[1] Brauns, B., Bjerg, P.L., Song, X.F., et al., 2016.Field Scale Interaction and Nutrient Exchange between Surface Water and Shallow Groundwater in the Baiyang Lake Region, North China Plain.Journal of Environmental Sciences, 45:60-75.doi: 10.1016/j.jes.2015.11.021
[2] Carrey, R., Rodríguez-Escales, P., Otero, N., et al., 2014.Nitrate Attenuation Potential of Hypersaline Lake Sediments in Central Spain:Flow-through and Batch Experiments.Journal of Contaminant Hydrology, 164:323-337.doi: 10.1016/j.jconhyd.2014.06.017
[3] Chen, X.M., Ma, T., Cai, H.S., et al., 2013.Regional Control of Groundwater Nitrogen Contamination.Geological Science and Technology Information, 32(6):130-143, 149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201306021.htm
[4] Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). http://xueshu.baidu.com/s?wd=paperuri%3A%28c5dec679e43d7763acda4183e310b5a2%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.en.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-DQKX201511010.htm&ie=utf-8&sc_us=6400518108938269600
[5] Domagalski, J.L., Phillips, S.P., Bayless, E.R., et al., 2008.Influences of the Unsaturated, Saturated, and Riparian Zones on the Transport of Nitrate near the Merced River, California, USA.Hydrogeology Journal, 16(4):675-690.doi: 10.1007/s10040-007-0266-x
[6] Fazzolari, É., Nicolardot, B., Germon, J.C., 1998.Simultaneous Effects of Increasing Levels of Glucose and Oxygen Partial Pressures on Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Repacked Soil Cores.European Journal of Soil Biology, 34(1):47-52.doi:10.1016/ S1164 -5563(99)80006-5
[7] Ge, S.J., Peng, Y.Z., Wang, S.Y., et al., 2012.Nitrite Accumulation under Constant Temperature in Anoxic Denitrification Process:The Effects of Carbon Sources and COD/NO3-N.Bioresource Technology, 114:137-143.doi: 10.1016/j.biortech.2012.03.016
[8] Glass, C., Silverstein, J., 1998.Denitrification Kinetics of High Nitrate Concentration Water:pH Effect on Inhibition and Nitrite Accumulation.Water Research, 32(3):831-839.doi: 10.1016/s0043-1354(97)00260-1
[9] Guo, J.N., Lu, S.Y., Jin, X.C., et al., 2010.Regularity of Nitrogen Release under Low Oxygen Conditions from Various Sediments in a River Network.Acta Scientiae Circumstantiae, 30(3):614-620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX201003026.htm
[10] Guo, Y., Peng, D.C., Zhang, X.Y., et al., 2014.Growth Characteristics of Heterotrophic Bacteria with Nitrate as a Sole Nitrogen Source.Chinese Journal of Environmental Engineering, 8(3):882-886 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJJZ201403015.htm
[11] Hendricks, S.P., 1993.Microbial Ecology of the Hyporheic Zone:A Perspective Integrating Hydrology and Biology.Journal of the North American Benthological Society, 12(1):70-78.doi: 10.2307/1467687
[12] Hill, A.R., 1996.Nitrate Removal in Stream Riparian Zones.Journal of Environment Quality, 25(4):743-755.doi: 10.2134/jeq1996.00472425002500040014x
[13] Hill, A.R., Labadia, C.F., Sanmugadas, K., 1998.Hyporheic Zone Hydrology and Nitrogen Dynamics in Relation to the Streambed Topography of a N-Rich Stream.Biogeochemistry, 42(3):285-310.doi: 10.1023/A:1005932528748
[14] Hu, J.F., Wang, J.S., Teng, Y.G., 2004.Study Progress of Interaction between Stream and Groundwater.Hydrogeology & Engineering Geology, 31(1):108-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200401027.htm
[15] Hu, L.T., Wang, Z.J., Zhao, J.S., et al., 2007.Advances in the Interactions and Integrated Model between Surface Water and Groundwater.Journal of Hydraulic Engineering, 38(1):54-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200701007.htm
[16] Hu, Y.L., Ma, R., Sun, Z.Y., et al., 2016.Influencing Factors of Nitrate Concentrations in River Water and Groundwater Interaction Zone:A Case Study in the Middle Reaches of Heihe River at Linze, Northwestern China.Safety and Environmental Engineering, 23(1):40-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTAQ201601009.htm
[17] Huang, R.H., Wu, Y.G., Li, Y.F., et al., 2006.Simulating Experiment of NO3--N in Vertical System of Riverbank Filtration.Journal of Earth Sciences and Environment, 28(3):92-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200603020.htm
[18] Karan, S., Kidmose, J., Engesgaard, P., et al., 2014.Role of a Groundwater-Lake Interface in Controlling Seepage of Water and Nitrate.Journal of Hydrology, 517:791-802.doi: 10.1016/j.jhydrol.2014.06.011
[19] Li, J.R., Wang, L., Chen, T., et al., 2012.A Study of DO on Nitrogen Releasing in the Sediment of Rivers.China Rural Water and Hydropower, (5):32-34(in Chinese with English abstract).
[20] Li, Y., Zhang, W.W., Yuan, J.H., et al., 2016.Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones.Journal of Hohai University (Natural Sciences), 44(01):1-7 (in Chinese with English abstract). https://www.researchgate.net/publication/301630507_Research_advances_in_flow_patterns_and_nitrogen_transformation_in_hyporheic_zones
[21] Lowrance, R., Todd, R., Fail, J., et al., 1984.Riparian Forests as Nutrient Filters in Agricultural Watersheds.BioScience, 34(6):374-377.doi: 10.2307/1309729
[22] Ma, J., Song, X.R., Li, L., 2014.Effect of Carbon Source on Nitrite Accumulation and pH Value of Effluent during Denitrification Process.China Environmental Science, 34(10):2556-2561(in Chinese with English abstract). https://www.researchgate.net/publication/287587517_Effect_of_carbon_source_on_nitrite_accumulation_and_pH_value_of_effluent_during_denitrification_process
[23] Oh, J., Silverstein, J., 1999.Oxygen Inhibition of Activated Sludge Denitrification.Water Research, 33(8):1925-1937.doi: 10.1016/s0043-1354(98)00365-0
[24] Pretty, J.L., Hildrew, A.G., Trimmer, M., 2006.Nutrient Dynamics in Relation to Surface-Subsurface Hydrological Exchange in a Groundwater Fed Chalk Stream.Journal of Hydrology, 330(1-2):84-100.doi: 10.1016/j.jhydrol.2006.04.013
[25] Rütting, T., Boeckx, P., Müller, C., et al., 2011.Assessment of the Importance of Dissimilatory Nitrate Reduction to Ammonium for the Terrestrial Nitrogen Cycle.Biogeosciences, 8(7):1779-1791.doi: 10.5194/bg-8-1779-2011
[26] Schmidt, C.S., Richardson, D.J., Baggs, E.M., 2001.Constraining the Conditions Conducive to Dissimilatory Nitrate Reduction to Ammonium in Temperate Arable Soils.Soil Biology and Biochemistry, 43(7):1607-1611.doi: 10.1016/j.soilbio.2011.02.015
[27] Shabaga, J.A., Hill, A.R., 2010.Groundwater-Fed Surface Flow Path Hydrodynamics and Nitrate Removal in Three Riparian Zones in Southern Ontario, Canada.Journal of Hydrology, 388(1-2):52-64.doi: 10.1016/j.jhydrol.2010.04.028
[28] Shao, L., Xu, Z.X., Yin, H.L., et al., 2008.Rice Husk as Carbon Source and Biofilm Carrier for Water Denitrification.Journal of Biotechnology, 136:S662.doi: 10.1016/j.jbiotec.2008.07.1534
[29] Storey, R.G., Williams, D.D., Fulthorpe, R.R., 2004.Nitrogen Processing in the Hyporheic Zone of a Pastoral Stream.Biogeochemistry, 69(3):285-313.doi: 10.1023/b:biog.0000031049.95805.ec
[30] Teng, Y.G., Zuo, R., Wang, J.S., 2007.Hyporheic Zone of Groundwater and Surface Water and Its Ecological Function.Earth and Environment, 35(1):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200701000.htm
[31] Wang, B.G., Jin, M.G., Liang, X., 2015.Using EARTH Model to Estimate Groundwater Recharge at Five Representative Zones in the Hebei Plain, China.Journal of Earth Science, 26(3):425-434. doi: 10.1007/s12583-014-0487-6
[32] Wang, D.C., Zhang, R.Q., Shi, Y.H., 1995.Fundamentals of Hydrogeology.Geological Publishing House, Beijing, 67(in Chinese).
[33] Wang, F., Zhang, R., Liu, Z.J., et al, 2012.Study on the Effects of Carbon Sources on Nitrogen Migration in Different Mediums of Hyporheic Zones.Value Engineering, (24):18-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZGC201224010.htm
[34] Wu, Q.H., Zeng, X.Y., Huang, Y., 2005.Effects of DO on Nitrogen Releasing from Sediments of River.Environmental Pollution & Control., 27(1):21-24(in Chinese with English abstract).
[35] Xiong, Y., Li, Q.D., 1978.China Soils.Science Press, Beijing, 84 (in Chinese).
[36] Yang, S., Wu, S.J., Cai, Y.J., et al., 2016.The Synergetic and Competitive Mechanism and the Dominant Factors of Dissimilatory Nitrate Reduction Processes:A Review.Acta Ecologica Sinica, 36(5):1224-1232 (in Chinese with English abstract).
[37] Zheng, P., Xu, X.Y., Hu, B.L., 2004.New Theory and Technology of Biological Nitrogen Removal.Science Press, Beijing, 85 (in Chinese).
[38] 陈新明, 马腾, 蔡鹤生, 等, 2013.地下水氮污染的区域性调控策略.地质科技情报, 32(6):130-143, 149. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm
[39] 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194
[40] 郭建宁, 卢少勇, 金相灿, 等, 2010.低溶解氧状态下河网区不同类型沉积物的氮释放规律.环境科学学报, 30(3):614-620. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201003026.htm
[41] 郭瑜, 彭党聪, 张新艳, 等, 2014.硝态氮为唯一氮源时异养微生物增长特性.环境工程学报, (3):882-886. http://cdmd.cnki.com.cn/Article/CDMD-10703-1014011092.htm
[42] 胡俊锋, 王金生, 滕彦国, 2004.地下水与河水相互作用的研究进展.水文地质工程地质, 31(1):108-113. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200401027.htm
[43] 胡立堂, 王忠静, 赵建世, 等, 2007.地表水和地下水相互作用及集成模型研究.水利学报, 38(1):54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200701007.htm
[44] 胡雅璐, 马瑞, 孙自永, 等, 2016.河水和地下水相互作用带中硝酸盐浓度影响因素研究——以黑河中游临泽河段为例.安全与环境工程, 23(1):40-46. http://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201601009.htm
[45] 黄瑞华, 吴耀国, 李云峰, 等, 2006.硝态氮在河床垂向渗滤系统中环境行为的模拟实验.地球科学与环境学报, 28(3):92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200603020.htm
[46] 李金荣, 王莉, 陈停, 等, 2012.溶解氧影响河流底泥中氮释放的实验研究.中国农村水利水电, (5):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201205010.htm
[47] 李勇, 张维维, 袁佳慧, 等, 2016.潜流带水流特性及氮素运移转化研究进展.河海大学学报(自然科学版), 44(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm
[48] 马娟, 宋相蕊, 李璐, 2014.碳源对反硝化过程NO2-积累及出水pH值的影响.中国环境科学, 34(10):2556-2561.
[49] 滕彦国, 左锐, 王金生, 2007.地表水-地下水的交错带及其生态功能.地球与环境, 35(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200701000.htm
[50] 王大纯, 张人权, 史毅红, 1995.水文地质学基础.北京:地质出版社, 67.
[51] 王飞, 张蕊, 刘子剑, 等, 2012.碳源对氮素在不同潜流带介质中的迁移转化规律研究.价值工程, (24):18-20. doi: 10.3969/j.issn.1006-4311.2012.24.009
[52] 吴群河, 曾学云, 黄钥, 2005.溶解氧对河流底泥中三氮释放的影响.环境污染与防治, 27(1):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HJWR200501007.htm
[53] 熊毅, 李庆达, 1978.中国土壤.北京:科学出版社, 84.
[54] 杨杉, 吴胜军, 蔡延江, 等, 2016.硝态氮异化还原机制及其主导因素研究进展.生态学报, 36(5):1224-1232. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm
[55] 郑平, 徐向阳, 胡宝兰, 2004.新型生物脱氮理论与技术.北京:科学出版社, 85.