[1] Barker, F., 1979. Trondhjemites, Dacites and Related Rocks. Elsevier Scientific Publishing Company, Amsterdam.
[2] Cai, Y., Wang, Y., Cawood, P.A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China:Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245:13-28. https://doi.org/10.1016/j.precamres.2014.01.009
[3] Cai, Y., Wang, Y., Cawood, P.A., et al., 2015. Neoproterozoic Crustal Growth of the Southern Yangtze Block:Geochemical and Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence of Neoproterozoic Diorite from the Ailaoshan Zone. Precambrian Research, 266:137-149. https://doi.org/10.1016/j.precamres.2015.05.008
[4] Chappell, B.W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
[5] Chen L., Zhen Y. F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction:Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Journal of Earth Science, 44(12):4144-4151(in Chinese with English abstract).
[6] Chen, X., Liu, J., Fan, W., et al., 2017. Neoproterozoic Granitoids along the Ailao Shan-Red River Belt:Zircon U-Pb Geochronology, Hf Isotope Analysis and Tectonic Implications. Precambrian Research, 299:244-263. https://doi.org/10.1016/j.precamres.2017.06.024
[7] Cheng, J. X., Luo, J. H., Wu, Y. D., et al., 2014. Geochronology, Geochemistry and Tectonic Significance of the Xiatianba Granite in Northeastern Yunnan. Acta Geologica Sinica, 88(3):337-346 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403004
[8] Condie, K.C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0
[9] Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh Earth Sciences, 87(1-2):205-215. https://doi.org/10.1017/s0263593300006611
[10] Göncüoglu, M.C., Sayit, K., Tekin, U.K., 2010. Oceanization of the Northern Neotethys:Geochemical Evidence from Ophiolitic Melange Basalts within the İzmir-Ankara Suture Belt, NW Turkey. Lithos, 116:175-187. https://doi.org/10.1016/j.lithos.2010.01.007
[11] Green, T.H., Pearson, N.J., 1986. Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P-T. Chemical Geology, 54(3):185-201. https://doi.org/10.1016/0009-2541(86)90136-1
[12] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical Characteristics of Collision Zone Magmatism. In: Coward, M.P., Reis, A.C., eds., Collision Tectonics. Geological Society of London Special Publication, London, 67-81.
[13] Iwamori, H., Richardson, C., Maruyama, S., 2007. Numerical Modeling of Thermal Structure, Circulation of H2O, and Magmatism-Metamorphism in Subduction Zones:Implications for Evolution of Arcs. Gondwana Research, 11:109-119. https://doi.org/10.1016/j.gr.2006.04.010
[14] Li, W.X., Li, X.H., Li, Z.X., 2005. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 136:51-66. https://doi.org/10.1016/j.precamres.2004.09.008
[15] Li, X., Li, Z., Zhou, H., et al., 2003a. SHRIMP U-Pb Zircon Age, Geochemistry and Nd Isotope of the Guandaoshan Pluton in SW Sichuan:Petrogenesis and Tectonic Significance. Science in China:Earth Sciences, 46:73-83.
[16] Li, X.H., Zhu, W.G., Zhong, H., et al., 2011. The Tongde Picritic Dikes in the Western Yangtze Block: Evidence for Ca.800 Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia. Institute of Geology And Geophysics, Chinese Academy of Science, Beijing, 509-522(in Chinese with English abstract).
[17] Li, Z.X., Li, X. H., Kinny, P. D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents:Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122:85-109. doi: 10.1016/S0301-9268(02)00208-5
[18] Lin, T. H., Chung, S. L., Chiu, H. Y., et al., 2012. Zircon U-Pb and Hf Isotope Constraints from the Ailao Shan-Red River Shear Zone on the Tectonic and Crustal Evolution of Southwestern China. Chemical Geology, 291:23-37. doi: 10.1016/j.chemgeo.2011.11.011
[19] Liu, Y., Zong, K., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247, 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
[20] Moores, E.M., 1991. Southwest U.S.East Antarctic (SWEAT) Connection:A Hypothesis. Geology, 19:425-428.https://doi.org/10.1130/0091-7613(1991)019 < 0425:SUSEAS > 2.3.CO; 2 doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2
[21] Nakamura, H., Iwamori, H., 2009. Contribution of Slab-Fluid in Arc Magmas Beneath the Japan Arcs. Gondwana Research, 16:431-445. https://doi.org/10.1016/j.gr.2009.05.004
[22] Pearce, J.A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19:120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
[23] Qi, X., Santosh, M., Zhao, Y., H et al., 2016. Mid-Neoproterozoic Ridge Subduction and Magmatic Evolution in the Northeastern Margin of the Indochina Block:Evidence from Geochronology and Geochemistry of Calc-Alkaline Plutons. Lithos, 248-251:138-152. https://doi.org/10.1016/j.lithos.2015.12.028
[24] Sun, S.S., Mcdonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[25] Wang, G., Xiu, Z. Q., Liu, Y., et al., 2015. Geochemical Elements Characteristics of Granite in Xujie of Mou Ding, Yunnan. Journal of Jilin University (Earth Science Edition), 45:1510-1511 (in Chinese with English abstract).
[26] Wang, J., Li, X.H., Duan, T.Z., et al., 2003. Zircon SHRIMP U-Pb Dating for the Cangshuipu Volcanic Rocks and Its Implications for the Lower Boundary Age of the Nanhua Strata in South China. Chinese Science Bulletin, 48:1663-1669(in Chinese). doi: 10.1360/03wd0168
[27] Wang, W., Liu, S., Feng, Y., et al., 2012. Chronology, Petrogenesis and Tectonic Setting of the Neoproterozoic Tongchang Dioritic Pluton at the Northwestern Margin of the Yangtze Block:Constraints from Geochemistry and Zircon U-Pb-Hf Isotopic Systematics. Gondwana Research, 22:699-716. https://doi.org/10.1016/j.gr. 2011.11.015 doi: 10.1016/j.gr.2011.11.015
[28] Wang, X.C., Li, X.H., Li, W.X., et al., 2007. Ca. 825Ma Komatiitic Basalts in South China:First Evidence for > 1 500℃ Mantle Melts by a Rodinian Mantle Plume. Geology, 35:1103-1106. https://doi.org/10.1130/G23878A.1
[29] Wang, Y., Zhou, Y., Cai, Y., et al., 2016. Geochronological and Geochemical Constraints on the Petrogenesis of the Ailaoshan Granitic and Migmatite Rocks and Its Implications on Neoproterozoic Subduction along the SW Yangtze Block. Precambrian Research, 283:106-124. https://doi.org/10.1016/j.precamres.2016.07.017
[30] Yang, Y.N., Wang, X.C., Li, Q.L. et al., 2016. Integrated In-Situ U-Pb Age and Hf-O Analyses of Zircon from Suixian Group in Northern Yangtze:New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block. Precambrian Research, 273:151-164. doi: 10.1016/j.precamres.2015.12.008
[31] Zhang, F. F., Wang, X. L., Wang, D., et al., 2017. Neoproterozoic Back Arc Basin on the Southeastern Margin of the Yangtze Block during Rodinia Assembly:New Evidence from Provenance of Detrital Zircons and Geochemistry of Mafic Rocks. Geological Society of America Bulletin, 129:904-919. doi: 10.1130/B31528.1
[32] Zhang, S. B., Wu, P., Zheng, Y. F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Journal of Earth Science, 44(12):4157-4166(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201912026
[33] Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny. Geology, 39, 299-302. https://doi.org/10.1130/G31701.1
[34] Zhao, J. H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China):Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152:27-47. https://doi.org/10.1016/j.precamres.2006.09.002
[35] Zhao, J. X., Chen, Y. L., Li, Z. H., 2006. Zircon U-Pb SHRIMP Dating for the Kangding Complex and Its Geological Significance. Geoscience, 20, 378-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200603003
[36] Zheng, Y. F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48:1639-1656. doi: 10.1360/03wd0342
[37] Zhou, M.F., Yan, D.P., Wang, C.L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth & Planetary Science Letters, 248:286-300. https://doi.org/10.1016/j.epsl.2006.05.032
[38] Zhou, M.F., Zhao, J.H., Xia, X., et al., 2007. Comment on "Revisiting the "YanbianTerrane":Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China". Precambrian Research, 151:14-30. https://doi.org/10.1016/j.precamres.2006.11.012
[39] 陈龙, 郑永飞, 2019.长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用.地球科学, 44(12):4144-4151. doi: 10.3799/dqkx.2019.243
[40] 程佳孝, 罗金海, 武昱东, 等, 2014.滇东北下田坝花岗岩年代学、地球化学及其构造意义.地质学报, 88(3):337-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403004
[41] 汪刚, 徐争启, 刘瑶, 等, 2015.云南牟定戌街地区花岗岩元素地球化学特征.吉林大学学报:地球科学版, 45:1510-1511.
[42] 张少兵, 吴鹏, 郑永飞, 2019.罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录.地球科学, 44(12):4157-4166. doi: 10.3799/dqkx.2019.252
[43] 赵俊香, 陈岳龙, 李志红, 2006.康定杂岩锆石SHRIMP U-Pb定年及其地质意义.现代地质, 20:378-385. doi: 10.3969/j.issn.1000-8527.2006.03.003