• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    拉萨地体东南部整体地壳成分及其成因分析

    郭京梁 张宏飞 徐旺春 郭亮 吴耀 崔丹丹

    郭京梁, 张宏飞, 徐旺春, 郭亮, 吴耀, 崔丹丹, 2019. 拉萨地体东南部整体地壳成分及其成因分析. 地球科学, 44(6): 1809-1821. doi: 10.3799/dqkx.2019.050
    引用本文: 郭京梁, 张宏飞, 徐旺春, 郭亮, 吴耀, 崔丹丹, 2019. 拉萨地体东南部整体地壳成分及其成因分析. 地球科学, 44(6): 1809-1821. doi: 10.3799/dqkx.2019.050
    Guo Jingliang, Zhang Hongfei, Xu Wangchun, Guo Liang, Wu Yao, Cui Dandan, 2019. The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin. Earth Science, 44(6): 1809-1821. doi: 10.3799/dqkx.2019.050
    Citation: Guo Jingliang, Zhang Hongfei, Xu Wangchun, Guo Liang, Wu Yao, Cui Dandan, 2019. The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin. Earth Science, 44(6): 1809-1821. doi: 10.3799/dqkx.2019.050

    拉萨地体东南部整体地壳成分及其成因分析

    doi: 10.3799/dqkx.2019.050
    基金项目: 

    国家重点研发计划 2016YFC0600309

    国家自然科学基金项目 41730211

    国家自然科学基金项目 41502049

    中国地质大学中央高校基本科研业务费 CUGL180413

    详细信息
      作者简介:

      郭京梁(1984-), 男, 讲师, 博士, 主要从事岩石圈地球化学研究

    • 中图分类号: P591

    The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin

    • 摘要: 造山带地壳结构和成分的基本特征对于认识大陆地壳成分演化和区域成矿背景具有重要意义.综合青藏高原拉萨地体东南部地球物理、高温高压岩石物性和岩浆岩地球化学资料,分析该地区地壳整体成分特征,并探讨其可能成因.该地区平均地壳波速显著低于全球大陆和造山带地壳的平均值,表明地壳整体具有中酸性成分,下地壳特征也可由中性岩石(残余体性质的中性含石榴石麻粒岩)解释.拉萨地体东南部整体地壳成分特征应与多阶段长英质化有关,包括碰撞前大陆弧演化阶段(以堆晶或残余体下地壳拆沉为主)和碰撞后高原垮塌阶段(以加厚下地壳拆沉为主,伴随印度古老长英质陆壳物质的俯冲回返/构造底侵).拉萨地体是研究大陆地壳成分演化的绝佳区域,亟待进一步开展多学科综合研究.

       

    • 图  1  青藏高原拉萨地体岩浆岩分布

      a.青藏高原地质体划分;b.拉萨地体分区和岩浆岩分布;b图改自潘桂棠等(2004)Zhu et al.(2011)

      Fig.  1.  Distribution of magmatic rocks in the Lhasa terrane, southern Tibet.

      图  2  拉萨地体南部地壳波速结构与常见高级变质岩和岩浆岩纵波波速(Vp)对比

      岩石物性资料来自Christensen and Mooney(1995),根据地温梯度模型(Hetényi et al., 2007)对应的温压条件对波速进行了校正.FGR.长英质麻粒岩,PGR.变沉积岩麻粒岩,MGR.基性麻粒岩,GGR.石榴石麻粒岩,ECL.榴辉岩,AND.安山岩,BAS.玄武岩,GRA.花岗岩,DIO.闪长岩,DIA.辉绿岩,GAB.辉长岩

      Fig.  2.  Comparison between the crustal velocity structure of South Lhasa terrane and compressional wave velocities (Vp) of typical high⁃grade metamorphic and igneous rocks

      图  3  拉萨地体东南部SiO2>52%岩浆岩Nd同位素组成、Eu异常和Cr含量的协变图

      数据来源以青藏高原岩浆岩数据库(Chapman and Kapp, 2017)为主.Eu/Eu*=EuN/(SmN×GdN0.5,N代表球粒陨石值均一化,数值来源于McDonough and Sun(1995)

      Fig.  3.  εNd(t) vs. Eu/Eu*, εNd(t) vs. Cr, and Cr vs. Eu/Eu* of magmatic rocks with SiO2>52% in the southeastern Lhasa terrane

      图  4  拉萨地体东南部(87°~94°E)岩浆岩Nd同位素组成随时间的变化

      早-中侏罗世、晚白垩世、古新世和中新世岩浆阶段Nd同位素组成变化范围增大,存在明显的负偏

      Fig.  4.  εNd(t) vs. ages of pre ⁃ collisional, syn ⁃ collisional, and post ⁃ collisional magmatic rocks in the southeastern Lhasa terrane

    • Abers, G.A., Hacker, B.R., 2016.A MATLAB Toolbox and Excel Workbook for Calculating the Densities, Seismic Wave Speeds, and Major Element Composition of Minerals and Rocks at Pressure and Temperature. Geochemistry, Geophysics, Geosystems, 17(2):616-624. https://doi.org/10.1002/2015gc006171
      Bai, Z.M., Zhang, S.F., Braitenberg, C., 2013.Crustal Density Structure from 3D Gravity Modeling beneath Himalaya and Lhasa Blocks, Tibet. Journal of Asian Earth Sciences, 78:301-317. https://doi.org/10.1016/j.jseaes.2012.12.035
      Beck, S.L., Zandt, G., 2002.The Nature of Orogenic Crust in the Central Andes.Journal of Geophysical Research(Solid Earth), 107(B10):ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000JB000124
      Becker, M., Le Roex, A.P., 2006.Geochemistry of South African on-and off-Craton, Group I and Group Ⅱ Kimberlites:Petrogenesis and Source Region Evolution. Journal of Petrology, 47(4):673-703. https://doi.org/10.1093/petrology/egi089
      Chan, G.N., Waters, D.J., Searle, M.P., et al., 2009.Probing the Basement of Southern Tibet:Evidence from Crustal Xenoliths Entrained in a Miocene Ultrapotassic Dyke.Journal of the Geological Society, 166(1):45-52. https://doi.org/10.1144/0016-76492007-145
      Chapman, A. D., Ducea, M. N., Kidder, S., et al., 2014. Geochemical Constraints on the Petrogenesis of the Salinian Arc, Central California:Implications for the Origin of Intermediate Magmas.Lithos, 200-201:126-141. https://doi.org/10.1016/j.lithos.2014.04.011
      Chapman, J. B., Ducea, M. N., Kapp, P., et al., 2017. Spatial and Temporal Radiogenic Isotopic Trends of Magmatism in Cordilleran Orogens. Gondwana Research, 48:189-204. https://doi.org/10.1016/j.gr.2017.04.019
      Chapman, J.B., Kapp, P., 2017.Tibetan Magmatism Database.Geochemistry, Geophysics, Geosystems, 18(11):4229-4234. doi: 10.1002/2017GC007217
      Christensen, N. I., Mooney, W. D., 1995. Seismic Velocity Structure and Composition of the Continental Crust:A Global View. Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788. doi: 10.1029/95JB00259
      Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31 (3):1021-1024.
      De Paoli, M. C., Clarke, G. L., Daczko, N. R., 2012. Mineral Equilibria Modeling of the Granulite-Eclogite Transition:Effects of Whole-Rock Composition on Metamorphic Facies Type-Assemblages. Journal of Petrology, 53(5):949-970. https://doi.org/10.1093/petrology/egs004
      DeCelles, P.G., Ducea, M.N., Kapp, P., et al., 2009.Cyclicity in Cordilleran Orogenic Systems. Nat. Geosci., 2(4):251-257. https://doi.org/10.1038/ngeo469
      DeCelles, P.G., Horton, B.K., 2003.Early to Middle Tertiary Foreland Basin Development and the History of Andean Crustal Shortening in Bolivia.Bulletin of the Geological Society of America, 115(1):58-77. doi: 10.1130/0016-7606(2003)115<0058:ETMTFB>2.0.CO;2
      Ding, L., Xu, Q., Yue, Y.H., et al., 2014.The Andean-Type Gangdese Mountains:Paleoelevation Record from the Paleocene-Eocene Linzhou Basin.Earth and Planetary Science Letters, 392:250-264. https://doi.org/10.1016/j.epsl.2014.01.045
      Ding, L., Yue, Y. H., Cai, F. L., et al., 2006.40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet:Implications in the Onset Time and Depth of NS-Striking Rift System.Acta Geologica Sinica, 80(9):1252-1261(in Chinese with English abstract).
      Dong, X., Zhang, Z.M., Liu, F., et al., 2014.Late Paleozoic Intrusive Rocks from the Southeastern Lhasa Terrane, Tibetan Plateau, and Their Late Mesozoic Metamorphism and Tectonic Implications.Lithos, 198:249-262. https://doi.org/10.1016/j.lithos.2014.04.001
      Ducea, M.N., 2011.Fingerprinting Orogenic Delamination.Geology, 39(2):191-192. doi: 10.1130/focus022011.1
      Ducea, M.N., Chapman, A.D., 2018.Sub-Magmatic Arc Underplating by Trench and Forearc Materials in Shallow Subduction Systems; A Geologic Perspective and Implications. Earth-Science Reviews, 185:763-779. https://doi.org/10.1016/j.earscirev.2018.08.001
      Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015.The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs.Annual Review of Earth and Planetary Sciences, 43(1):299-331. doi: 10.1146/annurev-earth-060614-105049
      Fielding, E.J., 1996.Tibet Uplift and Erosion.Tectonophysics, 260(1-3):55-84. doi: 10.1016/0040-1951(96)00076-5
      Francheteau, J., Jaupart, C., Jie, S, X., 1984.High Heat Flow in Southern Tibet.Nature, 307:32-36. https://doi.org/10.1038/307032a0
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton.Nature, 432:892-897. https://doi.org/10.1038/nature03162
      Grove, T., Parman, S., Bowring, S., et al., 2002.The Role of an H2O-Rich Fluid Component in the Generation of Primitive Basaltic Andesites and Andesites from the Mt. Shasta Region, N California.Contributions to Mineralogy and Petrology, 142(4):375-396. https://doi.org/10.1007/s004100100299
      Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Crustal Thickening Prior to 38 Ma in Southern Tibet:Evidence from Lower Crust-Derived Adakitic Magmatism in the Gangdese Batholith.Gondwana Research, 21(1):88-99. https://doi.org/10.1016/j.gr.2011.07.004
      Guo, Z.F., Wilson, M., Liu, J.Q., 2007.Post-Collisional Adakites in South Tibet:Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2):205-224. https://doi.org/10.1016/j.lithos.2006.09.011
      Guynn, J., Kapp, P., Gehrels, G. E., et al., 2012. U-Pb Geochronology of Basement Rocks in Central Tibet and Paleogeographic Implications. Journal of Asian Earth Sciences, 43(1):23-50. https://doi.org/10.1016/j.jseaes.2011.09.003
      Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011.Differentiation of the Continental Crust by Relamination.Earth and Planetary Science Letters, 307(3-4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
      Hacker, B.R., Kelemen, P.B., Behn, M.D., 2015.Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 43(1):167-205. doi: 10.1146/annurev-earth-050212-124117
      Harrison, T.M., Copeland, P., Kidd, W.S., et al., 1992.Raising Tibet.Science 255:1663-1670. doi: 10.1126/science.255.5052.1663
      Henry, P., Le Pichon, X., Goffé, B., 1997.Kinematic, Thermal and Petrological Model of the Himalayas:Constraints Related to Metamorphism within the Underthrust Indian Crust and Topographic Elevation. Tectonophysics, 273(1-2):31-56. doi: 10.1016/S0040-1951(96)00287-9
      Hetényi, G., Cattin, R., Brunet, F., et al., 2007.Density Distribution of the India Plate beneath the Tibetan Plateau:Geophysical and Petrological Constraints on the Kinetics of Lower-Crustal Eclogitization. Earth and Planetary Science Letters, 264(1-2):226-244. https://doi.org/10.1016/j.epsl.2007.09.036
      Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155. doi: 10.1016/S0012-821X(04)00007-X
      Jagoutz, O., Behn, M. D., 2013. Foundering of Lower IslandArc Crust as an Explanation for the Origin of the Continental Moho. Nature, 504:131-134. https://doi.org/10.1038/nature12758
      Jagoutz, O., Schmidt, M. W., 2012. The Formation and Bulk Composition of Modern Juvenile Continental Crust:The Kohistan Arc. Chemical Geology, 298-299:79-96. https://doi.org/10.1016/j.chemgeo.2011.10.022
      Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2012.Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. The Journal of Geology, 120(5):531-541. https://doi.org/10.1086/666742
      Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2014.The Gangdese Magmatic Constraints on a Latest Cretaceous Lithospheric Delamination of the Lhasa Terrane, Southern Tibet. Lithos, 210-211:168-180. https://doi.org/10.1016/j.lithos.2014.10.001
      Kapp, P., DeCelles, P.G., Leier, A.L., et al., 2007.The Gangdese Retroarc Fold-Thrust Belt Revealed.GSA Today, 17:4-9.
      Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism.Tectonophysics, 219(1-3):177-189. doi: 10.1016/0040-1951(93)90295-U
      Kelemen, P.B., Behn, M.D., 2016.Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons. Nature Geoscience, 9(3):197-205. https://doi.org/10.1038/ngeo2662
      Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet:Evidence for Eurasian Plate Subduction.Science, 298(5596):1219-1221. doi: 10.1126/science.1078115
      Kola-Ojo, O., Meissner, R., 2001. Southern Tibet:Its Deep Seismic Structure and Some Tectonic Implications.Journal of Asian Earth Sciences, 19(1-2):249-256. https://doi.org/10.1016/s1367-9120(00)00041-9
      Kono, Y., Ishikawa, M., Harigane, Y., et al., 2009.P-and S-Wave Velocities of the Lowermost Crustal Rocks from the Kohistan Arc:Implications for Seismic Moho Discontinuity Attributed to Abundant Garnet. Tectonophysics, 467(1-4):44-54. https://doi.org/10.1016/j.tecto.2008.12.010
      Kushiro, I., Syono, Y., Akimoto, S.I., 1968.Melting of a Peridotite Nodule at High Pressures and High Water Pressures. Journal of Geophysical Research, 73(18):6023-6029. doi: 10.1029/JB073i018p06023
      Lee, C.T.A., Anderson, D.L., 2015.Continental Crust Formation at Arcs, the Arclogite "Delamination" Cycle, and One Origin for Fertile Melting Anomalies in the Mantle.Science Bulletin, 60(13):1141-1156. https://doi.org/10.1007/s11434-015-0828-6
      Leech, M.L., 2001.Arrested Orogenic Development:Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1-2):149-159. https://doi.org/10.1016/s0012-821x(00)00374-5
      Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous Crustal Growth in the Gangdese Area, Southern Tibet:Petrological and Sr-Nd-Hf-O Isotopic Evidence from Zhengga Diorite-Gabbro.Chemical Geology, 349-350:54-70. https://doi.org/10.1016/j.chemgeo.2013.04.005
      Ma, X.X., ,Xu, Z.Q., Meert, J.G., 2017.Syn-Convergence Extension in the Southern Lhasa Terrane:Evidence from Late Cretaceous Adakitic Granodiorite and Coeval Gabbroic-Dioritic Dykes. Journal of Geodynamics, 110:12-30. doi: 10.1016/j.jog.2017.07.004
      Maierová, P., Schulmann, K., Gerya, T., 2018. Relamination Styles in Collisional Orogens.Tectonics, 37(1):224-250. https://doi.org/10.1002/2017tc004677
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Meissner, R., Mooney, W., 1998.Weakness of the Lower Continental Crust:A Condition for Delamination, Uplift, and Escape. Tectonophysics, 296(1-2):47-60. https://doi.org/10.1016/s0040-1951(98)00136-x
      Meissner, R., Tilmann, F., Haines, S., 2004.About the Lithospheric Structure of Central Tibet, Based on Seismic Data from the INDEPTH Ⅲ Profile. Tectonophysics, 380(1-2):1-25. https://doi.org/10.1016/j.tecto.2003.11.007
      Meng, Y.K., Xu, Z.Q., Santosh, M., et al., 2016.Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt.Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007
      Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424. https://doi.org/10.1093/petroj/40.9.1399
      Mitchell, A.L., Grove, T.L., 2015.Melting the Hydrous, Subarc Mantle:The Origin of Primitive Andesites. Contributions to Mineralogy and Petrology, 170(2):13. https://doi.org/10.1007/s00410-015-1161-4
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet.Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      Nábelek, J., Hetényi, G., Vergne, J., et al., 2009.Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment.Science, 325(5946):1371-1374. doi: 10.1126/science.1167719
      Nelson, K.D., Zhao, W.J., Brown, L.D., et al., 1996.Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results. Science, 274(5293), 1684-1688. doi: 10.1126/science.274.5293.1684
      Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Owens, T.J., Zandt, G., 1997.Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387:37-43. https://doi.org/10.1038/387037a0
      Pan, G.T., Ding, J., Yao, D.S., et al., 2004.1:1 500 000 Geological Map of Qinghai-Xizang Plateau and Its Adjacent Regions. Chengdu Cartographic Publishing House, Chengdu(in Chinese).
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Patiño Douce, A.E., 2004.Vapor-Absent Melting of Tonalite at 15-32 kbar.Journal of Petrology, 46(2):275-290. doi: 10.1093/petrology/egh071
      Qian, Q., Hermann, J., 2013.Partial Melting of Lower Crust at 10-15 kbar:Constraints on Adakite and TTG Formation.Contributions to Mineralogy and Petrology, 165(6):1195-1224. https://doi.org/10.1007/s00410-013-0854-9
      Rodgers, A. J., Schwartz, S. Y., 1997. Low Crustal Velocities and Mantle Lithospheric Variations in Southern Tibet from Regional Pnl Waveforms. Geophysical Research Letters, 24(1):9-12. https://doi.org/10.1029/96gl03774
      Rudnick, R. L., 1995. Making Continental Crust. Nature, 378:571-578. doi: 10.1038/378571a0
      Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302
      Rudnick, R.L., Gao, S., 2003.3.01-Composition of the Continental Crust.Treatise on Geochemistry, 3:1-64.
      Saleeby, J., Ducea, M., Clemens-Knott, D., 2003. Production and Loss of High-Density Batholithic Root, Southern Sierra Nevada, California.Tectonics, 22(6):1-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=adcb120e4765fe12cc7199084a122f61
      Sherrington, H. F., Zandt, G., Frederiksen, A., 2004. Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters.Journal of Geophysical Research:Solid Earth, 109(B2):943. doi: 10.1029-2002JB002345/
      Wang, J.G., Hu, X.M., Garzanti, E., et al., 2017.Early Cretaceous Topographic Growth of the Lhasaplano, Tibetan Plateau:Constraints from the Damxung Conglomerate.Journal of Geophysical Research:Solid Earth, 122(7):5748-5765. doi: 10.1002/jgrb.v122.7
      Wang, Q., 2005. Shear Wave Properties and Poisson's Ratios of Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt, China:Implications for Crustal Composition. Journal of Geophysical Research, 110(B8). https://doi.org/10.1029/2004jb003435
      Wang, Q., Ji, S.C., Salisbury, M.H., et al., 2005.Pressure Dependence and Anisotropy of P-Wave Velocities in Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt (China):Implications for Seismic Properties of Subducted Slabs and Origin of Mantle Reflections.Tectonophysics, 398(1-2):67-99. https://doi.org/10.1016/j.tecto.2004.12.001
      Wang, R., Collins, W. J., Weinberg, R. F., et al., 2016. Xenoliths in Ultrapotassic Volcanic Rocks in the Lhasa Block:Direct Evidence for Crust-Mantle Mixing and Metamorphism in the Deep Crust. Contributions to Mineralogy and Petrology, 171(7):62. https://doi.org/10.1007/s00410-016-1272-6
      Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet.Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earscirev.2018.02.019
      Ward, K.M., Zandt, G., Beck, S.L., et al., 2016.Lithospheric Structure beneath the Northern Central Andean Plateau from the Joint Inversion of Ambient Noise and Earthquake-Generated Surface Waves.Journal of Geophysical Research:Solid Earth, 121(11):8217-8238. https://doi.org/10.1002/2016jb013237
      Xu, Z.Q., Zhao, Z.B., Peng, M., et al., 2016.Review of "Orogenic Plateau". Acta Petrologica Sinica, 32(12):3557-3571(in Chinese with English abstract).
      Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015.High-Mg Diorite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens.Journal of Petrology, 56(2):227-254. https://doi.org/10.1093/petrology/egu076
      Yuan, X.H., Ni, J., Kind, R., et al., 1997.Lithospheric and Upper Mantle Structure of Southern Tibet from a Seismological Passive Source Experiment.Journal of Geophysical Research:Solid Earth, 102(B12):27491-27500. https://doi.org/10.1029/97jb02379
      Zhang, Z. J., Deng, Y. F., Teng, J. W., et al., 2011. An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 40(4):977-989. https://doi.org/10.1016/j.jseaes.2010.03.010
      Zhang, Z. M., Dong, X., Xiang, H., et al., 2014. Metagabbros of the Gangdese Arc Root, South Tibet:Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143:268-284. https://doi.org/10.1016/j.gca.2014.01.045
      Zhao, Z.D., Mo, X.X., Dilek, Y., et al., 2009.Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2):190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective. Earth Science Frontiers, 16(2):1-20(in Chinese with English abstract).
      Zhu, D.C., Wang, Q., Cawood, P.A., et al., 2017.Raising the Gangdese Mountains in Southern Tibet.Journal of Geophysical Research:Solid Earth, 122(1):214-223. doi: 10.1002/2016JB013508
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      丁林, 岳雅慧, 蔡福龙, 等, 2006.西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约.地质学报, 80(9):1252-1261. doi: 10.3321/j.issn:0001-5717.2006.09.003
      潘桂棠, 丁俊, 姚东生, 等, 2004.青藏高原及邻区地质图(1:1 500 000).成都:成都地图出版社.
      许志琴, 赵中宝, 彭淼, 等, 2016.论"造山的高原".岩石学报, 32(12):3557-3571. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612001.htm
      朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001
    • 加载中
    图(4)
    计量
    • 文章访问数:  5757
    • HTML全文浏览量:  2021
    • PDF下载量:  83
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-09-30
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回