[1] Anderson, N. J., 2000. Diatoms, Temperature and Climatic Change. European Journal of Phycology, 35(4): 307-314. https://doi.org/10.1017/s0967026200002857
[2] Battarbee, R. W., Jones, V. J., Flower, R. J., et al., 2002. Diatoms. In: Smol, J. P., Birks, H. J. B., Last, W. M., eds., Tracking Environmental Change Using Lake Sediments. Volume 3. Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publisher, Dordrecht, 155-202.
[3] Bennion, H., Battarbee, R. W., Sayer, C. D., et al., 2011. Defining Reference Conditions and Restoration Targets for Lake Ecosystems Using Palaeolimnology: A Synthesis. Journal of Paleolimnology, 45(4): 533-544. https://doi.org/10.1007/s10933-010-9419-3
[4] Chen, X., Yang, X. D., Dong, X. H., et al., 2013a. Environmental Changes in Chaohu Lake (Southeast, China) since the Mid 20th Century: The Interactive Impacts of Nutrients, Hydrology and Climate. Limnologica, 43(1): 10-17. https://doi.org/10.1016/j.limno.2012.03.002
[5] Chen, X., Mao, X., Cao, Y. M., et al., 2013b. Use of Siliceous Algae as Biological Monitors of Heavy Metal Pollution in Three Lakes in a Mining City, Southeast China. Oceanological and Hydrobiological Studies, 42(3): 1-25. https://doi.org/10.2478/s13545-013-0079-6
[6] Chen, X., McGowan, S., Xu, L., et al., 2016. Effects of Hydrological Regulation and Anthropogenic Pollutants on Dongting Lake in the Yangtze Floodplain. Ecohydrology, 9(2): 315-325. https://doi.org/10.1002/eco.1637
[7] Cui, X. L., 1995. Investigation of Eutrophication Pollution Sources in Baiyangdian Lake. Environmental Ecology, 16(Suppl.): 17-18+27 (in Chinese).
[8] Dong, X. H., Yang, X. D., Chen, X., et al., 2016. Using Sedimentary Diatoms to Identify Reference Conditions and Historical Variability in Shallow Lake Ecosystems in the Yangtze Floodplain. Marine and Freshwater Research, 67(6): 803. https://doi.org/10.1071/mf14262
[9] Gell, P., Tibby, J., Fluin, J., et al., 2005. Accessing Limnological Change and Variability Using Fossil Diatom Assemblages, South-East Australia. River Research and Applications, 21(2/3): 257-269. https://doi.org/10.1002/rra.845
[10] Hakanson, L., 1980. An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Research, 14(8): 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
[11] Hu, G. C., Xu, M. Q., Xu, Z. C., et al., 2011. Pollution Characteristic and Potential Risk Assessment of Heavy Metals in Surface Sediment from Fuhe River and Baiyangdian Lake, North China. Journal of Agro-Environment Science, 30(1): 146-153(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH201101025.htm
[12] Jekel, H., 2005. Sustainable Water Management in Europe: The Water Framework Directive. In: Vogtmann, H., Dobretsov, N., eds. Transboundary Water Resources: Strategies for Regional Security and Ecological Stability. Springer, Netherlands, 121-127.
[13] Jiang, X., Jin, X. C., Yao, Y., et al., 2008. Effects of Biological Activity, Light, Temperature and Oxygen on Phosphorus Release Processes at the Sediment and Water Interface of Taihu Lake, China. Water Research, 42(8/9): 2251-2259. https://doi.org/10.1016/j.watres.2007.12.003
[14] Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae (1-4 Teil). In: Ettl, H., Gerloff, J., Heynig, H., eds., Süßwasserflora von Mitteleuropa, Vol. 2. Stuttgart/Jena, Gustav Fischer Verlag, 1-4.
[15] Li, Y. M., Zhao, Q., Feng, G. P., 2010. The Diatom Assemblages and Their Response to Different Environments of Baiyangdian Lake, China. Acta Ecological Sinica, 30(17): 4559-4570(in Chinese with English abstract). http://www.researchgate.net/publication/286728954_The_diatom_assemblages_and_their_response_to_different_environments_of_Baiyangdian_Lake_China
[16] Li, Z. Q., Liu, J. Z., Wang, W. X., 2002. Analysis of the Causes of Baiyangdian Sediment Accumulation. Hebei Water Resources and Hydropower Technology, (2): 31-32 (in Chinese with English abstract).
[17] Liu, E. F., Shen, J., Liu, X. Q., et al., 2005. Variation Characteristics and Pollution History of Heavy Metals and Nutrients in Sediments of Taihu Lake. Science in China (Series D: Earth Science), 35(Suppl. II): 73-80(in Chinese with English abstract).
[18] Liu, S. C., Wang, H. H., Tian, K., et al., 2020. Ecological Environmental Changes and Influencing Analysis in Baiyangdian Lake. Journal of Agro-Environment Science, 39(5): 1060-1069(in Chinese with English abstract).
[19] Liu, X., Shi, B., Meng, J., et al., 2019. Spatio-Temporal Variation Characteristics of Water Eutrophication and Sediment Pollution in Baiyangdian Lake. Environmental Science, 41(5): 2127-2136 (in Chinese with English abstract).
[20] Munendra, S., German, M., Singh, I. B., 2003. Geogenic Distribution and Baseline Concentration of Heavy Metals in Sediments of the Ganges River, India. Journal of Geochemical Exploration, 80(1): 1-17. doi: 10.1016/S0375-6742(03)00016-5
[21] Nogueira, M. G., 2000. Phytoplankton Composition, Dominance and Abundance as Indicators of Environmental Compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia, 431: 115-128. doi: 10.1023/A:1003769408757
[22] Qin, Y. M., Gong, J., Gu, Y. S., et al., 2018. Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China. Earth Science, 43(11): 4036-4045(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811021.htm
[23] Ritchie, J. C., McHenry, J. R., 1990. Application of Radioactive Fallout Cesium-137 for Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review. Journal of Environmental Quality, 19(2): 215-233. https://doi.org/10.2134/jeq1990.00472425001900020006x
[24] Smol, J. P., 2010. The Power of the Past: Using Sediments to Track the Effects of Multiple Stressors on Lake Ecosystems. Freshwater Biology, 55(Suppl.1): 43-59. https://doi.org/10.1111/j.1365-2427.2009.02373.x
[25] Song, Z. H., 2005. Analysis of Hydrological Characteristics in Baiyangdian Basin. Hebei Water Resources, 9: 10-11 (in Chinese).
[26] Stager, J. C., Hecky, R. E., Grzesik, D., et al., 2009. Diatom Evidence for the Timing and Causes of Eutrophication in Lake Victoria, East Africa. Hydrobiologia, 636(1): 463-478. https://doi.org/10.1007/s10750-009-9974-7
[27] Tockner, K., Stanford, J. A., 2002. Riverine Flood Plains: Present State and Future Trends. Environmental Conservation, 29(3): 308-330. https://doi.org/10.1017/s037689290200022x
[28] Wang, J., Gao, G., Pei, Y. S., et al., 2010. Sources and Transformations of Nitrogen in the Fuhe River of the Baiyangdian Lake. Environmental Science, 31(12): 2905-2910(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/21360878
[29] Yang, C. X., 2010. Analysis on the Deposited Quantity Variation and Its Influenced Factors in Bayangdian. Ground Water, 32(2): 110-112(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXSU201002045.htm
[30] Yang, W., Tian, Y. Y., Zhang, Z. H., et al., 2019. Evolution of Phytoplankton Community and Biotic Integrity in Baiyangdian Lake in Recent 60 Years. Environmental Ecology, 8(1): 1-9 (in Chinese with English abstract).
[31] Yang, X. D., Anderson, N. J., Dong, X. H., et al., 2008. Surface Sediment Diatom Assemblages and Epilimnetic Total Phosphorus in Large, Shallow Lakes of the Yangtze Floodplain: Their Relationships and Implications for Assessing Long-Term Eutrophication. Freshwater Biology, 53(7): 1273-1290. https://doi.org/10.1111/j.1365-2427.2007.01921.x
[32] Yang, Y., Yin, X. N., Yang, Z. F., et al., 2018. Detection of Regime Shifts in a Shallow Lake Ecosystem Based on Multi-Proxy Paleolimnological Indicators. Ecological Indicators, 92(7): 312-321. https://doi.org/10.1016/j.ecolind.2017.05.059
[33] Yu, S. C., Yu, D. Q., Wang, L. C., et al., 2019. Remote Sensing Study of Dongting Lake Bearch Changes before and after Operation of Three Gorges Reservoir. Earth Science, 44(12): 4275-4283(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912037.htm
[34] Yuan, Y., Yan, D. H., Wang, H., et al., 2013. Attributive Analysis on Evolution of Inflow to Baiyangdian Wetland. Water Resources and Hydropower Engineering, 44(12): 1-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJWJ201312001.htm
[35] Zeng, L. H., Ning, D. L., Xu, L., et al., 2015. Sedimentary Evidence of Environmental Degradation in Sanliqi Lake, Daye City (A Typical Mining City, Central China). Bulletin of Environmental Contamination and Toxicology, 95(3): 317-324. https://doi.org/10.1007/s00128-015-1606-5
[36] Zhang, S. Z., Tian, J. W., Li, G. B., 2007. Ecological Problems and Restoration Measures of Baiyangdian Wetland. Bulletin of Soil and Water Conservation, 27(3): 146-150(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STTB200703032.htm
[37] Zhang, T., Liu, J. L., Wang, X. M., 2010. Causal Analysis of the Apatial-Temporal Variation of Water Quality in Baiyangdian Lake. Acta Scientiae Circumstantiae, 30(2): 281-267 (in Chinese with English abstract). http://www.oalib.com/paper/1592464
[38] Zhao, X. F., Zhang, X. R., 2019. Study on Policy Tool Selection in Water Pollution Control in Xiong'an New Area-Based on the Policy Text of Baiyangdian Basin (1984-2018). Journal of the Party School of the CPC Ningbo Municipal Committee, 41(5): 103-111 (in Chinese).
[39] Zhu, J. F., Zhou, Y., Wang, S. X., et al., 2019. Analysis of Changes of Baiyangdian Wetland from 1975 to 2018 Based on Remote Sensing. Journal of Remote Sensing, 23(5): 971-986 (in Chinese with English abstract).
[40] 崔秀丽, 1995. 白洋淀水体富营养化污染源调查. 环境科学, 16(增刊): 17-18+27. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ5S1.006.htm
[41] 胡国成, 许木启, 许振成, 等, 2011. 府河-白洋淀沉积物中重金属污染特征及潜在风险评价. 农业环境科学学报, 30(1): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201101025.htm
[42] 李亚蒙, 赵琦, 冯广平, 等, 2010. 白洋淀硅藻分布及其与水环境的关系. 生态学报, 30(17): 4559-4570. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201017005.htm
[43] 李振卿, 刘建芝, 王卫喜, 2002. 白洋淀泥沙淤积成因分析. 河北水利水电技术, (2): 31-32. doi: 10.3969/j.issn.1672-9900.2002.02.030
[44] 刘恩峰, 沈吉, 刘兴起, 等, 2005. 太湖沉积物重金属和营养盐变化特征及污染历史. 中国科学(D辑: 地球科学), 35(增刊II): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2005S2008.htm
[45] 刘世存, 王欢欢, 田凯, 等, 2020. 白洋淀生态环境变化及影响因素分析. 农业环境科学学报, 39(5): 1060-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202005016.htm
[46] 刘鑫, 史斌, 孟晶, 等, 2019. 白洋淀水体富营养化和沉积物污染时空变化特征. 环境科学, 41(5): 2127-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202005016.htm
[47] 秦养民, 巩静, 顾延生, 等, 2018. 鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义. 地球科学, 43(11): 4036-4045. doi: 10.3799/dqkx.2018.599
[48] 宋中海, 2005. 白洋淀流域水文特性分析. 河北水利, 9: 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLS200509008.htm
[49] 王珺, 高高, 裴元生, 等, 2010. 白洋淀府河中氮的来源与迁移转化研究. 环境科学, 31(12): 2905-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201012015.htm
[50] 杨春霄, 2010. 白洋淀入淀水量变化及影响因素分析. 地下水, 32(2): 110-112. doi: 10.3969/j.issn.1004-1184.2010.02.044
[51] 杨薇, 田艺苑, 张兆衡, 等, 2019. 近60年来白洋淀浮游植物群落演变及生物完整性评价. 环境生态学, 8(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSX201908002.htm
[52] 余姝辰, 余德清, 王伦澈, 等, 2019. 三峡水库运行前后洞庭湖州滩面积变化遥感认识. 地球科学, 44(12): 4275-4283. doi: 10.3799/dqkx.2019.182
[53] 袁勇, 严登华, 王浩, 等, 2013. 白洋淀湿地入淀水量演变归因分析. 水利水电技术, 44(12): 1-23. doi: 10.3969/j.issn.1000-0860.2013.12.001
[54] 张素珍, 田建文, 李贵宝, 2007. 白洋淀湿地面临的生态问题及生态恢复措施. 水土保持通报, 27(3): 146-150. doi: 10.3969/j.issn.1000-288X.2007.03.032
[55] 张婷, 刘静玲, 王雪梅, 2010. 白洋淀水质时空变化及影响因子评价与分析. 环境科学学报, 30(2): 281-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201002006.htm
[56] 赵新峰, 张欣蕊, 2019. 雄安新区水污染治理中的政策工具选择研究——基于白洋淀流域政策文本(1984~2018). 中共宁波市委党校学报, 41(5): 103-111. doi: 10.3969/j.issn.1008-4479.2019.05.015
[57] 朱金峰, 周艺, 王世新, 等, 2019. 1975年~2018年白洋淀湿地变化分析. 遥感学报, 23(5): 971-986. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905017.htm