• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    二连盆地白音查干凹陷下白垩统湖相沸石成因:来自矿物学、微量元素特征的证据

    杨喆 钟大康 张硕 郭强 路昭

    杨喆, 钟大康, 张硕, 郭强, 路昭, 2018. 二连盆地白音查干凹陷下白垩统湖相沸石成因:来自矿物学、微量元素特征的证据. 地球科学, 43(10): 3733-3748. doi: 10.3799/dqkx.2018.252
    引用本文: 杨喆, 钟大康, 张硕, 郭强, 路昭, 2018. 二连盆地白音查干凹陷下白垩统湖相沸石成因:来自矿物学、微量元素特征的证据. 地球科学, 43(10): 3733-3748. doi: 10.3799/dqkx.2018.252
    Yang Zhe, Zhong Dakang, Zhang Shuo, Guo Qiang, Lu Zhao, 2018. Mineralogical and Trace-Element Constrains on the Genesis of Zeolite in Lower Cretaceous Lacustrine Rocks from Baiyinchagan Sag, Erlian Basin, China. Earth Science, 43(10): 3733-3748. doi: 10.3799/dqkx.2018.252
    Citation: Yang Zhe, Zhong Dakang, Zhang Shuo, Guo Qiang, Lu Zhao, 2018. Mineralogical and Trace-Element Constrains on the Genesis of Zeolite in Lower Cretaceous Lacustrine Rocks from Baiyinchagan Sag, Erlian Basin, China. Earth Science, 43(10): 3733-3748. doi: 10.3799/dqkx.2018.252

    二连盆地白音查干凹陷下白垩统湖相沸石成因:来自矿物学、微量元素特征的证据

    doi: 10.3799/dqkx.2018.252
    基金项目: 

    国家自然科学基金项目 41302108

    国家自然科学基金项目 41472094

    国家自然科学基金项目 41502099

    详细信息
      作者简介:

      杨喆(1989-), 女, 博士研究生, 主要从事储层地质学及沉积学研究

      通讯作者:

      钟大康

    • 中图分类号: P581

    Mineralogical and Trace-Element Constrains on the Genesis of Zeolite in Lower Cretaceous Lacustrine Rocks from Baiyinchagan Sag, Erlian Basin, China

    • 摘要: 二连盆地白音查干凹陷下白垩统暗色沉积物中发育由白色颗粒构成的同沉积纹层、条带,其矿物组合中包含大量成因不明的钠沸石和方沸石.在薄片鉴定和电子探针(EMPA)分析的基础上,通过场发射扫描电镜(FE-SEM)和电感耦合等离子体质谱仪(ICP-MS)法对两种沸石矿物的形貌、微结构、共生矿物组合和微量元素成分进行分析.实验结果表明,钠沸石和方沸石自形程度较高,其中钠沸石为半自形-自形的棱柱状,长轴方向长度最大可达600 μm,集合体为纤维状或块状;方沸石呈自形的四角三八面体,粒径变化较大,介于10~300 μm.钠沸石和方沸石既能独立生长,也能互相交代,与重晶石、含铁白云石、菱镁矿和菱铁矿以及立方体黄铁矿等矿物紧密共生.与地壳及同区和同层位湖相泥岩微量元素配分曲线比较,含沸石岩石的全岩微量元素富集Pb、Sb、Tl、W、Mo、Bi,亏损V、Cr、Co、Ni,暗示了中高温含深源物质的碱性热液流体的加入.在综合分析沸石矿物形态结构、共生矿物组合及微量元素特征的基础上,认为在异常热流驱动下,中高温热液流体沿着断裂等运移通道喷出或溢流至湖底沉积物表面,与冷的湖水混合直接结晶沉淀形成方沸石、钠沸石和其他共生矿物,属于热水沉积成因.

       

    • 图  1  白音查干凹陷构造简图及样品位置(a)和下白垩统地层柱状(b)

      图b改自郭强等(2012)

      Fig.  1.  Simplified structure map of the Baiyinchagan Sag showing samples location (a) and stratigraphic and lithological succession of the Lower Cretaceous in Baiyinchagan Sag (b)

      图  2  白音查干凹陷统腾格尔组含沸石地层展布

      据郭强等(2014)

      Fig.  2.  Isopleth maps about distribution of zeolites-bearing rocks in Tenger Formation of Baiyinchagan Sag

      图  3  沸石及共生矿物岩心照片

      a.网脉状构造,作为热液活动通道,标记处白色颗粒由钠沸石+方沸石+含铁白云石组成,锡3-69井,1 831.45 m;b.网脉状构造横切面,同图a,锡3-69井,1 831.45 m;c.白色颗粒定向分布在暗色沉积物中,且长轴方向随纹层变化,标记处白色颗粒由方沸石+含铁白云石组成,锡3-69井,1 832.15 m;d.白色纹层条带发生塑形变形,标记处白色纹层由钠沸石+含铁白云石组成,锡31井,2 080.04 m;e.白色条带发生撕裂形成不规则颗粒,标记处白色颗粒由钠沸石+菱镁矿+含铁白云石组成,锡3-69井,1 790.5 m;f.白色颗粒呈层状分布,发育微裂缝,微裂缝由方沸石+含铁白云石充填,锡31井,2 035.96 m

      Fig.  3.  Photographs of natrolite and analcime associated with other minerals from cores

      图  4  沸石及共生矿物显微照片

      a.“似斑晶”钠沸石集合体,其边缘白云石化,菱镁矿分布沸石晶粒间,正交偏光,锡26井,1 816.33 m; b.钠沸石交代方沸石共生,两者界线模糊,沸石集合体边缘被含铁白云石交代,正交偏光,锡3-69井,1 772.8 m;c.菱镁矿/菱铁矿呈放射状生长在钠沸石中,正交偏光,锡3-69井,1 772.2 m;d.钠沸石纹层夹在泥岩中,单偏光,锡3-69井,1 776.8 m;e.重晶石充填钠沸石搭建的三角区内,单偏光,锡26井,1 824.3 m;f.板条状钠沸石与菱镁矿、重晶石共生,单偏光,锡26井, 1 818.13 m;g.方沸石颗粒分布于白云质泥岩中,单偏光,锡36井,2 436.94 m;h.“似斑晶”状方沸石集合体,菱镁矿发育在方沸石集合体中,正交偏光,查39井,2 337.32 m;i.方沸石和含铁白云石充填微裂缝,正交偏光,锡26井,1 818.13 m.A.方沸石;B.重晶石;D.含铁白云石;M.菱镁矿;N.钠沸石;Talc.滑石;P.黄铁矿

      Fig.  4.  Microphotographs of natrolite and analcime associated with other minerals

      图  5  沸石矿物及共生矿物扫描电镜二次电子图像

      a.块状钠沸石集合体微形貌特征,锡3-69井,1 785.5 m;b.钠沸石晶粒集合体微形貌特征,锡3-69井,1 792.56 m;c.钠沸石及共生含铁白云石微形貌特征,锡3-69井,1 782.2 m;d.钠沸石中充填立方体黄铁矿微形貌特征,锡32井,1 823.6 m;e.方沸石与钠沸石交代共生,周围分布含铁白云石,锡3-69井,1 770.7 m;f.方沸石与菱镁矿共生,锡3-69井,1 782.2 m;g.钠沸石与重晶石共生微形貌特征,锡3-69井,1 796.8 m;h.放射状菱镁矿和菱铁矿微形貌特征,锡3-69井,1 792.56 m;i.立方体黄铁矿微形貌特征,锡3-69井,1 776.8 m.A.方沸石;B.重晶石;D.含铁白云石;M.菱镁矿;N.钠沸石;Talc.滑石;P.黄铁矿

      Fig.  5.  Scanning electron microscope photos of zeolites associated with other minerals

      图  6  沸石与重晶石含量(a)、黄铁矿含量(b)、菱镁矿含量(c)线性关系图

      Fig.  6.  Content linear graghs between zeolite and barite(a), zeolite and pyrite (b), and zeolite and magnesite (c)

      图  7  含沸石岩石地壳标准化微量元素蛛网图

      标准化值据黎彤(1992)

      Fig.  7.  Continental crust-normalized trace element spider diagram of zeolite-bearing rocks

      表  1  电子探针(EMPA)沸石的主量元素分析结果(%)

      Table  1.   Analysis of main elements of zeolites by EMPA (%)

      矿物类型 样品 样品深度(m) 氧化物含量(%) Na/Al Si/Al
      Na2O Al2O3 SiO2 K2O 总量
      锡26 1 820.6 13.76 29.22 57.02 / 100 0.77 1.66
      锡26 1 818.1 15.71 28.11 55.86 0.32 100 0.92 1.69
      钠沸石 锡3-69 1 772.2 16.8 32.47 50.73 / 100 0.61 1.50
      锡3-69 1 776.8 17.82 32.66 49.52 / 100 0.64 1.46
      查39 2 337.3 15.71 33.16 51.13 / 100 0.56 1.48
      方沸石 锡31 2 076.8 14.07 27.03 58.88 / 99.98 0.61 2.09
      锡3-69 1 772.2 15.72 27.76 56.51 / 100 0.67 1.96
      锡3-69 1 772.2 15.42 27.38 57.20 / 100 0.66 2.01
      锡3-69 1 772.2 15.72 27.31 56.95 / 99.98 0.68 2.00
      下载: 导出CSV

      表  2  含沸石岩石微量元素含量(10-6)

      Table  2.   Trace elements content (10-6) of zeolite-bearing rocks

      岩石类型 样品号 元素含量(10-6)
      Li Be Sc V Cr Co Ni Cu Zn Pb Sb Cd Ga Tl Rb Sr Cs Ba W Mo Bi Y Th U
      沸石质白云岩 X3-69-1 209.0 3.2 23.8 130.0 83.4 16.4 42.4 51.0 111.0 22.0 1.0 0.3 30.2 1.4 99.4 869.0 32.8 572.0 3.6 3.9 0.6 33.3 15.4 6.6
      X3-69-2 163.0 2.5 17.5 147.0 87.2 18.9 42.0 45.4 111.0 35.5 1.0 0.3 16.4 0.7 110.0 444.0 29.9 470.0 3.4 15.8 1.3 32.4 12.6 4.7
      X3-69-3 383.0 3.5 16.7 128.0 89.5 25.4 54.7 59.5 120.0 31.8 1.2 0.3 17.3 0.9 135.0 342.0 28.7 408.0 3.7 8.7 0.9 25.3 5.9 2.3
      X3-69-4 355.0 1.9 15.7 119.0 80.3 16.5 33.7 52.1 117.0 20.8 0.6 0.4 17.2 0.8 89.7 761.0 43.5 217.0 3.7 73.6 0.5 34.8 15.9 7.5
      C39-1 97.0 1.3 14.0 92.1 47.8 17.6 42.3 46.3 103.0 34.2 1.5 0.3 25.6 0.3 48.0 2305.0 31.8 3065.0 2.5 41.7 0.9 34.2 34.8 19.3
      X31-1 546.0 4.8 17.7 154.0 89.2 16.1 31.7 45.7 122.0 24.0 0.7 0.3 20.5 1.0 207.0 407.0 34.6 469.0 4.7 16.7 0.5 18.3 6.6 3.0
      X3-69-5 155.0 1.9 13.8 103.0 74.0 15.7 38.6 46.4 103.0 25.9 0.7 0.3 11.9 0.5 63.6 532.0 47.4 482.0 1.9 15.4 0.8 59.5 10.2 7.1
      X3-69-6 9.2 0.8 11.2 64.0 57.0 15.3 39.3 54.6 81.9 28.4 1.9 0.4 10.9 5.2 69.3 874.0 31.6 433.0 1.8 18.2 0.6 53.5 24.2 16.1
      X3-69-7 516.0 4.2 18.1 141.0 87.5 19.4 39.1 50.3 116.0 25.4 1.1 0.3 21.1 0.8 156.0 500.0 30.0 521.0 3.6 13.4 0.6 25.0 15.9 3.2
      X31-2 516.0 6.2 13.0 124.0 67.8 23.7 43.8 61.6 104.0 48.1 1.1 0.4 21.0 3.3 187.0 355.0 41.0 406.0 7.0 11.0 1.2 17.1 10.5 6.4
      X3-69-8 174.0 2.1 14.4 112.0 71.9 16.1 39.8 48.1 105.0 24.3 0.6 0.3 15.3 0.4 80.7 432.0 39.3 308.0 2.2 10.6 0.8 35.5 11.5 4.6
      X31-3 72.1 1.9 14.3 140.0 57.7 14.8 31.6 46.2 86.9 24.2 0.7 0.4 17.7 0.3 100.0 757.0 24.6 290.0 3.6 44.1 0.5 45.5 12.7 4.7
      X3-69-9 25.0 1.4 17.6 111.0 74.5 18.8 50.4 48.5 96.9 29.8 1.1 0.3 18.6 0.5 41.6 497.0 17.3 225.0 3.5 44.9 0.8 25.9 8.4 6.8
      X3-69-10 259.0 3.8 15.0 115.0 81.2 18.3 47.0 54.1 124.0 27.7 1.1 0.4 19.7 0.6 151.0 390.0 22.6 409.0 4.7 6.0 0.8 17.9 8.1 2.1
      含沸石白云岩 X32-1 30.6 1.5 13.4 95.7 58.9 16.7 40.8 47.7 80.2 21.9 0.5 0.3 11.1 0.4 83.6 928.0 6.5 326.0 5.0 6.4 0.5 31.8 13.4 8.4
      X31-4 67.9 0.4 8.5 57.3 25.7 5.7 20.8 40.4 34.2 8.1 0.5 0.1 11.6 0.1 21.7 5 374.0 16.0 2 204.0 1.6 2.5 0.3 12.3 6.7 4.0
      含沸石白云质泥岩 X26-1 15.0 0.7 15.6 92.1 69.0 23.3 28.8 46.5 101.0 26.5 1.4 0.3 22.7 0.2 44.5 446.0 15.7 139.0 3.8 19.8 0.6 18.7 14.7 4.9
      X26-2 19.4 0.7 12.1 79.1 71.8 14.4 37.7 44.5 99.3 23.8 1.0 0.2 33.0 0.2 12.7 389.0 11.6 656.0 2.8 9.9 0.5 15.7 8.1 1.6
      X3-69-11 421.0 2.7 17.2 120.0 75.0 21.9 51.7 59.6 125.0 32.6 1.4 0.3 25.1 0.6 122.0 305.0 12.5 367.0 4.5 11.1 0.7 19.0 12.2 3.5
      X36-1 460.0 2.3 13.2 106.0 73.2 16.5 37.8 48.3 101.0 26.2 0.6 0.3 24.5 0.3 188.0 438.0 27.1 775.0 3.6 3.8 0.7 27.0 19.8 8.8
      X31-5 127.0 1.9 13.4 118.0 83.7 20.4 42.9 54.5 124.0 27.1 1.1 0.3 30.5 0.4 75.7 379.0 18.8 330.0 4.9 12.9 0.9 24.9 30.1 15.2
      X3-69-12 445.0 2.9 14.4 117.0 92.2 20.0 46.6 54.8 101.0 37.4 1.1 0.3 21.6 0.9 142.0 514.0 36.5 478.0 3.8 41.6 0.9 30.8 10.6 5.8
      C39-2 243.0 2.6 13.7 116.0 86.9 17.3 41.0 56.4 103.0 23.5 0.8 0.3 21.3 0.5 173.0 291.0 35.1 261.0 4.0 11.3 0.8 11.9 4.9 2.4
      X3-69-13 204.0 2.9 18.3 128.0 89.9 14.7 32.5 41.6 161.0 20.8 1.1 0.3 31.6 1.0 102.0 589.0 36.5 2 399.0 3.8 2.9 0.4 25.9 19.1 2.8
      含泥沸石质白云岩 X31-6 10.0 1.2 12.0 90.0 61.6 16.3 41.6 46.7 71.8 23.6 2.7 0.4 12.1 1.1 88.0 1 344.0 18.0 351.0 3.4 20.2 0.5 49.2 13.2 4.1
      X3-69-14 136.0 2.4 15.5 98.8 71.3 20.6 67.6 46.2 98.4 48.8 1.7 0.3 20.4 0.6 53.8 575.0 17.4 509.0 3.4 58.4 0.7 33.5 14.9 34.8
      X3-69-15 370.0 4.1 17.5 134.0 83.7 22.5 49.3 54.7 112.0 26.8 1.0 0.3 20.2 0.6 195.0 342.0 31.8 493.0 5.4 7.8 0.8 16.9 4.7 2.3
      沸石质泥岩 X26-3 132.0 0.9 8.5 73.9 58.9 15.8 35.9 38.3 101.0 19.4 0.8 0.2 30.4 0.3 27.5 196.0 30.0 1 596.0 2.4 4.6 0.6 12.5 7.1 1.7
      平均值 220.0 2.4 14.9 110.9 73.2 17.8 41.1 49.6 104.1 27.5 1.1 0.3 20.7 0.9 102.4 770.5 27.5 684.3 3.7 19.2 0.7 28.2 13.3 7.0
      地壳丰度 23.0 1.7 16.0 143.0 127.0 24.7 81.3 56.0 76.3 14.0 0.5 0.2 16.7 0.7 108.0 382.0 1.2 463.0 1.1 1.4 0.2 27.7 7.6 2.1
      富集系数 9.6 1.4 0.9 0.8 0.6 0.7 0.5 0.9 1.4 2.0 2.1 1.7 1.2 1.2 0.9 2.0 22.3 1.5 3.2 13.4 3.7 1.0 1.7 3.4
      泥岩 331.0 7.5 17.4 140.0 91.7 23.4 40.7 55.2 136.0 21.1 0.8 0.3 25.3 0.6 249.0 567.0 83.1 612.0 2.5 3.3 0.5 31.1 17.9 5.2
      注:地壳丰度参考黎彤(1992);富集系数=含沸石岩石微量元素含量/地壳丰度.
      下载: 导出CSV
    • Browne, P.R.L., Courtney, S.F., Wood, C.P., 1989.Formation Rates of Calc-Silicate Minerals Deposited inside Drill Hole Casing, Ngatamaeki Geothermal Feld, New Zealand.American Mineral, 74(7):759-763.
      Cai, Y.J., Zhou, M., 1993.Experiental Study on the Characteristics of Pyrite Crystal Form in Gold Deposit.Science in China (Series B), 23(9):972-978 (in Chinese).
      Campo, M.D., Papa, C.D., Jiménez-Millán, J., et al., 2007.Clay Mineral Assemblages and Analcime Formation in a Palaeogene Fluvial-Lacustrine Sequence (Maíz Gordo Formation Palaeogen) from Northwestern Argentina.Sedimentary Geology, 201(1-2):56-74. https://doi.org/10.1016/j.sedgeo.2007.04.007
      Chen, L.H., Wei, B.H., He, J.F., 1991.Electron Microprobe Spectroscopy and Energy Spectrum Analysis in Petroleum Geology, Petroleum Industry Press, Beijing, 69-75 (in Chinese).
      Chen, X.P., Gao, J.Y., Chen, D.F., et al., 1992.The Concept of Hydrothermal Sedimentation and Its Petrological Criteria.Acta Sedimentologica Sinica, 10(3):124-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000030189
      Chipera, S.J., Goff, F., Goff, C.J., et al., 2008.Zeolitization of Intracaldera Sediments and Rhyolitic Rocks in the 1.25 Ma Lake of Valles Caldera, New Mexico, USA.Journal of Volcanology and Geothermal Research, 178(2):317-330. https://doi.org/10.1016/j.jvolgeores.2008.06.032
      Chudaev, O., Chudaeva, V., Sugimori, K., et al., 2006.Geochemistry of Recent Hydrothermal Systems of Mendeleev Volcano, Kuril Islands, Russia.Journal of Geochemical Exploration, 88(1-3):95-100. https://doi.org/10.1016/j.gexplo.2005.08.102
      Dekov, V.M., Egueh, N.M., Kamenov, G.D., et al., 2014.Hydrothermal Carbonate Chimneys from a Continental Rift (Afar Rift):Mineralogy, Geochemistry, and Mode of Formation.Chemical Geology, 387:87-100. http://archimer.ifremer.fr/doc/00206/31762/
      Deng, Z.L., 1992.Typomorphic Characteristics of Pyrite in the Maotang Gold Deposit, Henan Province.Acta Mineralogica Sinica, 12(4):344-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB199204008.htm
      Dou, L.R., Zhu, Y.H., Yang, T., et al., 1998.Origins of Heavy Oils in the Erlian Basin, NE China.Marine and Petroleum Geology, 15(8):769-781. https://doi.org/10.1016/s0264-8172(98)00012-9
      Fang, W.X., Hu, R.Z., Su, W.C., et al., 2002.Geochemical Characteristics of Dahebian-Gongxi Superlarge Barite Deposits and Analysis on Its Background of Tectonic Geology, China.Acta Petrologica Sinica, 18(2):247-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200202012.htm
      Feng, S.B., Xing, K., Zhou, H.R., et al., 2007.Geochemical Characteristics of Hydrothermal Sediments for Baritic Rocks of Erlangping Group in Northern Qinling Mountains and Their Significance for Mineralization.Global Geology, 26(2):199-207 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ200702010.htm
      Flohr, M.J.K., Ross, M., 1990.Alkaline Igneous Rocks of Magnet Cove, Arkansas:Mineralogy and Geochemistry of Syenites.Lithos, 26(1/2):67-98. https://doi.org/10.1016/0024-4937(90)90041-x
      Fu, W., Zhou, Y.Z., Yang, Z.J., et al., 2005.Geological and Geochemical Characteristics of the Silicified Rocks in Jiangzi Basin and Their Implication for Mineralization.Geoscience, 19(2):267-273 (in Chinese with English abstract).
      Gao, J.B., Yang, R.D., Tao, P., et al., 2013.Geochemical Characteristics and Genesis of Large Devonian Barite Deposits in Zhenning County, Guizhou Province.Geoscience, 27(1):46-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201301005.htm
      Ghobarkar, H., Schäf, O., 1999.Effect of Temperature on Hydrothermal Synthesis of Analcime and Viséite.Materials Science and Engineering:B, 60(3):163-167. https://doi.org/10.1016/s0921-5107(99)00012-4
      Graham, I.T., Pogson, R.E., Colchester, D.M., et al., 2003.Zeolite Crystal Habits, Compositions, and Paragenesis; Blackhead Quarry, Dunedin, New Zealand.Mineralogical Magazine, 67(4):625-637. https://doi.org/10.1180/0026461036740122
      Guo, Q., Li, Z.Y., Qin, M.K., et al., 2014.Discussion of Hydrothermal Sedimentary Sequence in Baiyinchagan Sag of Erlian Basin, Inner Mongolia.Acta Sedmentologica Sinica, 32(5):809-815 (in Chinese with English abstract).
      Guo, Q., Zhong, D.K., Zhang, F.D., et al., 2012.Origin of the Lower Cretaceous Lacustrine Dolostones in Baiyinchagan Sag of Erlian Basin, Inner Mongolia.Journal of Palaeogeography, 14(1):59-68 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gdlx201201010.htm
      Han, Y.W., Ma, Z.D., Zhang, H.F., et al., 2003.Geochemistry.Geological Publishing House, Beijing (in Chinese).
      Hannington, M., Jamieson, J., Monecke, T., et al., 2011.The Abundance of Seafloor Massive Sulfide Deposits.Geology, 39(12):1155-1158. https://doi.org/10.1130/g32468.1
      Hay, R.L., Sheppard, R.A., 2001.Occurrence of Zeolites in Sedimentary Rocks:An Overview.Reviews in Mineralogy and Geochemistry, 45(1):217-234. https://doi.org/10.2138/rmg.2001.45.6
      Hay, R.L., 1966.Zeolites and Zeolitic Reactions in Sedimentary Rocks.The Geological Society of America, New York. https://doi.org/10.1130/SPE85-p1
      Herrero, M.J., Martín-Pérez, A., Alonso-Zarza, A.M., et al., 2011.Petrography and Geochemistry of the Magnesites and Dolostones of the Ediacaran Ibor Group (635 to 542Ma), Western Spain:Evidences of their Hydrothermal Origin.Sedimentary Geology, 240(3-4):71-84. https://doi.org/10.1016/j.sedgeo.2011.08.007
      Hu, K.M., Tang, Z.C., Meng, X.S., et al., 2016.Chronology of Pctrogenesis and Mineralization of Datongkeng Porphyry W-Mo Deposit in West Zhejiang.Earth Science, 41(9):1435-1450.(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.502
      Huang, H.P., Jin, G.X., Lin, C.S., et al., 2003.Origin of an Unusual Heavy Oil from the Baiyinchagan Depression, Erlian Basin, Northern China.Marine and Petroleum Geology, 20(1):1-12. https://doi.org/10.1016/s0264-8172(03)00038-2
      Hurai, V., Huraiová, M., Koděra, P., et al., 2011.Fluid Inclusion and Stable C-O Isotope Constraints on the Origin of Metasomatic Magnesite Deposits of the Western Carpathians, Slovakia.Russian Geology and Geophysics, 52(11):1474-1490. https://doi.org/10.1016/j.rgg.2011.10.015
      Ibrahim, K., 2004.Mineralogy and Chemistry of Natrolite from Jordan.Clay Minerals, 39(1):47-55. https://doi.org/10.1180/000985543910119
      Inoue, A., Utada, M., Shimizu, M., 1999.Mineral-Fluid Interaction in the Sumikawa Geothermal System, Northeast Japan.Resource Geology Special Issue, 20:79-97.
      Jacobs, L., Emerson, S., Huested, S.S., 1987.Trace Metal Geochemistry in the Cariaco Trench.Deep Sea Research Part a Oceanographic Research Papers, 34(5-6):965-981. https://doi.org/10.1016/0198-0149(87)90048-3
      Ji, H.C., Yang, D.X., Gao, X.Z., et al., 2012.Characteristic of Mesozoic Volcanic Rock and Analysis of Reservoir Controlling Factors in the Honghaoershute Sag of Erlian Basin.Acta Geologica Sinica, 86(8):1227-1240 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201208007.htm
      Jia, S.S., Wang, E.D., Fu, J.F., et al., 2011.Geochemical Characteristics of Trace Elements and Deep Prediction of the Paishanlou Gold Deposit, Fuxin, Western Liaoning.Ceochimica, 40(3):266-279 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201103007.htm
      Karakaya, M.Ç., Karakaya, N., Küpeli, Ç., et al., 2012.Mineralogy and Geochemical Behavior of Trace Elements of Hydrothermal Alteration Types in the Volcanogenic Massive Sulfide Deposits, NE Turkey.Ore Geology Reviews, 48:197-224. https://doi.org/10.1016/j.oregeorev.2012.03.007
      Kumar, S., Chattopadhyaya, M.C., 2006.Synthesis of Natrolite Using the Hydrothermal Apparatus.Journal-Indian Chemical Society, 83(12):1288-1290.
      Langella, A., Cappelletti, P., Gennaro, R.D., 2001.Zeolites in Closed Hydrologic Systems.Reviews in Mineralogy and Geochemistry, 45(1):235-260. https://doi.org/10.2138/rmg.2001.45.7
      Li, H., Gao, X.Z., Yang, D.X., et al., 2014.Characteristics and Distribution Prediction of Cretaceous Volcanic Reservoirs in Saihantala Sag, Erlian Basin.Petroleum Geology and Experiment, 36(4):442-449 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201404010.htm
      Li, H., Liu, Y.Q., Liang, H., et al., 2012.Lithology and Origin analysis of Sublacustrine Hydrothermal Deposits Characterized by Analcime, Sanidine, Dolomite, Quartz, etc.in Lucaogou Formation, Middle Permian, Santanghu Basin, Northeast Xinjiang, China.Acta Sedmentologica Sinica, 30(2):205-218 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201202002.htm
      Li, H.J., Shen, K.F., Nie, F.J., et al., 2012.Sedimentary Evolution in Meso-Cenozoic and Uranium Mineralization of Erlian Basin.Journal of East China Institute of Technology (Natural Science), 35(4):301-308(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201204003.htm
      Li, L., 2015.Study on Sedimentary Environment and Origin of Analcime-Bearing Dolomite of Shahejie Formation in Tanggu Area(Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, T., 1992.The Statistical Characteristics of the Abundance of Chemical Element in the Earth's Crust.Geology and Prospecting, 28(10):1-7 (in Chinese with English abstract).
      Liu, Y.J., 1984.Geochemistry of Element.Science Press, Beijing, 283-336 (in Chinese).
      Liu, Y.Q., Jiao, X., Li, H., et al., 2011.Primary Dolostone Formation Related to Mantle-Originated Exhalative Hydrothermal Activities, Permian Yuejingou Section, Santanghu Area, Xinjiang, NW China.Science China:Earth Sciences, 41(12):1862-1871 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG201202002.htm
      Liu, Y.Q., Li, H., Zhu, Y.S., et al., 2010.Permian Lacustrine Eruptive Hydrothermal Dolomites, Santanghu Basin, Xinjiang Province.Acta Sedmentologica Sinica, 28(5):861-867 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201005004.htm
      Lonnee, J., Machel, H.G., 2006.Pervasive Dolomitization with Subsequent Hydrothermal Alteration in the Clarke Lake Gas Field, Middle Devonian Slave Point Formation, British Columbia, Canada.AAPG Bulletin, 90(11):1739-1761. https://doi.org/10.1306/03060605069
      Lu, Z.J., Na, R., Cui, J.F., et al., 2011.Volcanic Rock Reservoir of the Cretaceous in Honghaoershute Sag in Erlian Basin, Inner Mongolia.Journal of Palaeogeography, 13(2):201-208 (in Chinese with English abstract).
      Luth, R.W., Bowerman, M., 2004.Microtextural and Powder-Diffraction Study of Analcime Phenocrysts in Volcanic Rocks of the Crowsnest Formation, Southern Alberta, Canada.The Canadian Mineralogist, 42(3):897-903. https://doi.org/10.2113/gscanmin.42.3.897
      Merlini, M., Sapelli, F., Fumagalli, P., et al., 2016.High-Temperature and High-Pressure Behavior of Carbonates in the Ternary Diagram CaCO3-MgCO3-FeCO3.American Mineralogist, 101(6):1423-1430. https://doi.org/10.2138/am-2016-5458
      Mou, B.L., 1999.Elementary Geochemistry.Peking University Press, Beijing (in Chinese).
      Murowchick, J.B., Barnes, H.L., 1987.Effects of Temperature and Degree of Supersaturation on Pyrite Morphology.Geochemical Transactions, 1(1):23-33. http://ammin.geoscienceworld.org/content/72/11-12/1241
      Murray, R.W., 1994.Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications.Sedimentary Geology, 90(3/4):213-232. https://doi.org/10.1016/0037-0738(94)90039-6
      Neuhoff, P.S., Rogers, K.L., Stannius, L.S., et al., 2006.Regional very Low-Grade Metamorphism of Basaltic Lavas, Disko-Nuussuaq Region, West Greenland.Lithos, 92(1/2):33-54. https://doi.org/10.1016/j.lithos.2006.03.028
      Parsapoor, A., Khalili, M., Mackizadeh, M.A., 2009.The Behaviour of Trace and Rare Earth Elements (REE) during Hydrothermal Alteration in the Rangan Area (Central Iran).Journal of Asian Earth Sciences, 34(2):123-134. https://doi.org/10.1016/j.jseaes.2008.04.005
      Prol-Ledesma, R.M., Canet, C., Villanueva-Estrada, R.E., et al., 2010.Morphology of Pyrite in Particulate Matter from Shallow Submarine Hydrothermal Vents.American Mineralogist, 95(10):1500-1507. https://doi.org/10.2138/am.2010.3522
      Ren, J.Y., Li, S.T., Jiao, G.H., 1998.Extensional Tectionic System of Erlian Fault Basin Group and Its Deep Background.Earth Science, 23(6):567-572 (in Chinese with English abstract).
      Ren, Z.L., 1998.Comparative Research on Tectonical Thermal History of Sedimentary Basins in the North China(Dissertation).Northwest University, Xi'an(in Chinese with English abstract).
      Renaut, R.W., 1993.Zeolitic Diagenesis of Late Quaternary Fluviolacustrine Sediments and Associated Calcrete Formation in the Lake Bogoria Basin, Kenya Rift Valley.Sedimentology, 40(2):271-301. https://doi.org/10.1111/j.1365-3091.1993.tb01764.x
      Schijf, J., 2007.Alkali Elements (Na, K, Rb) and Alkaline Earth Elements (Mg, Ca, Sr, Ba) in the Anoxic Brine of Orca Basin, Northern Gulf of Mexico.Chemical Geology, 243(3-4):255-274. https://doi.org/10.1016/j.chemgeo.2007.06.011
      Tu, G.Z., 1988.Geochemistry of Stratabound Deposits in China (Vol.3).Science Press, Beijing, 131-168 (in Chinese).
      Utada, M., 2001a.Zeolites in Hydrothermally Altered Rocks.Reviews in Mineralogy and Geochemistry, 45(1):305-322. https://doi.org/10.2138/rmg.2001.45.10
      Utada, M., 2001b.Zeolites in Burial Diagenesis and Low-Grade Metamorphic Rocks.Reviews in Mineralogy and Geochemistry, 45(1):277-304. https://doi.org/10.2138/rmg.2001.45.9
      Wang, Y.J., Han, X.Q., Petersen, S., et al., 2017.Mineralogy and Trace Element Geochemistry of Sulfide Minerals from the Wocan Hydrothermal Field on the Slow-Spreading Carlsberg Ridge, Indian Ocean.Ore Geology Reviews, 84(4):1-19. https://doi.org/10.13039/501100001809
      Wei, S.N., Zhu, Y.F., An, F., 2014.Mineralization and Elements Migration Characteristics of Porphyry Copper Deposits in Baogutu Area, Xinjiang.Mineral Deposits, 33(1):165-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201401011.htm
      Wei, W., Zhu, X.M., Zhu, S.F., et al., 2017.Origin of Lacustrine Dolomitic Rocks of the Lower Cretaceous Tengge'er Formation in Anan Sag, Erlian Basin.Earth Science, 42(2):258-272.(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.019
      Wen, H.G., Zheng, R.C., Fan, M.T., et al., 2008.Characteristics of Fluid Inclusions in the Barite of Lacustrine Hydrothermal Sedimentary Rock from the Lower Cretaceous Xiagou Formation in Qingxi Sag, Jiuquan Basin, China.Journal of Chengdu University of Technology (Science and Technology Edition), 35(3):288-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200803013.htm
      Wen, H.G., Zheng, R.C., Qing, H.R., et al., 2014.Primary Dolostone Related to the Cretaceous Lacustrine Hydrothermal Sedimentation in Qingxi Sag, Jiuquan Basin on the Northern Tibetan Plateau.Science in China(Series D), 44(4):591-604 (in Chinese). http://219.238.6.205:8080/sciDe/CN/abstract/abstract519770.shtml
      Wilkin, R.T., Barnes, H.L., 2000.Nucleation and Growth Kinetics of Analcime from Precursor Na-Clinoptilolite.American Mineralogist, 85(10):1329-1341. https://doi.org/10.2138/am-2000-1001
      Wu, C.D., Yang, C.Y., Chen, Q.Y., 1999.The Hydrothermal Sedimentary Genesis of Barite Deposits in West Hunan and East Guizho.Universitatis Pekinensis (Acta Scientiarum Naturalium), 35(6):774-785(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=3853810
      Xiao, A.C., Yang, S.F., 2001.Geodynamic Background on Formation of Erlian Basin.Oil and Gas Geology, 22(2):137-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200102010.htm
      Xiao, X., Zhou, T.F., Fan, Y., et al., 2016.LA-ICP-MS in Situ Trace Elements and FE-SEM Analysis of Pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui and Its Constraints on the Ore Genesis.Acta Petrologica Sinica, 32(2):369-376 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602007
      Xue, C.J., Qi, S.J., Zheng, M.H., et al., 2000.Hydrothermal Sediment Research and Associated Scientific Problems.Bulletin of Mineralogy Petrology and Geochemistry, 19(3):155-163 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb200003003
      Zhao, G.Z., Zhang, J.Z., Zhang, Y.Z., et al., 2001.Characteristics and Pool-Forming Regularity of Immature Oil in Western Baiyinchagan Depression, Erlian Basin.Petroleum Exploration and Development, 28(5):4-7 (in Chinese with English abstract).
      Zheng, R.C., Wen, H.G., Fan, M.T., et al., 2006.Lithological Characteristics of Sublacustrine White Smoke Type Exhalative Rock of the Xiagou Formation in Jiuxi Basin.Acta Petrologica Sinica, 22(12):3027-3038 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200612017.htm
      Zhong, D.K., Jiang, Z.C., Guo, Q., et al., 2015.A Review about Research History, Situation and Prospects of Hydrothemal Sedimentation.Journal of Palaeogeography, 17(3):285-296 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201503001.htm
      Zhou, Y.Z., Tu, G.Z., Edward, H.C., et al., 1994.Hydrothermal Origin of Top Sinian Chert Formation at Gusui, Western Guangdong, China:Petrologic and Geochemical Evidence.Acta Sedmentologica Sinica, 12(3):1-11 (in Chinese with English abstract).
      Zhu, S.F., Zhu, X.M., Wang, X.L., et al., 2011.Zeolite Diagenesis and Its Control on Petroleum Reservoir Quality of Permian in Northwestern Margin of Junggar Basin, China.Science in China(Series D), 41(11):1602-1612 (in Chinese). doi: 10.1007/s11430-011-4314-y
      Zurevinski, S.E., Mitchell, R.H., 2015.Petrogenesis of Orbicular Ijolites from the Prairie Lake Complex, Marathon, Ontario:Textural Evidence from Rare Processes of Carbonatitic Magmatism.Lithos, 239:234-244. https://doi.org/10.1016/j.lithos.2015.11.003
      蔡元吉, 周茂, 1993.金矿床黄铁矿晶形标型特征实验研究.中国科学(B辑), 23(9):972-978. http://cdmd.cnki.com.cn/Article/CDMD-10145-1013117085.htm
      陈丽华, 魏宝和, 何锦发, 1991.电子探针波谱及能谱分析在石油地质上的应用.北京:石油工业出版社, 69-75.
      陈先沛, 高计元, 陈多福, 等, 1992.热水沉积作用的概念和几个岩石学标志.沉积学报, 10(3):124-132. http://www.cqvip.com/Main/Detail.aspx?id=713194
      邓宗立, 1992.河南毛堂金矿黄铁矿的标型特征.矿物学报, 12(4):344-352. doi: 10.3321/j.issn:1000-4734.1992.04.009
      方维萱, 胡瑞忠, 苏文超, 等, 2002.大河边-新晃超大型重晶石矿床地球化学特征及形成的地质背景.岩石学报, 18(2):247-256. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200202013
      冯胜斌, 邢矿, 周洪瑞, 等, 2007.北秦岭二郎坪群重晶石岩热水沉积地球化学证据及其成矿意义.世界地质, 26(2):199-207. doi: 10.3969/j.issn.1004-5589.2007.02.010
      付伟, 周永章, 杨志军, 等, 2005.藏南江孜盆地下白垩统硅化层的地质地球化学特征及其成矿意义.现代地质, 19(2):267-273. doi: 10.3969/j.issn.1000-8527.2005.02.016
      高军波, 杨瑞东, 陶平, 等, 2013.贵州镇宁泥盆系大型重晶石矿床地球化学特征及其成因研究.现代地质, 27(1):46-55. doi: 10.3969/j.issn.1000-8527.2013.01.005
      郭强, 李子颖, 秦明宽, 等, 2014.内蒙古二连盆地白音查干凹陷热水沉积序列探讨.沉积学报, 32(5):809-815. http://d.old.wanfangdata.com.cn/Periodical/cjxb201405002
      郭强, 钟大康, 张放东, 等, 2012.内蒙古二连盆地白音查干凹陷下白垩统湖相白云岩成因.古地理学报, 14(1):59-68. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201201006
      韩吟文, 马振东, 张宏飞, 等, 2003.地球化学.北京:地质出版社.
      胡开明, 唐增才, 孟祥随, 等, 2016.浙西大铜坑斑岩型钨钼矿床成岩成矿年代学.地球科学, 41(9):1435-1450. https://doi.org/10.3799/dqkx.2016.502
      季汉成, 杨德相, 高先志, 等, 2012.二连盆地洪浩尔舒特凹陷中生界火山岩特征及储层控制因素分析.地质学报, 86(8):1227-1240. doi: 10.3969/j.issn.0001-5717.2012.08.006
      贾三石, 王恩德, 付建飞, 等, 2011.辽西排山楼金矿床微量元素地球化学特征及深部找矿预测研究.地球化学, 40(3):266-279. http://d.old.wanfangdata.com.cn/Periodical/dqhx201103006
      黎彤, 1992.地球元素丰度的若干统计特征.地质与勘探, 28(10):1-7. http://www.cqvip.com/qk/93079X/199210/722948.html
      李浩, 高先志, 杨德相, 等, 2014.二连盆地赛汉塔拉凹陷白垩系火山岩储集层特征及分布预测.石油实验地质, 36(4):442-449. http://d.old.wanfangdata.com.cn/Periodical/sysydz201404009
      李红, 柳益群, 梁浩, 等, 2012.三塘湖盆地二叠系陆相热水沉积方沸石岩特征及成因分析.沉积学报, 30(2):205-218. http://www.cqvip.com/QK/95994X/201202/41447439.html
      李洪军, 申科峰, 聂逢君, 等, 2012.二连盆地中新生代沉积演化与铀成矿.东华理工大学学报自然科学版, 35(4):301-308. http://d.old.wanfangdata.com.cn/Periodical/hddzxyxb201204001
      李乐, 2015.塘沽地区沙河街组含方沸石白云岩沉积环境及成因探讨(博士学位论文).武汉:中国地质大学.
      刘英俊, 1984.元素地球化学.北京:科学出版社, 283-336.
      柳益群, 焦鑫, 李红, 等, 2011.新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩.中国科学(D辑), 41(12):1862-1871. http://www.cqvip.com/QK/98491A/201112/40711776.html
      柳益群, 李红, 朱玉双, 等, 2010.白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩.沉积学报, 28(5):861-867. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201202006
      路占军, 娜仁, 崔俊峰, 等, 2011.内蒙古二连盆地洪浩尔舒特凹陷白垩系火山岩储集层.古地理学报, 13(2):201-208. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201102008
      牟保磊, 1999.元素地球化学.北京:石油工业出版社.
      任建业, 李思田, 焦贵浩, 1998.二连断陷盆地群伸展构造系统及其发育的深部背景.地球科学, 23(6):567-572. doi: 10.3321/j.issn:1000-2383.1998.06.005
      任战利, 1998.中国北方沉积盆地构造热演化史恢复及其对比研究(博士学位论文).西安:西北大学.
      涂光炽, 1988.中国层控矿床地球化学.第三卷.北京:科学出版社, 131-168.
      魏少妮, 朱永峰, 安芳, 2014.新疆包古图地区斑岩型铜矿化特征和成矿元素迁移规律初探.矿床地质, 33(1):165-180. doi: 10.3969/j.issn.0258-7106.2014.01.011
      魏巍, 朱筱敏, 朱世发, 等, 2017.二连盆地阿南凹陷下白垩统腾格尔组湖相云质岩成因.地球科学, 42(2):258-272. https://doi.org/10.3799/dqkx.2017.019
      文华国, 郑荣才, 范铭涛, 等, 2008.青西凹陷下沟组湖相热水沉积岩中的重晶石流体包裹体特征.成都理工大学学报(自科版), 35(3):288-296. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb200803013
      文华国, 郑荣才, HaiRuo Qing, 等, 2014.青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩.中国科学:地球科学, 44(4):591-604. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201404003&dbname=CJFD&dbcode=CJFQ
      吴朝东, 杨承运, 陈其英, 1999.新晃贡溪-天柱大河边重晶石矿床热水沉积成因探讨.北京大学学报(自然科学版), 35(6):774-785. doi: 10.3321/j.issn:0479-8023.1999.06.008
      肖安成, 杨树锋, 2001.二连盆地形成的地球动力学背景.石油与天然气地质, 22(2):137-140. doi: 10.3321/j.issn:0253-9985.2001.02.011
      肖鑫, 周涛发, 范裕, 等, 2016.安徽铜陵新桥铜硫金矿床的成因:来自两类黄铁矿微形貌学、地球化学特征的证据.岩石学报, 32(2):369-376. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602007
      薛春纪, 祁思敬, 郑明华, 等, 2000.热水沉积研究及相关科学问题.矿物岩石地球化学通报, 19(3):155-163. doi: 10.3969/j.issn.1007-2802.2000.03.003
      赵广珍, 张家政, 张源智, 等, 2001.白音查干凹陷西洼低熟油特征及成藏规律.石油勘探与开发, 28(5):4-7. doi: 10.3321/j.issn:1000-0747.2001.05.002
      郑荣才, 文华国, 范铭涛, 等, 2006.酒西盆地下沟组湖相白烟型喷流岩岩石学特征.岩石学报, 22(12):3027-3038. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612018
      钟大康, 姜振昌, 郭强, 等, 2015.热水沉积作用的研究历史、现状及展望.古地理学报, 17(3):285-296. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201503001
      周永章, 涂光炽, Edward, H.C., 等, 1994.粤西古水剖面震旦系顶部层状硅岩的热水成因属性:岩石学和地球化学证据.沉积学报, 12(3):1-11. http://www.cqvip.com/Main/Detail.aspx?id=1301349
      朱世发, 朱筱敏, 王绪龙, 等, 2011.准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气的意义.中国科学(D辑), 41(11):1602-1612. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201111006.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  4457
    • HTML全文浏览量:  2098
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-02-15
    • 刊出日期:  2018-10-20

    目录

      /

      返回文章
      返回