[1] Anderson, O. R., 1983. Radiolaria. Springer, New York.
[2] Anderson, O. R., Bryan, M., Bennett, P., 1990. Experimental and Observational Studies of Radiolarian Physiological Ecology: 4. Factors Determining the Distribution and Survival ofDidymocyrtis Tetrathalamus Tetrathalamus with Implications for Paleoecological Interpretations. Marine Micropaleontology, 16(3-4): 155-167. https://doi.org/10.1016/0377-8398(90)90001-3
[3] Boltovskoy, D., Kling, S. A., Takahashi, K., et al., 2010. World Atlas of Distribution of Recent Polycystina (Radiolaria). Palaeontologia Electronica, 13(3): 18A. http://www.researchgate.net/publication/286573981_World_atlas_of_distribution_of_recent_polycystina_Radiolaria
[4] Caron, D. A., Michaels, A. F., Swanberg, N. R., et al., 1995. Primary Productivity by Symbiont-Bearing Planktonic Sarcodines (Acantharia, Radiolaria, Foraminifera) in Surface Waters near Bermuda. Journal of Plankton Research, 17(1): 103-129. https://doi.org/10.1093/plankt/17.1.103
[5] Chang, F. M., Zhuang, L. H., Li, T. G., et al., 2003. Radiolarian Fauna in Surface Sediments of the Northeastern East China Sea. Marine Micropaleontology, 48(3-4): 169-204. https://doi.org/10.1016/S0377-8398(03)00016-1
[6] Chen, M., Lan, B. B., Shen, L. N., et al., 2014. Characteristics of Diatom Distribution in the Surface Sediments of the Western Philippine Basin. Acta Micropalaeontologica Sinica, 31(4): 321-334 (in Chinese with English abstract).
[7] Chen, M. H., Tan, Z. Y., 1996. Radiolaria from Surface Sediments of the Central and Northern South China Sea. Science Press, Beijing (in Chinese).
[8] De Wever, P., Dumitrica, P., Caulet, J. P., et al., 2001. Radiolarians in the Sedimentary Record. Gordon and Breach Science Publishers, Amsterdam.
[9] Dennett, M. R., Caron, D. A., Michaels, A. F., et al., 2002. Video Plankton Recorder Reveals High Abundances of Colonial Radiolaria in Surface Waters of the Central North Pacific. Journal of Plankton Research, 24(8): 797-805. https://doi.org/10.1093/plankt/24.8.797
[10] Dong, D. D., Zhang, Z. Y., Zhang, G. X., et al., 2017. Tectonic and Sedimentary Features of the West Philippine Basin and Its Implication to the Basin Evolution-Evidence from a Seismic Transection. Oceanologia et Limnologia Sinica, 48(6): 1415-1425 (in Chinese with English abstract).
[11] Haslett, S. K., 1994. Plio-Pleistocene Radiolarian Biostratigraphy and Palaeoceanography of the Mid-Latitude North Atlantic (DSDP Site 609). Geological Magazine, 131(1): 57-66. https://doi.org/10.1017/s0016756800010499
[12] Hatakeda, U. K., 2009. Compiled Ecological Data on Living Polycystine Radiolarians. News of Osaka Micropaleontologists, 14(14): 31-41 http://www.mendeley.com/research/compiled-ecological-data-living-polycystine-radiolarians/
[13] Hernández-Almeida, I., Cortese, G., Yu, P. S., et al., 2017. Environmental Determinants of Radiolarian Assemblages in the Western Pacific since the Last Deglaciation. Paleoceanography, 32(8): 830-847. https://doi.org/10.1002/2017pa003159
[14] Huang, C. J., 2018. Analysis of the Characteristics of Deep Water Mass and Circulation in the Philippine Sea (Dissertation). Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya (in Chinese with English abstract).
[15] Ishitani, Y., Takahashi, K., 2007. The Vertical Distribution of Radiolaria in the Waters Surrounding Japan. Marine Micropaleontology, 65(3-4): 113-136. https://doi.org/10.1016/j.marmicro.2007.06.002
[16] Ishitani, Y., Takahashi, K., Okazaki, Y., et al., 2008. Vertical and Geographic Distribution of Selected Radiolarian Species in the North Pacific. Micropaleontology, 54(1): 27-39.
[17] Kamikuri, S. I., Motoyama, I., Nishi, H., et al., 2009. Neogene Radiolarian Biostratigraphy and Faunal Evolution Rates in the Eastern Equatorial Pacific ODP Sites 845 and 1241. Acta Palaeontologica Polonica, 54(4): 713-742. https://doi.org/10.4202/app.2008.0076
[18] Li, T. G., Xiong, Z. F., Zhai, B., 2015. Laminated Diatom Mat Deposits from the Low-Latitude Western Pacific Linked to Global Carbon Cycle. Ocean Press, Beijing (in Chinese).
[19] Liu, L., Zhang, Q., Chen, M. H., et al., 2017. Radiolarian Biogeography in Surface Sediments of the Northwest Pacific Marginal Seas. Science China Earth Sciences, 60(3): 517-530. https://doi.org/10.1007/s11430-016-5179-4
[20] Luo, M., Algeo, T. J., Tong, H. P., et al., 2018. More Reducing Bottom-Water Redox Conditions during the last Glacial Maximum in the Southern Challenger Deep (Mariana Trench, Western Pacific) Driven by Enhanced Productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 155: 70-82. https://doi.org/10.1016/j.dsr2.2017.01.006
[21] Martin, W. R., Bender, M., Leinen, M., et al., 1991. Benthic Organic Carbon Degradation and Biogenic Silica Dissolution in the Central Equatorial Pacific. Deep Sea Research Part A Oceanographic Research Papers, 38(12): 1481-1516. https://doi.org/10.1016/0198-0149(91)90086-U
[22] Matsuzaki, K. M., Itaki, T., Sugisaki, S., 2020a. Polycystine Radiolarians Vertical Distribution in the Subtropical Northwest Pacific during Spring 2015 (KS15-4). Paleontological Research, 24(2): 113-133. https://doi.org/10.2517/2019pr019
[23] Matsuzaki, K. M., Itaki, T., Tada, R., et al., 2018. Paleoceanographic History of the Japan Sea over the Last 9.5 Million Years Inferred from Radiolarian Assemblages (IODP Expedition 346 Sites U1425 and U1430). Progress in Earth and Planetary Science, 5(1): 1-33. https://doi.org/10.1186/s40645-018-0204-7
[24] Matsuzaki, K. M., Nishi, H., Suzuki, N., et al., 2014. Paleoceanographic History of the Northwest Pacific Ocean over the Past 740 kyr, Discerned from Radiolarian Fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 26-40. https://doi.org/10.1016/j.palaeo.2013.12.036
[25] Matsuzaki, K. M., Suzuki, N., Nishi, H., 2015. Middle to Upper Pleistocene Polycystine Radiolarians from Hole 902-C9001C, Northwestern Pacific. Paleontological Research, 19(s1): 1-77. https://doi.org/10.2517/2015pr003
[26] Matsuzaki, K. M., Suzuki, N., Tada, R., 2020b. An Intensified East Asian Winter Monsoon in the Japan Sea between 7.9 and 6.6 Ma. Geology, 48(9): 919-923. https://doi.org/10.1130/g47393.1
[27] Nigrini, C., Sanfilippo, A., 2001. Cenozoic Radiolarian Stratigraphy for Low and Middle Latitudes with Descriptions of Biomarkers and Stratigraphically Useful Species. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.tn.27.2001
[28] Nigrini, C., Sanfilippo, A., Moore Jr., T.J., 2006. Cenozoic Radiolarian Biostratigraphy: A Magnetobiostratigraphic Chronology of Cenozoic Sequences from ODP Sites 1218, 1219, and 1220, Equatorial Pacific. In: Wilson, P. A., Lyle, M., Firth, J. V., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.proc.sr.199.225.2006
[29] Palmer, M. R., Pearson, P. N., 2003. A 23, 000-Year Record of Surface Water pH and PCO2 in the Western Equatorial Pacific Ocean. Science, 300(5618): 480-482. https://doi.org/10.1126/science.1080796
[30] Qu, H. X., Wang, J. B., Xu, Y., et al., 2020. Radiolarian Assemblage as an Indicator of Environmental Conditions in the Marginal Seas of the Western North Pacific. Marine Micropaleontology, 157: 101859. https://doi.org/10.1016/j.marmicro.2020.101859
[31] Sanfilippo, A., Nigrini, C., 1998. Code Numbers for Cenozoic Low Latitude Radiolarian Biostratigraphic Zones and GPTS Conversion Tables. Marine Micropaleontology, 33(1-2): 109-156. https://doi.org/10.1016/S0377-8398(97)00030-3
[32] Shen, L. N., Chen, M., Lan, B. B., et al., 2017. Diatom Distribution as an Environmental Indicator in Surface Sediments of the West Philippine Basin. Chinese Journal of Oceanology and Limnology, 35(2): 431-443. https://doi.org/10.1007/s00343-016-5306-8
[33] Shibamoto, Y., Harada, K., 2010. Silicon Flux and Distribution of Biogenic Silica in Deep-Sea Sediments in the Western North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 57(2): 163-174. https://doi.org/10.1016/j.dsr.2009.10.009
[34] Takahashi, K., 1991. Radiolaria: Flux, Ecology, and Taxonomy in the Pacific and Atlantic. In: Honjo, S., eds., Ocean Biocoenosis Series No. 3. Woods Hole Oceanographic Institution, Woods Hole. https://doi.org/10.1575/1912/408
[35] Tan, Z. Y., Chen, M. H., 1999. Offshore Radiolaria in China. Science Press, Beijing (in Chinese).
[36] Tomczak, M., Godfrey, J.S., 2005. Regional Oceanography: An Introduction. Pergamon Press, Oxford.
[37] Wang, P. X., 1989. Chemical Oceanography. In: Marine Geology Department of Tongji University, ed., Introduction to Paleoceanography. Tongji University Press, Shanghai (in Chinese).
[38] Wang, R. J., Abelmann, A., 2002. Radiolarian Responses to Paleoceanographic Events of the Southern South China Sea during the Pleistocene. Marine Micropaleontology, 46(1-2): 25-44. https://doi.org/10.1016/S0377-8398(02)00048-8
[39] Xiong, Z. F., Li, T. G., 2017. Marine Laminated Diatom Mats in Palaeoceanography and Biogeochemistry: Retrospective and Prospective. Oceanologia et Limnologia Sinica, 48(6): 1244-1256 (in Chinese with English abstract).
[40] Xiong, Z. F., Li, T. G., Algeo, T., et al., 2015. The Silicon Isotope Composition of Ethmodiscus Rex Laminated Diatom Mats from the Tropical West Pacific: Implications for Silicate Cycling during the Last Glacial Maximum. Paleoceanography, 30(7): 803-823. https://doi.org/10.1002/2015PA002793
[41] Xiong, Z. F., Li, T. G., Zhai, B., et al., 2010. Clay Mineral Characteristics of Ethmodiscus Rex Diatom Mats from Low-Latitude Western Pacific during the Last Glacial and Implications for Their Formation. Earth Science, 35(4): 551-562 (in Chinese with English abstract).
[42] Xu, Z. K., Li, T. G., Clift, P. D., et al., 2015. Quantitative Estimates of Asian Dust Input to the Western Philippine Sea in the Mid-Late Quaternary and Its Potential Significance for Paleoenvironment. Geochemistry, Geophysics, Geosystems, 16(9): 3182-3196. https://doi.org/10.1002/2015GC005929
[43] Yan, X. H., Ho, C. R., Zheng, Q., et al., 1992. Temperature and Size Variabilities of the Western Pacific Warm Pool. Science, 258(5088): 1643-1645. https://doi.org/10.1126/science.258.5088.1643
[44] Zhang, J., Zhang, L. L., Chen, M. H., et al., 2020. The Higher Level Classification of Modern Radiolarians and Their Ecological Significance. Acta Micropalaeontologica Sinica, 37(1): 82-98 (in Chinese with English abstract).
[45] Zhang, J., Zhang, L. L., Xiang, R., et al., 2020. Radiolarian Biogeographic Contrast between Spring of 2017 and Winter of 2017-2018 in the South China Sea and Malacca Strait. Continental Shelf Research, 208: 104245. https://doi.org/10.1016/j.csr.2020.104245
[46] Zhang, L. L., Chen, M. H., Hu, W. F., et al., 2013. Vertical Distribution of Living Radiolarians and Its Environmental Implication. Journal of Tropical Oceanography, 32(6): 101-107 (in Chinese with English abstract).
[47] Zhang, L. L., Chen, M. H., Xiang, R., et al., 2009. Distribution of Polycystine Radiolarians in the Northern South China Sea in September 2005. Marine Micropaleontology, 70(1-2): 20-38. https://doi.org/10.1016/j.marmicro.2008.10.002
[48] Zhang, L. L., Suzuki, N., 2017. Taxonomy and Species Diversity of Holocene Pylonioid Radiolarians from Surface Sediments of the Northeastern Indian Ocean. Palaeontologia Electronica, 20(3): 48A. https://doi.org/10.26879/718
[49] Zhang, L. L., Suzuki, N., de Nakamura, Y., et al., 2018. Modern Shallow Water Radiolarians with Photosynthetic Microbiota in the Western North Pacific. Marine Micropaleontology, 139: 1-27. https://doi.org/10.1016/j.marmicro.2017.10.007
[50] Zhang, L. L., Wang, R. J., Chen, M. H., et al., 2015. Biogenic Silica in Surface Sediments of the South China Sea: Controlling Factors and Paleoenvironmental Implications. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 142-152. https://doi.org/10.1016/j.dsr2.2015.11.008
[51] Zhang, Q., Chen, M. H., Zhang, L. L., et al., 2014. Variations in the Radiolarian Assemblages in the Bering Sea since Pliocene and Their Implications for Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 410: 337-350. https://doi.org/10.1016/j.palaeo.2014.05.048
[52] 陈敏, 兰彬斌, 沈林南, 等, 2014. 西菲律宾海盆表层沉积硅藻分布特征. 微体古生物学报, 31(4): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201404001.htm
[53] 陈木宏, 谭智源, 1996. 南海中、北部沉积物中的放射虫. 北京: 科学出版社.
[54] 董冬冬, 张正一, 张广旭, 等, 2017. 西菲律宾海盆的构造沉积特征及对海盆演化的指示-来自地球物理大断面的证据. 海洋与湖沼, 48(6): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201706029.htm
[55] 黄财京, 2018. 菲律宾海深层水团与环流特征分析(硕士学位论文). 三亚: 中国科学院深海科学与工程研究所.
[56] 李铁刚, 熊志方, 翟滨, 2015. 低纬度西太平洋硅藻席沉积与碳循环. 北京: 海洋出版社.
[57] 谭智源, 陈木宏, 1999. 中国近海的放射虫. 北京: 科学出版社.
[58] 汪品先, 1989. 海洋化学. 同济大学海洋地质系编, 古海洋学概论. 上海: 同济大学出版社.
[59] 熊志方, 李铁刚, 2017. 海洋纹层硅藻席古海洋学与生物地球化学研究进展. 海洋与湖沼, 48(6): 1244-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201706013.htm
[60] 熊志方, 李铁刚, 翟滨, 等, 2010. 低纬度西太平洋末次冰期Ethmodiscus rex硅藻席粘土矿物特征及形成机制启示. 地球科学, 35(4): 551-562. doi: 10.3799/dqkx.2010.071
[61] 张杰, 张兰兰, 陈木宏, 等, 2020. 现代放射虫的高阶分类现状及其生态学意义. 微体古生物学报, 37(1): 82-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT202001007.htm
[62] 张兰兰, 陈木宏, 胡维芬, 等, 2013. 现生放射虫的水深分布及其环境指示意义. 热带海洋学报, 32(6): 101-107. doi: 10.3969/j.issn.1009-5470.2013.06.015