼东南晚二叠世花岗质岩石是富含角闪石钙碱性I型花岗岩(ACG; Barbarin, 1999),这类花岗岩有两种常见的来源,一是幔源低钾玄武质岩浆的分离结晶(Barth et al., 1995),二是亚碱性变基性岩的部分熔融(Rapp and Watson, 1995).琼东南晚二叠世花岗质岩石样品几乎不含继承锆石,说明地壳混染作用不明显.在蛛网图上样品均具有Eu和Sr的异常,表明了以斜长石和钾长石为主的分离结晶作用.微量元素蛛网图上亏损P和Ti,显示了显著的磷灰石和Ti-Fe氧化物的分离结晶作用.磷灰石、锆石和钛铁矿的分离结晶控制了Zr-Hf、Nb-Ta、Sc和V的结晶分异作用.前人一般认为即使要分离结晶出少量酸性岩也需要大量的基性母岩浆(Gunnarsson et al., 1998; Peccerillo et al., 2003),在海南岛分布有大量晚二叠世花岗质岩石,而同期基性岩浆岩则出露有限,也未见大量过渡的中性岩分布,所以琼东南晚二叠世花岗质岩石应该不是第1种成因.前人实验表明玄武质角闪岩在8×108~12×108 Pa压力下相脱水熔融残余麻粒岩相,在12×108~32×108 Pa压力下相脱水熔融残余含石榴子石麻粒岩相到榴辉岩相,但是两种情况下形成的熔体MgO含量均较低(Rapp and Watson, 1995).本文琼东南晚二叠世花岗质岩石镁指数为0.44~0.47,εNd(t)值变化于-6.0~-3.2,锆石εHf(t)值变化于-4.4~0.2.因此其源岩为亚碱性变基性岩.

3.2 成岩构造背景

海南岛位于华南大陆南缘,其间被琼州海峡分割,西南以哀牢山-松马缝合带与印支陆块相接,处于特提斯和太平洋两大构造域的叠置区,构造位置特殊.目前对于海南岛内分布的晚二叠世花岗质岩浆的产出构造背景一直存在争议.部分学者认为岛内广泛发育的二叠纪-三叠纪岩浆作用与古特提斯闭合及随后的印支与华南陆块碰撞有关(陈新跃等, 2011; Tang et al., 2013a, 2013b; 温淑女, 2013);也有研究者认为其岩浆作用属于华南沿海大陆岩浆弧的一部分,其成因与古太平洋的西向俯冲有关(Li et al., 2006; Li and Li, 2007).但是近年来在海南岛中部发现的邦溪-晨星晚古生代变基性岩显示出与哀牢山和松马蛇绿岩类岩石具有相似的地球化学特征,被认为形成于弧后盆地环境(Li et al., 2000c; 李献华等, 2000b; 何慧莹等, 2016; He et al., 2017),并且海南岛中部经历的三叠纪碰撞造山变质作用也与哀牢山和松马带的印支运动变质作用相似(Zhang et al., 2011).钙碱性I型花岗岩一般认为可形成于类似于安第斯山的大陆弧背景或类似于喀里多尼亚的碰撞后构造环境(Roberts and Clemens, 1993).晚二叠世沿着金沙江-哀牢山-松马仍分布有岛弧成因岩浆岩,如256 Ma的大龙凯玄武岩、~251 Ma的下关闪长质花岗岩和新安寨二长花岗岩、249 Ma的帽合山玄武岩(刘翠等, 2011)、254~248 Ma金沙江带内的白马雪山岩体(Zi et al., 2012a)、松马带内的248 Ma Muong Lay和248~245 Ma Phia Bioc岩体(Liu et al., 2012; Roger et al., 2012)等.同样在海南岛的邦溪-晨星缝合带附近也分布有如264~254 Ma的南坤、石岭、石碌和长塘岭等晚二叠世岛弧岩浆岩(温淑女,2013).另外在Nb-Y和Rb-(Yb+Ta)图解中大部分样品点落入岛弧花岗岩的区域(图 8).这些特征说明晚二叠世时海南岛古特提斯弧后盆地还未闭合,琼东南晚二叠世花岗质岩石应该是形成于类似于安第斯山的大陆弧背景,其形成与古特提斯弧后盆地的闭合相关.

Download:
图 8 琼东南晚二叠世花岗质岩石的构造判别图 Fig. 8 Discrimination diagrams for the Late Permian granites in SE Hainan Island WPG.板内花岗岩;VAG.火山弧型花岗岩;ORG.洋脊型花岗岩;syn-COLG.同碰撞型花岗岩.图据Pearce et al.(1984)Pearce(1996)
3.3 对于琼东南古特提斯演化的构造指示

邦溪-晨星晚古生代变基性岩代表了金沙江-哀牢山-松马古特提斯弧后盆地在海南岛内的延伸.在金沙江-哀牢山-松马构造带,刘翠等(2011)在帽合山发现了249 Ma的玄武岩,这套玄武岩显示出岛弧地球化学特征,此时哀牢山弧后盆地还未完全闭合.Liu et al.(2015)在哀牢山构造带识别出陆缘弧、同碰撞和碰撞后3期花岗质岩石,其中第1期以~251 Ma的下关闪长质花岗岩和新安寨二长花岗岩为代表,与帽合山249 Ma的玄武岩属同一期,为哀牢山弧盆系统汇聚的陆缘弧岩浆产物,它们的结束标志着哀牢山弧后盆地基本闭合,随之扬子陆块与思茅地块开始陆陆碰撞,地壳加厚.此外,在金沙江带内的白马雪山岩体(254~248 Ma, Zi et al., 2012a)、松马带内的Muong Lay(248 Ma)和Phia Bioc(248~245 Ma)岩体(Liu et al., 2012; Roger et al., 2012)、海南的南坤、石岭、石碌和长塘岭(264~254 Ma)等岩体(温淑女, 2013)的源区主要为弧下岩石圈地幔与古老地壳物质熔融而成.本文样品的锆石U-Pb年龄为251±2 Ma和256±1 Ma,与上述岩浆作用属同一时期.稍晚发育有早三叠世花岗质岩石,同时晚三叠世高山寨组、人支雪山组和潘天阁组(~247 Ma)与下伏地层之间角度不整合接触(刘翠等, 2011; 王保弟等, 2011; Zi et al., 2012b),这些早三叠世同碰撞高硅流纹岩不整合上覆于早期地层之上, 标志着该弧后盆地完全闭合.

该弧后盆地完全闭合的另一个标志是同期的变形变质作用广泛发育,在金沙江-哀牢山-松马-海南构造带内发育了广泛的早二叠世变质作用.例如构造带内角闪石、黑云母、白云母的40Ar/39Ar坪年龄为240~250 Ma(Lepvrier et al., 2004; Maluski et al., 2005);越南北部高级变质岩的锆石变质年龄为245~250 Ma(Carter et al., 2001; Roger et al., 2007);越南北部片麻岩Sm-Nd等时线年龄为247 Ma(Nakano et al., 2007),榴辉岩独居石年龄为243±4 Ma(Nakano et al., 2010);海南岛绿片岩相和角闪岩相的变质岩40Ar/39Ar坪年龄为242~250 Ma(Zhang et al., 2011).这些变质岩和变质年龄也很好地记录了扬子陆块与思茅-印支陆块的碰撞事件.因此笔者认为琼东南晚二叠世花岗质岩石分布于邦溪-晨星晚古生代MORB型变基性岩南侧,与金沙江带的白马雪山、哀牢山带的新安寨和松马带内的Muong Lay和Phia Bioc等岛弧成因花岗质岩石成因类似(Liu et al., 2012; Roger et al., 2012),其形成受控于金沙江-哀牢山-松马-邦溪-晨星东古特提斯弧后盆地的闭合.

4 结论

(1) 琼东南长征和陵水花岗闪长岩的锆石U-Pb年龄为251~256 Ma.

(2) 琼东南晚二叠世花岗闪长岩为准铝质钙碱性I型花岗岩,源岩为亚碱性变基性岩.

(3) 琼东南晚二叠世花岗闪长岩的形成与东古特提斯弧后盆地的闭合紧密相关.

致谢 野外样品采集以及室内岩石分析工作得到了张菲菲、张立敏和周永智等博士的帮助.评审专家的意见,对提高论文质量起了重要作用,在此一并致以诚挚谢意!

参考文献
Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. DOI:10.1016/s0024-4937(98)00085-1
Barth, A.P., Wooden, J.L., Tosdal, R.M., et al., 1995. Crustal Contamination in the Petrogenesis of a Calc-Alkalic Rock Series:Josephine Mountain Intrusion, California. Geological Society of America Bulletin, 107(2): 201-212. DOI:10.1130/0016-7606(1995)107<0201:ccitpo>2.3.co;2
Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia:Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. DOI:10.1130/0091-7613(2001)029<0211:umaisa>2.0.co;2
Chappell, B.W., 1999. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. DOI:10.1016/s0024-4937(98)00086-3
Chen, X.Y., Wang, Y.J., Fan, W.M., et al., 2011. Zircon LA-ICP-MS U-Pb Dating of Granitic Gneisses from Wuzhishan Area, Hainan, and Geological Significances. Geochimica, 40(5): 454-463.
Fan, W.M., Wang, Y.J., Zhang, A.M., et al., 2010. Permian Arc-Back-Arc Basin Development along the Ailaoshan Tectonic Zone:Geochemical, Isotopic and Geochronological Evidence from the Mojiang Volcanic Rocks, Southwest China. Lithos, 119(3-4): 553-568. DOI:10.1016/j.lithos.2010.08.010
Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. DOI:10.1016/j.precamres.2003.12.011
Gunnarsson, B., Marsh, B.D., Taylor, H.P., 1998. Generation of Icelandic Rhyolites:Silicic Lavas from the Torfajökull Central Volcano. Journal of Volcanology and Geothermal Research, 83(1-2): 1-45. DOI:10.1016/s0377-0273(98)00017-1
He, H.Y., Wang, Y.J., Liu, H.C., et al., 2016. Geochemical and Geochronological Characteristics of the Fengmu Mafic Rocks in Hainan and Its Tectonic Implications. Acta Scientiarum Naturalium Universitatis Sunyatseni, 55(4): 146-157.
He, H.Y., Wang, Y.J., Zhang, Y.H., et al., 2017. Fingerprints of the Paleotethyan Back-Arc Basin in Central Hainan, South China:Geochronological and Geochemical Constraints on the Carboniferous Metabasites. International Journal of Earth Sciences, 12: 1-18. DOI:10.1007/s00531-017-1508-3
Healy, B., Collins, W.J., Richards, S.W., 2004. A Hybrid Origin for Lachlan S-Type Granites:The Murrumbidgee Batholith Example. Lithos, 78(1-2): 197-216. DOI:10.1016/j.lithos.2004.04.047
Jian, P., Liu, D.Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ):Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3-4): 767-784. DOI:10.1016/j.lithos.2009.04.006
Jiang, X.Y., Li, X.H., Collins, W.J., et al., 2015. U-Pb Age and Hf-O Isotopes of Detrital Zircons from Hainan Island:Implications for Mesozoic Subduction Models. Lithos, 239: 60-70. DOI:10.1016/j.lithos.2015.10.006
Lacassin, Leloup, Trinh, et al., 1998. Unconformity of Red Sandstones in North Vietnam:Field Evidence for Indosinian Orogeny in Northern Indochina?. Terra Nova, 10(2): 106-111. DOI:10.1046/j.1365-3121.1998.00178.x
Lepvrier, C., Maluski, H., van Tich, V.V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif):Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1-4): 87-118. DOI:10.1016/j.tecto.2004.07.030
Lepvrier, C., van Vuong, N.V., Maluski, H., et al., 2008. Indosinian Tectonics in Vietnam. Comptes Rendus Geoscience, 340(2-3): 94-111. DOI:10.1016/j.crte.2007.10.005
Li, S, B., He, H, Y., Qian, X., et al., 2017. Carboniferous Arc Setting in Central Hainan:Geochronological and Geochemical Evidences on the Andesitic and Dacitic Rocks. Journal of Earth Science. DOI:10.1007/s12583-017-0936-0
Li, X.H., Li, Z.X., Li, W.X., et al., 2006. Initiation of the Indosinian Orogeny in South China:Evidence for a Permian magmatic arc on Hainan Island. Journal of Geology, 114(3): 341-353. DOI:10.1086/501222
Li, X.H., Zhou, H.W., Chung, S.L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasites from Central Hainan Island, South China and Their Tectonic Significance. Island Arc, 11(3): 193-205. DOI:10.1046/j.1440-1738.2002.00365.x
Li, X.H., Zhou, H.W., Ding, S.J., et al., 2000a. Sm-Nd Isotopic Constraints on the Age of the Bangxi-Chenxing Ophiolite in Hainan Island:Implications for the Tectonic Evolution of Eastern Paleo-Tethys. Acta Petrologica Sinica, 16(3): 425-432.
Li, X.H., Zhou, H.W., Ding, S.J., et al., 2000b. Mid Ocean Ridge Metabasic Volcanic Rocks of Hainan Island:Paleo-Tethyan Oceanic Crust Slices?. Chinese Science Bulletin, 45(1): 84-89.
Li, X.H., Zhou, H.W., Ding, S.J., et al., 2000c. Metamorphosed Mafic Rocks with N-Type MORB Geochemical Features in Hainan Island-Remnants of the Paleo-Tethys Oceanic Crust?. Chinese Science Bulletin, 45(10): 956-961. DOI:10.1007/BF02886208
Li, Z.X., Li, X.H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model. Geology, 35(2): 179-182. DOI:10.1130/g23193a.1
Liu, C., Deng, J.F., Liu, J.L., et al., 2011. Characteristics of Volcanic Rocks from Late Permian to Early Traissic in Ailaoshan Tectono-Magmatic Belt and Implications for Tectonic Settings. Acta Petrologica Sinica, 27(12): 3590-3602.
Liu, H.C., Wang, Y.J., Cawood, P.A., et al., 2015. Record of Tethyan Ocean Closure and Indosinian Collision along the Ailaoshan Suture Zone (SW China). Gondwana Research, 27(3): 1292-1306. DOI:10.1016/j.gr.2013.12.013
Liu, J.L., Tran, M.D., Tang, Y., et al., 2012. Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt, NW Vietnam:Geochronology, Geochemistry and Tectonic Implications. Gondwana Research, 22(2): 628-644. DOI:10.1016/j.gr.2011.10.011
Maluski, H., Lepvrier, C., Leyreloup, A., et al., 2005. 40Ar-39Ar Geochronology of the Charnockites and Granulites of the Kan Nack Complex, Kon Tum Massif, Vietnam. Journal of Asian Earth Sciences, 25(4): 653-677. DOI:10.1016/j.jseaes.2004.07.004
Nakano, N., Osanai, Y., Owada, M., et al., 2007. Geologic and Metamorphic Evolution of the Basement Complexes in the Kontum Massif, Central Vietnam. Gondwana Research, 12(4): 438-453. DOI:10.1016/j.gr.2007.01.003
Nakano, N., Osanai, Y., Sajeev, K., et al., 2010. Triassic Eclogite from Northern Vietnam:Inferences and Geological Significance. Journal of Metamorphic Geology, 28(1): 59-76. DOI:10.1111/j.1525-1314.2009.00853.x
Nowell, G.M., Kempton, P.D., Noble, S.R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry:Insights into the Depleted Mantle. Chemical Geology, 149(3-4): 211-233. DOI:10.1016/s0009-2541(98)00036-9
Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125.
Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo, A., Barberio, M.R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings:A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003-2032. DOI:10.1093/petrology/egg068
Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Roberts, M.P., Clemens, J.D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. DOI:10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2
Roger, F., Maluski, H., Lepvrier, C., et al., 2012. LA-ICPMS Zircons U/Pb Dating of Permo-Triassic and Cretaceous Magmatisms in Northern Vietnam-Geodynamical Implications. Journal of Asian Earth Sciences, 48(6): 72-82. DOI:10.1016/j.jseaes.2011.12.012
Roger, F., Maluski, H., Leyreloup, A., et al., 2007. U-Pb Dating of High Temperature Metamorphic Episodes in the Kon Tum Massif (Vietnam). Journal of Asian Earth Sciences, 30(3-4): 565-572. DOI:10.1016/j.jseaes.2007.01.005
Streckeisen, A., 1976. To Each Plutonic Rock:Its Proper Name. Earth-Science Reviews, 12(1): 1-33. DOI:10.1016/0012-8252(76)90052-0
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. DOI:10.1144/gsl.sp.1989.042.01.19
Tang, L.M., Chen, H.L., Dong, C.W., et al., 2013a. Geochronology, Geochemistry and Its Tectonic Significance of Chahe Granites in Hainan Island. Journal of Earth Science, 24(4): 619-625. DOI:10.1007/s12583-013-0361-y
Tang, L.M., Chen, H.L., Dong, C.W., et al., 2013b. Middle Triassic Post-Orogenic Extension on Hainan Island:Chronology and Geochemistry Constraints of Bimodal Intrusive Rocks. Science China:Earth Sciences, 56(5): 783-793. DOI:10.1007/s11430-012-4562-5
Wang, B.D., Wang, L.Q., Wang, D.B., et al., 2011. Zircons U-Pb Dating of Volcanic Rocks from Renzhixueshan Formation in Shangdie Rift Basin of Sanjiang Area and Its Geological Implications. Acta Petrologica et Mineralogica, 30(1): 25-33.
Wen, S. N., 2013. Geochronologic and Geochemical Studies of Permian-Triassic Magmatism in Hainan Island, South China (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220.
Xu, J.F., Castillo, P.R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1-4): 9-27. DOI:10.1016/j.tecto.2004.07.028
Zhang, F.F., Wang, Y.J., Chen, X.Y., et al., 2011. Triassic High-Strain Shear Zones in Hainan Island (South China) and Their Implications on the Amalgamation of the Indochina and South China Blocks:Kinematic and 40Ar/39Ar Geochronological Constraints. Gondwana Research, 19(4): 910-925. DOI:10.1016/j.gr.2010.11.002
Zi, J.W., Cawood, P.A., Fan, W.M., et al., 2012a. Generation of Early Indosinian Enriched Mantle-Derived Granitoid Pluton in the Sanjiang Orogen (SW China) in Response to Closure of the Paleo-Tethys. Lithos, 140-141: 166-182. DOI:10.1016/j.lithos.2012.02.006
Zi, J.W., Cawood, P.A., Fan, W.M., et al., 2012b. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144-145: 145-160. DOI:10.1016/j.lithos.2012.04.020
陈新跃, 王岳军, 范蔚茗, 等, 2011. 海南五指山地区花岗片麻岩锆石LA-ICP-MS U-Pb年代学特征及其地质意义. 地球化学, 40(5): 454-463.
何慧莹, 王岳军, 刘汇川, 等, 2016. 海南枫木地区基性岩的年代学、地球化学及其构造意义. 中山大学学报(自然科学版), 55(4): 146-157.
李献华, 周汉文, 丁式江, 等, 2000a. 海南岛"邦溪-晨星蛇绿岩片"的时代及其构造意义——Sm-Nd同位素制约. 岩石学报, 16(3): 425-432.
李献华, 周汉文, 丁式江, 等, 2000b. 海南岛洋中脊型变质基性岩:古特提斯洋壳的残片?. 科学通报, 45(1): 84-89.
刘翠, 邓晋福, 刘俊来, 等, 2011. 哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境. 岩石学报, 27(12): 3590-3602.
王保弟, 王立全, 王冬兵, 等, 2011. 三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定年与地质意义. 岩石矿物学杂志, 30(1): 25-33.
温淑女, 2013. 海南岛二叠纪-三叠纪岩浆作用的年代学与地球化学研究(博士学位论文). 北京: 中国科学院大学.
吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.