• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因

    刘飞 连东洋 牛晓露 赵慧 冯光英 杨经绥

    刘飞, 连东洋, 牛晓露, 赵慧, 冯光英, 杨经绥, 2018. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因. 地球科学, 43(4): 952-974. doi: 10.3799/dqkx.2018.702
    引用本文: 刘飞, 连东洋, 牛晓露, 赵慧, 冯光英, 杨经绥, 2018. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因. 地球科学, 43(4): 952-974. doi: 10.3799/dqkx.2018.702
    Liu Fei, Lian Dongyang, Niu Xiaolu, Zhao Hui, Feng Guangying, Yang Jingsui, 2018. Dongbo MORB-Type Isotropic Gabbro Emplaced as an Oceanic Core Complex in Western Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 952-974. doi: 10.3799/dqkx.2018.702
    Citation: Liu Fei, Lian Dongyang, Niu Xiaolu, Zhao Hui, Feng Guangying, Yang Jingsui, 2018. Dongbo MORB-Type Isotropic Gabbro Emplaced as an Oceanic Core Complex in Western Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 952-974. doi: 10.3799/dqkx.2018.702

    雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因

    doi: 10.3799/dqkx.2018.702
    基金项目: 

    中国地质调查局地质调查项目 DD20160022-01

    国家自然科学基金项目 41720104009

    中国地质调查局地质调查项目 DD20160023-01

    国家自然科学基金项目 41672063

    基本科研业务费 J1618

    国家自然科学基金项目 41773029

    国家自然科学基金项目 41373029

    详细信息
      作者简介:

      刘飞(1982-), 博士, 主要从事不同造山带蛇绿岩研究, 近年来主要开展西藏雅鲁藏布江蛇绿岩和金刚石的构造成因研究

    • 中图分类号: P581;P583;P584

    Dongbo MORB-Type Isotropic Gabbro Emplaced as an Oceanic Core Complex in Western Yarlung Zangbo Suture Zone, Tibet

    • 摘要: 为解决雅鲁藏布江缝合带西段南带中数个大型超镁铁岩体的成因问题,对南带西段约400 km2的东波蛇绿岩开展区域地质填图,研究蛇绿岩岩石组合和构造性质及西北缘均质辉长岩年代学和成因.研究表明,东波蛇绿岩以地幔橄榄岩、薄层洋壳和周缘出露大面积晚侏罗世-早白垩世残余海山为特征,地幔橄榄岩中发育大量拆离、韧性剪切和正断层及糜棱岩和糜棱岩化蛇纹岩和蛇绿角砾岩;均质辉长岩的锆石普遍受到流体交代,锆石U-Pb年龄为129.0±1.8 Ma,地球化学具有低Si、K、P、Fe和Ti,高Ca和Mg,N-MORB型的稀土配分特征及明显的Th、Nb、Sr和Pb负异常.认为均质辉长岩形成于慢速-超慢速大洋扩张阶段,在大洋核杂岩沿拆离断层侵位过程中形成.

       

    • 图  1  西藏雅鲁藏布江缝合带(YZSZ)在东特提斯-喜马拉雅-缅马造山带中的位置(a)和西藏南部区域地质简图和YZSZ蛇绿岩分布(b)

      图a据Jagoutz et al.(2015)修改;图b据Xu et al.(2015)修改.GCT.大反冲逆冲断裂;GT.冈底斯逆冲断层;KKF.喀喇昆仑断裂;MBT.主边界逆冲断裂;MCT.主中央逆冲断裂;MFT.主前缘逆冲断裂;NB.南迦巴瓦构造结;NP.南迦帕尔特构造结;STD.藏南拆离系

      Fig.  1.  Location of the Yarlung Zangbo suture zone (YZSZ), Tibet in the eastern Mediteranian-Ximalaya-Myanma orogenic belt (a), and simplified geological map of southern Tibet showing the locations of all the ophiolitic massifs in the YZSZ (b)

      图  2  西藏南部雅鲁藏布江缝合带(YZSZ)和班公湖-怒江缝合带(BNSZ)分布简图(a),YZSZ西段区域地质简图(b)

      普兰东和普兰西以拉昂错湖西缘为界

      Fig.  2.  Distribution of ophiolitic massifs along the Yarlung Zangbo suture zone (YZSZ) and Bangonghu-Nujiang suture zone (BNSZ) in Tibet (a); simplified geological map of the western part of the YZSZ, Tibet (b)

      图  3  雅鲁藏布江缝合带西段南带东波蛇绿岩地质简图

      样品L190(辉长岩,坐标N31°04′26.50″,E80°11′14.40″)和L178(辉石岩,N31°02′16.30″,E80°17′44.60″)熊发挥等(2011);样品GCT329(粗粒辉长岩,N31°02′16.69″,E80°17′44.59″)引自Chan et al.(2015).白色五角星为文献样品,黄色五角星为本文样品

      Fig.  3.  Geological map of the Dongbo ophiolite in the southern belt of the western Yarlung Zangbo suture zone

      图  4  东波堆晶伟晶辉长岩夹纯橄岩透镜体野外特征

      Fig.  4.  Occurrence of cumulate pegmatoidal gabbros interbedded with dunite lens in the Dongbo ophiolite

      图  5  雅鲁藏布江缝合带西段南带东波均质辉长岩的野外特征

      Fig.  5.  Field photographs of the isotropic gabbros in the southern belt of the western Yarlung Zangbo suture zone

      图  6  东波均质辉长岩的显微镜下特征

      a~d.样品13YL45-6;e, f.样品13YL45-8,左边单偏光,右边正交光

      Fig.  6.  Photomicrographs of the isotropic gabbros in the southern belt of the western Yarlung Zangbo suture zone

      图  7  东波均质辉长岩全岩化学成分谐变图解

      辉长岩脉熊发挥等(2011);西南印度洋Seg 27玄武岩和高铝玄武岩引自Yang et al.(2017)

      Fig.  7.  Selected chemical variation diagrams of isotropic gabbro samples from the Dongbo ophiolite

      图  8  东波蛇绿岩中基性岩脉球粒陨石和N-MORB标准化图解

      东波辉石岩脉和辉长岩脉,据熊发挥等(2011);YZSZ西段北带错布扎蛇绿岩中辉绿岩脉,据刘飞等(2015b);BAB.全球弧后玄武岩平均值;MORB.全球洋中脊玄武岩平均值(包括MORB, N-MORB, MORB+BAB三条线),据Gale et al.(2013);Mariana FAB-D.马里亚纳弧前玄武质岩脉,据Reagan et al.(2010);Lau-IAT.Lau洋脊岛弧拉斑玄武岩, 据Hergt and Woodhead(2007);西南印度洋洋脊Seg 27玄武岩和高铝玄武岩,据Yang et al.(2017);西南印度洋洋脊龙骨玄武岩,据Gao et al.(2016);N-MORB和球粒陨石,据Sun and McDonough(1989)

      Fig.  8.  Chondrite-normalized REE patterns and N-MORB normalized spider diagrams for the Dongbo gabbros

      图  9  东波均质辉长岩(13YL45-13)锆石阴极发光(CL)图像(a),和锆石U-Pb年龄谐和图(b, d)及其加权平均年龄图(c, e)

      Fig.  9.  Zircon cathodoluminescence (CL) images of isotropic gabbros in the Dongbo (a), zircon U-Pb concordia diagrams (b, d) and their weighted average results (c, e) in the Dongbo

      图  10  球粒陨石标准化的Ce/Yb-Dy/Yb图解(a)和La/Sm-Sm/Yb图解(b)

      图a据Saccani(2015);图b中曲线和数字分别为非模式熔融模拟曲线和熔融程度(%),据Aldanmaz et al.(2000).N-MORB.正常洋中脊玄武岩;G-MORB.源自石榴石相的洋中脊玄武岩;E-MORB.富集洋中脊玄武岩;DMM.亏损MORB地幔;EM.西安那托利亚富集地幔;PM.初始地幔.N代表球粒陨石标准化,据Sun and McDonough(1989);东波辉长岩脉数据熊发挥等(2011)

      Fig.  10.  Isotropic gabbro samples on the chondrite-normalized (Dy/Yb) versus (Ce/Yb) diagram used for discriminating between G-MORB and N-MORB (a) and La/Sm-Sm/Yb diagram (b)

      图  11  东波均质辉长岩的构造判别图解

      图a据Pearce(2003);图b据引自Pearce(2014);图c和图d引自Saccani(2015).辉石岩脉和辉长岩脉熊发挥等(2011).AB.碱性玄武岩;BBAB.弧后盆地玄武岩;D/N/G-MORB.亏损/正常/石榴石相-洋中脊玄武岩;WPB.板内玄武岩

      Fig.  11.  Tectonic discrimination diagrams for the Dongbo isotropic gabbros

      图  12  雅鲁藏布江缝合带西段南带地幔橄榄岩的野外构造特征

      a.东波地幔橄榄岩中拆离正断层;b.韧性剪切拆离断层(断层面被碳酸盐矿物充填);c.阶步构造;d.东波地幔橄榄质角砾岩;e,f.普兰地幔橄榄质角砾岩

      Fig.  12.  Field photographs of structural features of mantle peridotite in the southern belt of the western Yarlung Zangbo suture zone

      图  13  东波蛇绿岩在慢速扩张脊附近沿转换断层侵位

      Fig.  13.  Schematic model of the Dongbo ophiolite formation as an oceanic core complex near a slow-spreading ridge

      表  1  东波蛇绿岩中均质辉长岩主量元素(%)和微量元素(10-6)含量

      Table  1.   Major (%) and trace element (10-6) compositions of isotropic gabbros from the Dongbo ophiolite in the western YZSZ, Tibet

      样品号 均质辉长岩 辉石岩脉 辉长岩脉
      13YL45-1 13YL45-2 13YL45-3 13YL45-4 13YL45-5 13YL45-7 13YL45-8 13YL45-9 L-178-3* L-190-2*
      SiO2 45.62 45.72 45.59 45.59 45.94 46.18 45.04 45.81 53.65 49.54
      TiO2 1.08 1.07 0.91 1.00 0.98 0.91 1.03 1.05 0.10 0.94
      Al2O3 13.72 13.53 13.59 12.98 14.07 14.02 14.70 13.46 3.03 15.66
      Fe2O3 1.61 0.99 1.36 1.51 1.21 1.02 1.42 1.58 7.94 2.10
      FeO 6.53 6.91 5.71 6.28 6.18 6.00 6.29 6.26 6.80 6.80
      MnO 0.16 0.17 0.16 0.18 0.15 0.16 0.15 0.17 0.15 0.15
      MgO 8.48 8.47 9.81 9.50 7.48 7.87 7.97 8.67 25.37 7.35
      CaO 18.55 18.62 18.26 18.16 19.63 19.62 19.03 18.51 7.63 10.9
      Na2O 0.32 0.33 0.32 0.34 0.32 0.29 0.28 0.34 0.09 3.29
      K2O 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.09 0.02 0.09
      P2O5 0.09 0.09 0.08 0.08 0.08 0.07 0.09 0.09 0.05 0.07
      CO2 0.15 0.13 0.13 0.19 0.16 0.28 0.14 0.19
      H2O+ 3.76 3.91 4.03 3.90 3.56 3.54 4.11 3.86
      LOI 3.17 3.09 3.52 3.26 3.00 3.27 3.59 3.29 0.10 1.98
      Total 100.14 100.02 100.02 99.79 99.84 100.04 100.32 100.07 98.36 98.68
      FeOT 7.98 7.80 6.93 7.64 7.27 6.92 7.57 7.68 13.94 8.69
      Mg# 65.67 66.15 71.80 69.12 64.94 67.19 65.47 67.01 76.61 60.36
      M 70.04 68.81 75.56 73.14 68.54 70.25 69.52 71.37 87.04 66.05
      Sc 35.10 33.50 30.80 33.60 31.60 31.20 32.60 33.40
      Ti 6 806.00 6 353.00 5 547.00 6 201.00 6 149.00 5 740.00 6 276.00 6 672.00
      Cr 154.00 150.00 185.00 184.00 155.00 177.00 167.00 154.00
      V 226.00 215.00 189.00 211.00 205.00 193.00 208.00 232.00 305.00 210.00
      Ni 59.90 58.00 61.50 61.70 58.10 61.20 58.90 56.30
      Co 38.40 35.60 34.20 35.30 36.00 34.50 36.10 36.90
      Cu 55.40 60.50 43.30 44.40 40.20 20.50 53.10 40.40
      Zn 66.60 60.80 55.60 62.20 60.40 50.80 58.00 59.30
      Ga 13.30 11.90 12.00 11.60 13.90 14.60 11.60 12.80
      Mn 1 197.00 1 201.00 1 166.00 1 271.00 1 164.00 1 187.00 1 045.00 1 291.00
      Mo 0.26 0.14 0.15 0.25 0.17 0.26 0.10 0.17
      Pb 0.16 0.22 0.14 0.32 0.29 0.18 0.20 0.19
      Rb 0.45 0.44 1.66 0.95 0.87 0.88 0.70 0.77 0.20 0.90
      Sr 48.40 45.30 45.10 42.10 47.80 40.20 52.10 47.70 160.00 121.00
      Y 25.00 23.40 19.70 21.40 21.10 19.60 21.20 22.80 23.20 19.60
      Zr 71.20 74.50 63.10 66.10 68.30 59.80 69.70 71.90
      Nb 0.92 0.87 0.83 0.81 0.90 0.84 0.86 0.96 0.50 0.70
      Ba 17.40 13.30 21.60 11.60 6.15 10.40 11.70 10.60 1.70 7.50
      La 2.13 2.00 1.94 1.87 1.98 1.89 2.06 2.16 1.00 1.80
      Ce 6.81 6.95 6.16 6.44 6.49 6.08 6.85 6.95 3.90 5.70
      Pr 1.24 1.27 1.10 1.18 1.18 1.09 1.24 1.31 0.87 1.04
      Nd 7.58 7.43 6.62 6.79 7.25 6.39 7.32 7.08 5.40 5.80
      Sm 2.43 2.41 2.17 2.35 2.31 2.07 2.40 2.41 2.37 2.03
      Eu 1.02 0.95 0.88 0.88 0.92 0.86 0.94 1.03 0.85 0.92
      Gd 3.37 3.32 2.77 3.15 2.90 2.97 3.25 3.19 3.20 2.86
      Tb 0.56 0.58 0.47 0.53 0.51 0.47 0.54 0.56 0.66 0.56
      Dy 3.96 3.92 3.37 3.70 3.52 3.35 3.85 3.91 4.29 3.77
      Ho 0.82 0.87 0.71 0.77 0.77 0.72 0.83 0.82 0.95 0.81
      Er 2.49 2.42 2.12 2.32 2.32 2.05 2.41 2.41 2.84 2.42
      Tm 0.36 0.38 0.32 0.35 0.32 0.32 0.34 0.36 0.40 0.34
      Yb 2.40 2.41 2.01 2.15 2.17 1.98 2.33 2.38 2.52 2.22
      Lu 0.34 0.37 0.31 0.34 0.33 0.31 0.35 0.36 0.39 0.33
      Hf 2.15 2.20 1.82 2.00 2.04 1.69 2.05 2.14 1.10 1.70
      Ta 0.16 0.17 0.15 0.13 0.17 0.18 0.15 0.16 0.09 0.09
      Th 0.09 0.08 0.11 0.09 0.09 0.09 0.10 0.10 0.05 0.07
      注:*熊发挥等(2011).
      下载: 导出CSV

      表  2  东波蛇绿岩中均质辉长岩(样品13YL45-13)LA-ICP-MS锆石U-Pb定年结果

      Table  2.   LA-ICP-MS zircon U-Pb isotopic data for an isotropic gabbro (sample 13YL45-13) from the Dongbo ophiolite

      测试点 普通206Pb*(10-6) 放射性206Pb(10-6) 元素(10-6) Th/U 同位素比值 年龄结果(Ma)
      U Th 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U* ±1σ
      13YL-45-13-1 11.02 21.55 536.45 1 062.71 1.98 0.165 07 0.013 01 0.474 68 0.044 34 0.020 86 0.000 60 133.0 4.0
      13YL-45-13-4 6.57 10.74 321.14 527.06 1.64 0.078 49 0.009 65 0.227 78 0.029 97 0.021 05 0.000 61 134.0 4.0
      13YL-45-13-5 9.99 19.75 524.28 1 632.49 3.11 0.048 13 0.003 63 0.128 22 0.010 16 0.019 32 0.000 46 123.0 3.0
      13YL-45-13-10 8.28 13.29 418.22 783.01 1.87 0.051 12 0.004 96 0.142 30 0.014 00 0.020 19 0.000 58 129.0 4.0
      13YL-45-13-12 8.78 12.67 439.39 441.28 1.00 0.045 58 0.006 48 0.127 93 0.018 41 0.020 36 0.000 61 130.0 4.0
      13YL-45-13-13 16.11 26.40 812.55 1 309.55 1.61 0.069 84 0.005 49 0.193 49 0.016 91 0.020 09 0.000 54 128.0 3.0
      13YL-45-13-14 4.47 7.09 210.48 351.05 1.67 0.039 89 0.006 94 0.120 49 0.020 28 0.021 90 0.000 70 140.0 4.0
      13YL-45-13-15 12.18 26.14 619.90 1 787.98 2.88 0.148 87 0.012 12 0.405 19 0.033 53 0.019 74 0.000 54 126.0 3.0
      13YL-45-13-16 10.92 17.68 534.69 808.60 1.51 0.070 03 0.007 59 0.198 93 0.024 23 0.020 60 0.000 56 131.0 4.0
      13YL-45-13-19 6.39 12.26 323.97 894.78 2.76 0.046 38 0.009 00 0.126 49 0.023 88 0.019 78 0.000 68 126.0 4.0
      13YL-45-13-20 7.40 11.13 369.67 567.69 1.54 0.047 19 0.006 75 0.133 48 0.019 68 0.020 52 0.000 62 131.0 4.0
      13YL-45-13-21 8.52 14.19 437.10 767.41 1.76 0.068 76 0.008 25 0.187 93 0.023 18 0.019 82 0.000 64 127.0 4.0
      13YL-45-13-22 6.12 10.55 316.77 587.04 1.85 0.067 14 0.010 41 0.181 76 0.033 20 0.019 63 0.000 65 125.0 4.0
      13YL-45-13-23 5.47 7.44 263.04 245.45 0.93 0.048 81 0.007 05 0.141 92 0.021 24 0.021 09 0.000 64 135.0 4.0
      13YL-45-13-24 10.92 16.73 524.09 753.93 1.44 0.041 20 0.004 34 0.118 80 0.013 23 0.020 91 0.000 54 133.0 3.0
      13YL-45-13-26 4.83 9.32 230.79 624.35 2.71 0.042 00 0.005 78 0.123 78 0.017 45 0.021 38 0.000 63 136.0 4.0
      13YL-45-13-27 2.70 5.54 138.01 439.49 3.18 0.051 29 0.008 77 0.140 46 0.024 05 0.019 86 0.000 69 127.0 4.0
      13YL-45-13-29 7.86 16.65 378.64 1 364.15 3.60 0.046 79 0.006 77 0.135 85 0.018 87 0.021 06 0.000 60 134.0 4.0
      13YL-45-13-30 5.97 13.16 294.78 1 145.82 3.89 0.052 56 0.006 09 0.149 59 0.017 64 0.020 64 0.000 58 132.0 4.0
      13YL-45-13-31 3.22 6.75 157.42 522.97 3.32 0.049 19 0.007 10 0.140 84 0.021 57 0.0207 6 0.000 64 132.0 4.0
      13YL-45-13-32 6.22 12.75 317.55 1 024.59 3.23 0.051 26 0.006 48 0.139 63 0.018 06 0.01975 0.000 57 126.0 4.0
      注:*由测定的204Pb计算.
      下载: 导出CSV
    • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al., 2000.Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 102(1-2):67-95.https://doi.org/10.1016/s0377-0273(00)00182-7 doi: 10.1016/S0377-0273(00)00182-7
      Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79.https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X
      Ao, S.J., Xiao, W.J., Yang, L., et al., 2017.The Typical Characteristics and Tectonic Implications of Fossil Oceanic Core Complex(OCC)in Orogenic Belt.Scientia Sinica Terrae, 47(1):1-22 (in Chinese). doi: 10.1360/N072016-00213
      Baier, J., Audétat, A., Keppler, H., 2008.The Origin of the Negative Niobium Tantalum Anomaly in Subduction Zone Magmas.Earth and Planetary Science Letters, 267(S1-2):290-300.https://doi.org/10.1016/j.epsl.2007.11.032 https://www.sciencedirect.com/science/article/pii/S0012821X07007790
      Bao, P.S., Su, L., Wang, J., et al., 2013.Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet.Acta Geologica Sinica (English Edition), 87(2):395-425.https://doi.org/10.1111/1755-6724.12058 doi: 10.1111/acgs.2013.87.issue-2
      Bao, P.S., Su, L., Wang, J., et al., 2014.Origin of the Zedang and Luobusa Ophiolites, Tibet.Acta Geologica Sinica (English Edition), 88(2):669-698.https://doi.org/10.1111/1755-6724.12222 doi: 10.1111/acgs.2014.88.issue-2
      Bezard, R., Hébert, R., Wang, C.S., et al., 2011.Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet.Lithos, 125(1-2):347-367. https://doi.org/10.1016/j.lithos.2011.02.019
      Bryant, C.J., Arculus, R.J., Eggins, S.M., 2013.The Geochemical Evolution of the Izu-Bonin Arc System:A Perspective from Tephras Recovered by Deep-Sea Drilling.Geochemistry, Geophysics, Geosystems, 4(11):1-37.https://doi.org/10.1029/2002gc000427 doi: 10.1029/2002GC000427
      Cai, F.L, Ding, L., Laskowski, A.K., et al., 2016.Late Triassic Paleogeographic Reconstruction along the Neo-Tethyan Ocean Margins, Southern Tibet.Earth and Planetary Science Letters, 435:105-114. https://doi.org/10.1016/j.epsl.2015.12.027
      Canales, J.P., 2010.Small-Scale Structure of the Kane Oceanic Core Complex, Mid-Atlantic Ridge 23°30'N, from Wave Form Tomography of Multichannel Seismic Data.Geophysical Research Letters, 37(21):1-6.https://doi.org/10.1029/2010gl044412 doi: 10.1029/2010GL044412
      Chan, G.H.N., Aitchison, J.C., Crowley, Q.G., et al., 2015.U-Pb Zircon Ages for Yarlung Tsangpo Suture Zone Ophiolites, Southwestern Tibet and Their Tectonic Implications.Gondwana Research, 27(2):719-732. https://doi.org/10.1016/j.gr.2013.06.016
      Condie, K.C., 2003.Incompatible Element Ratios in Oceanic Basalts and Komatiites:Tracking Deep Mantle Sources and Continental Growth Rates with Time.Geochemistry, Geophysics, Geosystems, 4(1):1-28.https://doi.org/10.1029/2002gc000333 doi: 10.1029/2002GC000333
      Dai, J.G., Wang, C.S., Hébert, R., et al., 2011.Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys.Chemical Geology, 288(3-4):133-148. https://doi.org/10.1016/j.chemgeo.2011.07.011
      Dai, J.G., Wang, C.S., Li Y.L., 2012.Relicts of the Early Cretaceous Seamounts in the Central-Western Yarlung Zangbo Suture Zone, Southern Tibet.Journal of Asian Earth Sciences, 53:25-37. https://doi.org/10.1016/j.jseaes.2011.12.024
      Dai, J.G., Wang, C.S., Polat, A., et al., 2013.Rapid Forearc Spreading between 130 and 120 Ma:Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Tibet.Lithos, 172-173(4):1-16.https://doi.org/10.1016/j.lithos.2013.03.011
      Deng, J.F., Liu, C., Feng, Y.F., et al., 2015.On the Correct Application in the Common Igneous Petrological Diagrams:Discussion and Suggestion.Geological Review, 61(4):717-734 (in Chinese with English abstract). doi: 10.1007/s00410-016-1292-2
      Dilek, Y., 2016.Compositions & Melt Evolution of Upper Mantle Peridotites in the Tethyan Ophiolites.Acta Geologica Sinica (English Edition), 90(Suppl.1):211.https://doi.org/10.1111/1755-6724.12981 doi: 10.1021/la501406w
      Dilek, Y., Furnes, H., 2011.Ophiolite Genesis and Global Tectonics:Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere.Geological Society of America Bulletin, 123(3-4):387-411.https://doi.org/10.1130/b30446.1 doi: 10.1130/B30446.1
      Dilek, Y., Furnes, H., 2014.Ophiolites and Their Origins.Elements, 10(2):93-100. https://doi.org/10.2113/gselements.10.2.93
      Dilek, Y., Shallo, M., Furnes, H., 2005.Rift-Drift, Seafloor Spreading, and Subduction Tectonics of Albanian Ophiolites.International Geology Review, 47(2):147-176. https://doi.org/10.2747/0020-6814.47.2.147
      Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research:Solid Earth, 102(B7):14991-15019.https://doi.org/10.1029/97jb00788 doi: 10.1029/97JB00788
      Escrig, S., Bézos, A., Goldstein, S.L., et al., 2009.Mantle Source Variations beneath the Eastern Lau Spreading Center and the Nature of Subduction Components in the Lau Basin-Tonga Arc System.Geochemistry, Geophysics, Geosystems, 10(4):1-33.https://doi.org/10.1029/2008gc002281 doi: 10.1029/2008GC002281?scrollTo=references
      Festa, A., Pini, G.A., Dilek, Y., et al., 2010.Mélanges and Mélange-Forming Processes:A Historical Overview and New Concepts.International Geology Review, 52(10-12):1040-1105. https://doi.org/10.1080/00206810903557704
      Furnes, H., Dilek, Y., de Wit, M., 2015.Precambrian Greenstone Sequences Represent Different Ophiolite Types.Gondwana Research, 27(2):649-685. https://doi.org/10.1016/j.gr.2013.06.004
      Gale, A., Dalton, C.A., Langmuir, C.H., et al., 2013.The Mean Composition of Ocean Ridge Basalts.Geochemistry, Geophysics, Geosystems, 14(3):489-518.https://doi.org/10.1029/2012gc004334 doi: 10.1029/2012GC004334
      Gao, C.G., Dick, H.J.B., Liu, Y., et al., 2016.Melt Extraction and Mantle Source at a Southwest Indian Ridge Dragon Bone Amagmatic Segment on the Marion Rise.Lithos, 246-247(1):48-60.https://doi.org/10.1016/j.lithos.2015.12.007 https://www.sciencedirect.com/science/article/pii/S0024493715004570
      Gao, H.X., Song, Z.J., 1995.New Progress in the Study of the Zetang Ophiolitic Mélange in Tibet.Regional Geology of China, 14(4):316-322 (in Chinese with English abstract).
      Girardeau, J., Mercier, J.C.C., 1988.Petrology and Texture of the Ultramafic Rocks of the Xigaze Ophiolite (Tibet):Constraints for Mantle Structure beneath Slow-Spreading Ridges.Tectonophysics, 147(1-2):33-58. https://doi.org/10.1016/0040-1951(88)90146-1
      Gong, X.H., Shi, R.D., Griffin, W.L., et al., 2016.Recycling of Ancient Subduction-Modified Mantle Domains in the Purang Ophiolite (Southwestern Tibet).Lithos, 262:11-26. https://doi.org/10.1016/j.lithos.2016.06.025
      Grimes, C.B., Ushikubo, T., Kozdon, R., et al., 2013.Perspectives on the Origin of Plagiogranite in Ophiolites from Oxygen Isotopes in Zircon.Lithos, 179(5):48-66.https://doi.org/10.1016/j.lithos.2013.07.026 https://www.sciencedirect.com/science/article/pii/S0024493713002430
      Guo, G.L., Yang, J.S., Liu, X.D., et al., 2015.Mid-Ocean Ridge (MOR) and Suprasubduction Zone (SSZ) Geological Events in the Yarlung Zangbo Suture Zone:Evidence from the Mineral Record of Mantle Peridotites.Journal of Asian Earth Sciences, 110:33-54. https://doi.org/10.1016/j.jseaes.2015.02.012
      He, J., Li, Y.L., Wang, C.S., et al., 2016.Plume-Proximal Mid-Ocean Ridge Origin of Zhongba Mafic Rocks in the Western Yarlung Zangbo Suture Zone, Southern Tibet.Journal of Asian Earth Sciences, 121:34-55. https://doi.org/10.1016/j.jseaes.2016.01.022
      Hébert, R., Bezard, R., Guilmette, C., et al., 2012.The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys.Gondwana Research, 22(2):377-397. https://doi.org/10.1016/j.gr.2011.10.013
      Hergt, J.M., Woodhead, J.D., 2007.A Critical Evaluation of Recent Models for Lau-Tonga Arc-Backarc Basin Magmatic Evolution.Chemical Geology, 245(1-2):9-44. https://doi.org/10.1016/j.chemgeo.2007.07.022
      Jagoutz, O., Royden, L., Holt, A.F., et al., 2015.Anomalously Fast Convergence of India and Eurasia Caused by Double Subduction.Nature Geoscience, 8(6):475-478. https://doi.org/10.1038/ngeo2418
      Li, C.S., Arndt, N.T., Tang, Q.Y., et al., 2015a.Trace Element in Discrimination Diagrams.Lithos, 232:76-83. https://doi.org/10.1016/j.lithos.2015.06.022
      Li, X.P., Chen, H.K., Wang, Z.L., et al., 2015b.Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet.Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023
      Li, J.F., Xia, B., Liu, L.W., et al., 2008.SHRIMP U-Pb Zircon Dating of Diabase in the La'nga Co Ophiolite, Burang, Tibet, China, and Its Geological Significance.Geological Bulletin of China, 27(10):1739-1743 (in Chinese with English abstract).
      Li, X.H., Wang, C.S., Li, Y.L., et al., 2014.Definition and Composition of the Zhongba Microterrane in Southwest Tibet.Acta Geologica Sinica, 88(8):1372-1381 (in Chinese with English abstract).
      Li, Y., Li, R.B., Dong, T.C., et al., 2016.Structure of the Baimarang Massif in the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, Southern Tibet, China.Chinese Science Bulletin, 61(25):2823-2833 (in Chinese with English abstract).
      Lian, D.Y., Yang, J.S., Liu, F., et al., 2017.Geochemistry and Tectonic Significance of the Gongzhu Peridotites in the Northern Branch of the Western Yarlung Zangbo Ophiolitic Belt, Western Tibet.Mineralogy and Petrology, 111(5):729-746. https://doi.org/10.1007/s00710-017-0491-5
      Lian, D.Y., Yang, J.S., Robinson, P.T., et al., 2016.Tectonic Evolution of the Western Yarlung Zangbo Ophiolitic Belt, Tibet:Implications from the Petrology, Mineralogy, and Geochemistry of the Peridotites.The Journal of Geology, 124(3):353-376. https://doi.org/10.1086/685510
      Lian, D.Y., Yang, J.S., Xiong, F.H., et al., 2015.Platinum-Group Element Characteristics of the Peridotite and Podiform Chromitite from Dajiweng Ophiolite of the Western Segment of Yarlung-Zangbo Suture Zone, Tibet.Geology in China, 42(2):525-546 (in Chinese with English abstract).
      Liang, F.H., Xu, Z.Q., Ba, D.Z., et al., 2011.Tectonic Occurrence and Emplacement Mechanism of Ophiolites from Luobusha-Zedang, Tibet.Acta Petrologica Sinica, 27(11):3255-3268 (in Chinese with English abstract).
      Liu, C.Z., Zhang, C., Yang, L.Y., et al., 2014.Formation of Gabbronorites in the Purang Ophiolite (SW Tibet) through Melting of Hydrothermally Altered Mantle along a Detachment Fault.Lithos, 205:127-141. https://doi.org/10.1016/j.lithos.2014.06.019
      Liu, F., Dilek, Y., Xie, Y.X., et al., 2018.Melt Evolution of Upper Mantle Peridotites and Mafic Dikes in the Northern Ophiolite Belt of the Western Yarlung Zangbo Suture Zone (Southern Tibet).Lithosphere, 10(1):109-132.https://doi.org/10.1130/l689.1 doi: 10.1130/L689.1
      Liu, F., Yang, J.S., Dilek, Y., et al., 2015.Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yarlung-Zangbo Suture Zone:Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet.Gondwana Research, 27(2):701-718. https://doi.org/10.1016/j.gr.2014.08.002
      Liu, F., Yang, J.S., Chen, S.Y., et al., 2013.Ascertainment and Environment of the OIB-Type Basalts from the Dongbo Ophiolite in the Western Part of Yarlung Zangbo Suture Zone.Acta Petrologica Sinica, 29(6):1909-1932 (in Chinese with English abstract). https://www.researchgate.net/publication/281424952_Ascertainment_and_environment_of_the_OIB-type_basalts_from_the_Dongbo_ophiolite_in_the_western_part_of_Yarlung_Zangbo_Suture_Zone
      Liu, F., Yang, J.S., Lian, D.Y., et al., 2015a.Genesis and Characteristics of the Western Part of the Yarlung Zangbo Ophiolites, Tibet.Acta Petrologica Sinica, 31(12):3609-3628 (in Chinese with English abstract).
      Liu, F., Yang, J.S., Lian, D.Y., et al., 2015b.The Genesis and Tectonic Significance of Mafic Dikes in the Western Part of the Yarlung Zangbo Suture Zone, Tibet.Acta Geoscientica Sinica, 36(4):441-454 (in Chinese with English abstract).
      Liu, Q., Deng, Y.B., Xiang, S.Y., et al., 2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science, 42(6):881-890 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201205026.htm
      Liu, Z., Li, Y., Xiong, F.H., et al., 2011.Petrology and Geochronology of MOR Gabbro in the Purang Ophiolite of Western Tibet, China.Acta Petrologica Sinica, 27(11):3269-3279 (in Chinese with English abstract).
      Maffione, M., van Hinsbergen, D.J.J., Koornneef, L.M.T., et al., 2015.Forearc Hyperextension Dismembered the South Tibetan Ophiolites.Geology, 43(6):475-478.https://doi.org/10.1130/g36472.1 doi: 10.1130/G36472.1
      Mallick, S., Standish, J.J., Bizimis, M., 2015.Constraints on the Mantle Mineralogy of an Ultra-Slow Ridge:Hafnium Isotopes in Abyssal Peridotites and Basalts from the 9-25°E Southwest Indian Ridge.Earth and Planetary Science Letters, 410(7):42-53.https://doi.org/10.1016/j.epsl.2014.10.048 https://www.sciencedirect.com/science/article/pii/S0012821X1400675X
      Miller, C., 2003.Geochemistry and Tectonomagmatic Affinity of the Yungbwa Ophiolite, SW Tibet.Lithos, 66(3-4):155-172.https://doi.org/10.1016/s0024-4937(02)00217-7 doi: 10.1016/S0024-4937(02)00217-7
      Molnar, P., Tapponnier, P., 1975.Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision.Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419
      Morris, A., Gee, J.S., Pressling, N., et al., 2009.Footwall Rotation in an Oceanic Core Complex Quantified Using Reoriented Integrated Ocean Drilling Program Core Samples.Earth and Planetary Science Letters, 287(1-2):217-228. https://doi.org/10.1016/j.epsl.2009.08.007
      Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981.The Xigaze Ophiolite (Tibet):A Peculiar Oceanic Lithosphere.Nature, 294(5840):414-417. https://doi.org/10.1038/294414a0
      Niu, X.L., Yang, J.S., Chen, S.Y., et al., 2013.The Reformation of the Dongbo Ultramafic Rock Massif in the Western Part of the Yarlung Zangbo Suture Zone by Subduction-Related Fluids:Evidence from the Platimun-Group Elements (PGE).Geology in China, 40(3):756-766 (in Chinese with English abstract). https://www.researchgate.net/publication/286393165_The_reformation_of_the_Dongbo_ultramafic_rock_massif_in_the_western_part_of_the_Yarlung_Zangbo_suture_zone_by_subduction-related_fluids_Evidence_from_the_platimun-group_elements_PGE
      Niu, X.L., Yang, J.S., Dilek, Y., et al., 2015.Petrological and Os Isotopic Constraints on the Origin of the Dongbo Peridotite Massif, Yarlung Zangbo Suture Zone, Western Tibet.Journal of Asian Earth Sciences, 110:72-84. https://doi.org/10.1016/j.jseaes.2014.09.036
      Niu, Y.L., 2016.The Meaning of Global Ocean Ridge Basalt Major Element Compositions.Journal of Petrology, 57(11-12):2081-2103. https://doi.org/10.1093/petrology/egw073
      Orme, D.A., Laskowski, A.K., 2016.Basin Analysis of the Albian-Santonian Xigaze Forearc, Lazi Region, South-Central Tibet.Journal of Sedimentary Research, 86(8):894-913. https://doi.org/10.2110/jsr.2016.59
      Pearce, J.A., 2014.Immobile Element Fingerprinting of Ophiolites.Elements, 10(2):101-108. https://doi.org/10.2113/gselements.10.2.101
      Pearce, J.A., Wanming, D., 1988.The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986).Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):215-238. https://doi.org/10.1098/rsta.1988.0127
      Pearce, J.A., 2003.Supra-Subduction Zone Ophiolites:The Search for Modern Analogues.Special Papers-Geological Society of America, 269-294. http://orca.cf.ac.uk/8599/
      Reagan, M.K., Ishizuka, O., Stern, R.J., et al., 2010.Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System.Geochemistry, Geophysics, Geosystems, 11(3):1-17.https://doi.org/10.1029/2009gc002871 doi: 10.1029/2009GC002871?scrollTo=footer-citing
      Saccani, E., 2015.A New Method of Discriminating Different Types of Post-Archean Ophiolitic Basalts and Their Tectonic Significance Using Th-Nb and Ce-Dy-Yb Systematics.Geoscience Frontiers, 6(4):481-501. https://doi.org/10.1016/j.gsf.2014.03.006
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      Tapponnier, P., Mercier, J.L., Proust, F., et al., 1981.The Tibetan Side of the India-Eurasia Collision.Nature, 294(5840):405-410. https://doi.org/10.1038/294405a0
      Todd, E., Gill, J.B., Pearce, J.A., 2012.A Variably Enriched Mantle Wedge and Contrasting Melt Types during Arc Stages Following Subduction Initiation in Fiji and Tonga, Southwest Pacific.Earth and Planetary Science Letters, 335-336:180-194. https://doi.org/10.1016/j.epsl.2012.05.006
      Velikoslavinsky, S.D., Krylov, D.P., 2014.Geochemical Discrimination of Basalts Formed in Major Geodynamic Settings.Geotectonics, 48(6):427-439.https://doi.org/10.1134/s0016852114060077 doi: 10.1134/S0016852114060077
      Wang, J.R., Chen, W.F., Zhang, Q., et al., 2017.Preliminary Research on Data Mining of N-MORB and E-MORB:Discussion on Method of the Basalt Discrimination Diagrams and the Character of MORB's Mantle Source.Acta Petrologica Sinica, 33(3):993-1005 (in Chinese with English abstract). https://www.researchgate.net/publication/316278054_Preliminary_research_on_data_mining_of_N-Morb_and_E-MORB_Discussion_on_method_of_the_basalt_discrimination_diagrams_and_the_character_of_MORB's_mantle_source
      Wang, J.R., Pan, Z.J., Zhang, Q., et al., 2016.Intra-Continental Basalt Data Mining:The Diversity of Their Constituents and the Performance in Basalt Discrimination Diagrams.Acta Petrologica Sinica, 32(7):1919-1933 (in Chinese with English abstract). https://www.researchgate.net/publication/306138109_Intra-continental_basalt_data_mining_The_diversity_of_their_constituents_and_the_performance_in_basalt_discrimination_diagrams
      Wang, X.C., Wilde, S.A., Xu, B., et al., 2016.Origin of Arc-Like Continental Basalts:Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination.Lithos, 261:5-45. https://doi.org/10.1016/j.lithos.2015.12.014
      Wang, X.B., Zhou, X., Hao, Z.G., 2010.Some Opinions on Further Exploration for Chromite Deposits in the Luobusha Area, Tibet, China.Geological Bulletin of China, 29(1):105-114 (in Chinese with English abstract).
      Wang, Y.P., 2015.Research on the Drilling Cores (DSD-1) of Dongbo Ophiolitic Massif in the Western Segement of Yarlung Zangbo Suture Zone(Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
      Whattam, S.A., Stern, R.J., 2011.The 'Subduction Initiation Rule':A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation.Contributions to Mineralogy and Petrology, 162(5):1031-1045. https://doi.org/10.1007/s00410-011-0638-z
      Wu, F.Y., Liu, C.Z., Zhang, L.L., et al., 2014.Yarlung Zangbo Ophiolite:A Critical Updated View.Acta Petrologica Sinica, 30(2):293-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201402001.htm
      Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf?origin=publication_detail
      Xiao, Q.H., Li, T.D., Pan, G.T., et al., 2016.Petrologic Ideas for Identification of Ocean-Continent Transition:Recognition of Intra-Oceanic Arc and Initial Subduction.Geology in China, 43(3):721-737(in Chinese with English abstract). http://www.refdoc.fr/Detailnotice?cpsidt=20695915
      Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2017.High-Al and High-Cr Podiform Chromitites from the Western Yarlung-Zangbo Suture Zone, Tibet:Implications from Mineralogy and Geochemistry of Chromian Spinel, and Platinum-Group Elements.Ore Geology Reviews, 80:1020-1041.https://doi.org/10.13039/501100004613 doi: 10.1016/j.oregeorev.2016.09.009
      Xiong, F.H., Yang, J.S., Liang, F.H., et al., 2011.Zircon U-Pb Ages of the Dongbo Ophiolite in the Western Yarlung Zangbo Suture Zone and Their Geological Significance.Acta Petrologica Sinica, 27(11):3223-3238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201111006.htm
      Xu, X.Z., Yang, J.S., Ba, D.Z., et al., 2011.Petrogenesis of the Kangjinla Peridotite in the Luobusa Ophiolite, Southern Tibet.Journal of Asian Earth Sciences, 42(4):553-568. https://doi.org/10.1016/j.jseaes.2011.05.007
      Xu, X.Z., Yang, J.S., Ba, D.Z., et al., 2015.Diamond Discovered from the Dongbo Mantle Peridotite in the Yarlung Zangbo Suture Zone, Tibet.Geology in China, 42(5):1471-1482(in Chinese with English abstract).
      Xu, X.Z., Yang, J.S., Guo, G.L., et al., 2011.Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet.Acta Petrologica Sinica, 27(11):3179-3196(in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/254331/1/1000012489102.pdf
      Xu, Z.Q., Dilek, Y., Yang, J.S., et al., 2015.Crustal Structure of the Indus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet.Gondwana Research, 27(2):507-524.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gr.2014.08.001
      Yang, A.Y., Zhao, T.P., Zhou, M.F., et al., 2017.Isotopically Enriched N-MORB:A New Geochemical Signature of Off-Axis Plume-Ridge Interaction-A Case Study at 50°28'E, Southwest Indian Ridge.Journal of Geophysical Research:Solid Earth, 122(1):191-213.https://doi.org/10.13039/501100001809 doi: 10.1002/2016JB013284
      Yang, J., Wang, J.R., Zhang, Q., et al., 2016.Global IAB Data Excavation:The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation.Geological Bulletin of China, 35(12):1937-1949(in Chinese with English abstract). https://www.researchgate.net/publication/306138109_Intra-continental_basalt_data_mining_The_diversity_of_their_constituents_and_the_performance_in_basalt_discrimination_diagrams
      Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127
      Yang, J.S., Robinson, P.T., Dilek, Y., 2015.Diamond-Bearing Ophiolites and Their Geological Occurrence.Episodes, 38(4):344-364.https://doi.org/10.18814/epigsi/2015/v38i4/82430 https://www.researchgate.net/publication/284064585_Diamond-bearing_Ophiolites_and_Their_Geological_Occurrence
      Yang, J.S., Xiong, F.H., Guo, G.L., et al., 2011a.The Dongbo Ultramafic Massif:A Mantle Peridotite in the Western Part of the Yarlung Zangbo Suture Zone, Tibet, with Excellent Prospects for a Major Chromite Deposit.Acta Petrologica Sinica, 27(11):3207-3222(in Chinese with English abstract).
      Yang, J.S., Xu, X.Z., Li, Y., et al., 2011b.Diamonds Recovered from Peridotite of the Purang Ophiolite in the Yarlung-Zangbo Suture of Tibet:A Proposal for a New Type of Diamond Occurrence.Acta Petrologica Sinica, 27(11):3171-3178(in Chinese with English abstract).
      Yu, X., Chu, F.Y., Dong, Y.H., et al., 2013.Detachment Fault and Oceanic Core Complex:A New Mode of Seafloor Spreading.Earth Science, 38(5):995-1004(in Chinese with English abstract). http://www.nature.com/srep/2013/130801/srep02336/metrics/citations
      Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370.https://doi.org/10.1111/j.1751-908x.2004.tb00755.x doi: 10.1111/ggr.2004.28.issue-3
      Zahirovic, S., Matthews, K.J., Flament, N., et al., 2016.Tectonic Evolution and Deep Mantle Structure of the Eastern Tethys since the Latest Jurassic.Earth-Science Reviews, 162:293-337. https://doi.org/10.1016/j.earscirev.2016.09.005
      Zhang, L., Yang, J.S., Liu, F., et al., 2016.The South Gongzhucuo Peridotite Massif:A Typical MOR Type Peridotite in the Western Yarlung Zangbo Suture Zone.Acta Petrologica Sinica, 32(12):3649-3672(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161207
      Zhang, S.Q., Mahoney, J.J., Mo, X.X., et al., 2005.Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics.Journal of Petrology, 46(4):829-858. https://doi.org/10.1093/petrology/egi002
      Zheng, H., Huang, Q., Kapsiotis, A., et al., 2017.Early Cretaceous Ophiolites of the Yarlung Zangbo Suture Zone:Insights from Dolerites and Peridotites from the Baer Upper Mantle Suite, SW Tibet (China).International Geology Review, 59(11):1471-1489.https://doi.org/10.13039/501100001809 doi: 10.1080/00206814.2016.1276867
      Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519.https://doi.org/10.1093/nsr/nww049 https://www.researchgate.net/publication/306072657_Continental_versus_oceanic_subduction_zones
      Zhou, H.Y., Dick, H.J.B., 2013.Thin Crust as Evidence for Depleted Mantle Supporting the Marion Rise.Nature, 494(7436):195-200. https://doi.org/10.1038/nature11842
      Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
      Zhou, M.F., Robinson, P.T., Malpas, J., et al., 2005.REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet.Journal of Petrology, 46(3):615-639.https://doi.org/10.1093/petrology/egh091
      Zhou, W.D., Yang, J.S., Zhao, J.H., et al., 2014.Mineralogical Study and the Origin Discussion of Purang Ophiolite Peridotites, Western Part of Yarlung-Zangbo Suture Zone(YZSZ), Southern Tibet.Acta Petrologica Sinica, 30(8):2185-2203(in Chinese with English abstract).
      Zhou, Y.S., Wu, H.R., Zheng, X.L., et al., 1982.Geology of the Ophiolite in Xigaze Prefecture of the Southern Xizang (Tibet), China.Scientia Geologica Sinica, 17(1):30-40(in Chinese with English abstract).
      敖松坚, 肖文交, 杨磊, 等, 2017.造山带中古洋壳核杂岩的识别与地质意义.中国科学:地球科学, 47(1):1-22.
      邓晋福, 刘翠, 冯艳芳, 等, 2015.关于火成岩常用图解的正确使用:讨论与建议.地质论评, 61(4):717-734. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201504002.htm
      高洪学, 宋子季, 1995.西藏泽当蛇绿混杂岩研究新进展.中国区域地质, 14 (4):316-322.
      李建峰, 夏斌, 刘立文, 等, 2008.西藏普兰地区拉昂错蛇绿岩中辉绿岩的锆石SHRIMP U-Pb年龄及其地质意义.地质通报, 27(10):1739-1743. doi: 10.3969/j.issn.1671-2552.2008.10.016
      李祥辉, 王成善, 李亚林, 等, 2014.仲巴微地体之定义及构成.地质学报, 88(8):1372-1381. https://www.researchgate.net/profile/Xianghui_Li2/publication/288623395_Definition_and_composition_of_the_Zhongba_microterrane_in_the_southwest_Tibet_in_Chinese_with_English_abstract/links/56a7ea3508aeded22e371c57.pdf?origin=publication_detail
      李源, 李瑞保, 董天赐, 等, 2016.日喀则蛇绿岩白马让岩体的穹窿形结构及构造意义.科学通报, 61(25):2823-2833. http://www.cqvip.com/QK/94252X/201625/669986427.html
      连东洋, 杨经绥, 熊发挥, 等, 2015.雅鲁藏布江缝合带西段达机翁地幔橄榄岩及铬铁矿的铂族元素特征.中国地质, 42 (2):525-546. doi: 10.3969/j.issn.1000-3657.2015.02.013
      梁凤华, 许志琴, 巴登珠, 等, 2011. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨岩石学报, 27(11): 3255-3268.
      刘飞, 杨经绥, 陈松永, 等, 2013.雅鲁藏布江缝合带西段东波蛇绿岩OIB型玄武岩的厘定及其形成环境.岩石学报, 29(6):1909-1932. http://www.ysxb.ac.cn/ysxb/ch/reader/download_pdf.aspx?file_no=20130605&year_id=2013&quarter_id=6&falg=1
      刘飞, 杨经绥, 连东洋, 等, 2015a.西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨.岩石学报, 31(12):3609-3628.
      刘飞, 杨经绥, 连东洋, 等, 2015b.雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义.地球学报, 36(4):441-454. http://www.cqvip.com/QK/98325X/201504/665698151.html
      刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890. http://www.earth-science.net/WebPage/Article.aspx?id=3585
      刘钊, 李源, 熊发挥, 等, 2011.西藏西部普兰蛇绿岩中的MOR型辉长岩:岩石学和年代学.岩石学报, 27(11):3269-3279. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111009&dbname=CJFD&dbcode=CJFQ
      牛晓露, 杨经绥, 陈松永, 等, 2013.雅鲁藏布江西段东波超镁铁岩体经历了俯冲带流体的改造:来自铂族元素的证据.中国地质, 40(3):756-766. http://d.wanfangdata.com.cn/Periodical_zgdizhi201303008.aspx
      王金荣, 陈万峰, 张旗, 等, 2017.N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论.岩石学报, 33(3):993-1005. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703023.htm
      王金荣, 潘振杰, 张旗, 等, 2016.大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现.岩石学报, 32(7):1919-1933. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160701&journal_id=ysxb&year_id=2016
      王希斌, 周详, 郝梓国, 2010.西藏罗布莎铬铁矿床的进一步找矿意见和建议.地质通报, 29(1):105-114.
      王云鹏, 2015. 雅鲁藏布江缝合带西段东波地幔橄榄岩体钻孔(DSD-1)岩心研究(硕士学位论文). 北京: 中国地质大学.
      吴福元, 刘传周, 张亮亮, 等, 2014.雅鲁藏布蛇绿岩——事实与臆想.岩石学报, 30(2):293-325. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140201&journal_id=ysxb&year_id=2014
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      肖庆辉, 李廷栋, 潘桂棠, 等, 2016.识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别.中国地质, 43(3):721-737. doi: 10.12029/gc20160303
      熊发挥, 杨经绥, 梁凤华, 等, 2011.西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义.岩石学报, 11(27):3223-3238. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111006&dbname=CJFD&dbcode=CJFQ
      徐向珍, 杨经绥, 巴登珠, 等, 2015.西藏雅鲁藏布江缝合带东波地幔橄榄岩中金刚石的发现及地质意义.中国地质, 42(5):1471-1482. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201505019&dbname=CJFD&dbcode=CJFQ
      徐向珍, 杨经绥, 郭国林, 等, 2011.雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究.岩石学报, 27(11):3179-3196. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20111103
      杨经绥, 熊发挥, 郭国林, 等, 2011a.东波超镁铁岩体:西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体.岩石学报, 27(11):3207-3222. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111005.htm
      杨经绥, 徐向珍, 李源, 等, 2011b.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出.岩石学报, 27(11):3171-3178. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111002&dbname=CJFD&dbcode=CJFQ
      杨婧, 王金荣, 张旗, 等, 2016.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释.地质通报, 35(12):1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001
      余星, 初凤友, 董彦辉, 等, 2013.拆离断层与大洋核杂岩:一种新的海底扩张模式.地球科学, 38(5):995-1004. http://www.earth-science.net/WebPage/Article.aspx?id=2788
      张利, 杨经绥, 刘飞, 等, 2016.南公珠错地幔橄榄岩:雅鲁藏布江缝合带西段一个典型的大洋地幔橄榄岩.岩石学报, 32(12):3649-3672. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161207
      周文达, 杨经绥, 赵军红, 等, 2014.西藏雅鲁藏布江缝合带西段普兰蛇绿岩地幔橄榄岩矿物学研究和成因探讨.岩石学报, 30(8):2185-2203. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201408005&dbname=CJFD&dbcode=CJFQ
      周云生, 吴浩若, 郑锡澜, 等, 1982.西藏南部日喀则地区蛇绿岩地质.地质科学, 17(1):30-39. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx198201004&dbname=CJFD&dbcode=CJFQ
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  4361
    • HTML全文浏览量:  1705
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-20
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回