[1] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010
[2] Cawood, P. A., Wang, Y.J., Xu, Y.J., et al., 2013. Locating South China in Rodinia and Gondwana:A Fragment of Greater India Lithosphere? Geology, 41(8):903-906. https://doi.org/10.1130/g34395.1 doi: 10.1130/G34395.1
[3] Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
[4] Chen, K., Gao, S., Wu, Y. B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224:472-490. https://doi.org/10.1016/j.precamres.2012.10.017
[5] Chen, Q., Sun, M., Zhao, G. C., et al., 2019. Episodic Crustal Growth and Reworking of the Yudongzi Terrane, South China:Constraints from the Archean TTGs and Potassic Granites and Paleoproterozoic Amphibolites. Lithos, 326-327:1-18. https://doi.org/10.1016/j.lithos.2018.12.005
[6] Chen, Z.L., Chen, S.Y., 1987. The Tectonic Evolution of the West Margin of the Yangtze Block. Chongqing Publishing House, Chongqing (in Chinese).
[7] Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China:Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169:308-322. https://doi.org/10.1016/j.jseaes.2018.10.026
[8] Cui, X. Z., Wang, J., Ren, G. M., et al., 2020a. Paleoproterozoic Tectonic Evolution of the Yangtze Block:New Evidence from ca. 2.36 to 2.22 Ga Magmatism and 1.96 Ga Metamorphism in the Cuoke Complex, SW China. Precambrian Research, 337:105525. https://doi.org/10.1016/j.precamres.2019.105525
[9] Cui, X.Z., Wang, J., Wang, X.C., et al., 2020b. Early Crustal Evolution of the Yangtze Block: Constraints from Zircon U-Pb-Hf Isotope Systematics of 3.1-1.9 Ga Granitoids in the Cuoke Complex, SW China. Precambrian Research, In Press.
[10] Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen beneath Central South China:Evidence from Seismic-Reflection Profiling. Precambrian Research, 264:1-10. https://doi.org/10.1016/j.precamres.2015.04.003
[11] Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13-14):2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2 doi: 10.1016/S0016-7037(99)00153-2
[12] Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=324512196fea98c950ec2cc2b7c4f3ae
[13] Geng, Y.S., Kuang, H.W., Liu, Y.Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10):2151-2174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001
[14] Geng, Y.S., Yang, C.H., Wang, X.S., et al., 2007. Age of Crystalline Basement in Western Margin of Yangtze Terrane. Geological Journal of China Universities, 13(3):429-441 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200703012
[15] Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-Western China:SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5-6):289-302. https://doi.org/10.1016/j.jseaes.2008.01.001
[16] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9
[17] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8
[18] Guo, J. L., Gao, S., Wu, Y. B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth. Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018
[19] Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China:Implications for Late Archean Tectonics. Precambrian Research, 270:246-266. https://doi.org/10.1016/j.precamres.2015.09.007
[20] Guo, J. W., Zheng, J. P., Ping, X. Q., et al., 2018. Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust beneath the Yangtze Craton. Precambrian Research, 314:288-305. https://doi.org/10.1016/j.precamres.2018.06.012
[21] Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
[22] Hawkesworth, C. J., Dhuime, B., Pietranik, A.B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2):229-248. https://doi.org/10.1144/0016-76492009-072
[23] Hoffman, P. F., 2014. The Origin of Laurentia:Rae Craton as the Backstop for Proto-Laurentian Amalgamation by Slab Suction. Geoscience Canada, 41(3):313-320. https://doi.org/10.12789/geocanj.2014.41.049
[24] Hu, J., Liu, X. C., Chen, L. Y., et al., 2013. A ~2.5 Ga Magmatic Event at the Northern Margin of the Yangtze Craton:Evidence from U-Pb Dating and Hf Isotope Analysis of Zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(34):3579-3588 (in Chinese). doi: 10.1360/csb2013-58-34-3579
[25] Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003
[26] Li, F.H., Tan, J.M., Shen, Y.L., et al., 1988. The Presinian in the Kangdian Area. Chongqing Publishing House, Chongqing (in Chinese).
[27] Li, H. K., Zhang, C. L., Yao, C. Y., et al., 2013. U-Pb Zircon Age and Hf Isotope Compositions of Mesoproterozoic Sedimentary Strata on the Western Margin of the Yangtze Massif. Science China Earth Sciences, 56(4):628-639. https://doi.org/10.1007/s11430-013-4590-9
[28] Li, L. M., Lin, S. F., Davis, D. W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane:Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255:30-47. https://doi.org/10.1016/j.precamres.2014.09.009
[29] Li, Y. H., Zheng, J. P., Xiong, Q., et al., 2016. Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China. Precambrian Research, 276:158-177. https://doi.org/10.1016/j.precamres.2016.01.028
[30] Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis. Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
[31] Liu, B., Zhai, M. G., Zhao, L., et al., 2019. Zircon U-Pb-Hf Isotope Studies of the Early Precambrian Metasedimentary Rocks in the Kongling Terrane of the Yangtze Block, South China. Precambrian Research, 320:334-349. https://doi.org/10.1016/j.precamres.2018.08.017
[32] Liu, G. C., Qian, X., Li, J., et al., 2020. Geochronological and Geochemical Constraints on the Petrogenesis of Early Paleoproterozoic (2.40-2.32 Ga) Nb-Enriched Mafic Rocks in Southwestern Yangtze Block and Its Tectonic Implications. Journal of Earth Science, 31(1):35-52. https://doi.org/10.1007/s12583-020-1260-7 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e202001004
[33] Liu, H.Y., Xia, B., Zhang, Y.Q., 2004. Zircon SHRIMP Dating of Sodium Alkaline Rocks from Maomaogou Area of Huili County in Panxi, SW China and Its Geological Implications. Chinese Science Bulletin, 49(14):1431-1438 (in Chinese with English abstract). doi: 10.1360/04wb0039
[34] Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
[35] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
[36] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley.
[37] Lu, G.M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019
[38] Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy & Geochemistry, 53(1):327-341. https://doi.org/10.2113/0530327 http://www.researchgate.net/publication/250129975_Lu-Hf_and_Sm-Nd_isotope_systems_in_zircon
[39] Kou, C.H., Zhang, Z. C., Santosh, M., et al., 2017. Oldest Volcanic-Hosted Submarine Iron Ores in South China:Evidence from Zircon U-Pb Geochronology and Geochemistry of the Paleoproterozoic Dahongshan Iron Deposit. Gondwana Research, 49:182-204. https://doi.org/10.1016/j.gr.2017.05.016
[40] Nam, T. N., Toriumi, M., Sano, Y., et al., 2003.2.9, 2.36, and 1.96 Ga Zircons in Orthogneiss South of the Red River Shear Zone in Viet Nam:Evidence from SHRIMP U-Pb Dating and Tectonothermal Implications. Journal of Asian Earth Sciences, 21(7):743-753. https://doi.org/10.1016/s1367-9120(02)00089-5 doi: 10.1016/S1367-9120(02)00089-5
[41] Qiu, X.F., Yang, H.M., Zhao, X.M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton:Petrogenesis and Tectonic Implications. Earth Science, 44(2):415-426 (in Chinese with English abstract).
[42] Wang, K., Li, Z. X., Dong, S. W., et al., 2018a. Early Crustal Evolution of the Yangtze Craton, South China:New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314:325-352. https://doi.org/10.1016/j.precamres.2018.05.016
[43] Wang, Z. J., Deng, Q., Duan, T. Z., et al., 2018b.2.85 Ga and 2.73 Ga A-Type Granites and 2.75 Ga Trondhjemite from the Zhongxiang Terrain:Implications for Early Crustal Evolution of the Yangtze Craton, South China. Gondwana Research, 61:1-19. https://doi.org/10.1016/j.gr.2018.05.004
[44] Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433:269-279. https://doi.org/10.1016/j.epsl.2015.11.005
[45] Wang, W., Zhou, M. F, 2014. Provenance and Tectonic Setting of the Paleo- to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China:Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610:110-127. https://doi.org/10.1016/j.tecto.2013.11.009
[46] Wang, Z. J., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic I-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China. Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014
[47] Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200-203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015
[48] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 http://qikan.cqvip.com/Qikan/Article/Detail?id=10501971
[49] Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4):308-322. https://doi.org/10.1016/j.lithos.2007.07.008
[50] Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGs. Precambrian Research, 254:73-86. https://doi.org/10.1016/j.precamres.2014.08.004
[51] Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012
[52] Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikouan Period (1 000-820 Ma) in China. Earth Science, 43(11):3837-3852 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811004
[53] Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006a. Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1):56-71. https://doi.org/10.1016/j.epsl.2006.09.027 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58bab4dc55aeebd236a454066a8c8f0e
[54] Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006b. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3):265-288. https://doi.org/10.1016/j.precamres.2006.08.009 http://www.sciencedirect.com/science/article/pii/S0301926806002026
[55] Zhang, Z.Q., Zhang, G.W., Tang, S.H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75(2):198-204 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200102008
[56] Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017
[57] Zhao, T.Y., Cawood, P. A., Wang, K., et al., 2019a. Neoarchean and Paleoproterozoic K-Rich Granites in the Phan Si Pan Complex, North Vietnam:Constraints on the Early Crustal Evolution of the Yangtze Block. Precambrian Research, 332:105395. https://doi.org/10.1016/j.precamres.2019.105395
[58] Zhao, T.Y., Cawood, P. A., Zi, J. W., et al., 2019b. Early Paleoproterozoic Magmatism in the Yangtze Block:Evidence from Zircon U-Pb Ages, Sr-Nd-Hf Isotopes and Geochemistry of ca. 2.3 Ga and 2.1 Ga Granitic Rocks in the Phan Si Pan Complex, North Vietnam. Precambrian Research, 324:253-268. https://doi.org/10.1016/j.precamres.2019.01.012
[59] Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1-2):57-69. https://doi.org/10.1016/j.precamres.2010.06.021
[60] Zhou, G. Y., Wu, Y. B., Gao, S., et al., 2015. The 2.65 Ga A-Type Granite in the Northeastern Yangtze Craton:Petrogenesis and Geological Implications. Precambrian Research, 258:247-259. https://doi.org/10.1016/j.precamres.2015.01.003
[61] Zhou, G. Y., Wu, Y. B., Li, L., et al., 2018. Identification of ca. 2.65 Ga TTGs in the Yudongzi Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 314:240-263. https://doi.org/10.1016/j.precamres.2018.06.011
[62] Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2):51-67. https://doi.org/10.1016/s0012-821x(01)00595-7 doi: 10.1016/S0012-821X(01)00595-7
[63] 陈智梁, 陈世瑜, 1987.扬子地块西缘地质构造演化.重庆:重庆出版社.
[64] 耿元生, 旷红伟, 柳永清, 等, 2017.扬子地块西、北缘中元古代地层的划分与对比.地质学报, 91(10):2151-2174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001
[65] 耿元生, 杨崇辉, 王新社, 等, 2007.扬子地台西缘结晶基底的时代.高校地质学报, 13(3):429-441. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200703012
[66] 胡娟, 刘晓春, 陈龙耀, 等, 2013.扬子克拉通北缘约2.5 Ga岩浆事件:来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据.科学通报, 58(34):3579-3588. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201334015.htm
[67] 李复汉, 覃嘉铭, 申玉连, 等, 1988.康滇地区的前震旦系.重庆:重庆出版社.
[68] 刘红英, 夏斌, 张玉泉, 2004.攀西会理毛毛沟钠质碱性岩锆石SHRIMP定年及其地质意义.科学通报, 49(14):1431-1438. http://d.wanfangdata.com.cn/Periodical/kxtb200414016
[69] 邱啸飞, 杨红梅, 赵小明, 等, 2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义.地球科学, 44(2):415-426. doi: 10.3799/dqkx.2018.198
[70] 张克信, 徐亚东, 何卫红, 等, 2018.中国新元古代青白口纪早期(1 000~820 Ma)洋陆分布.地球科学, 43(11):3837-3852. doi: 10.3799/dqkx.2018.339
[71] 张宗清, 张国伟, 唐索寒, 等, 2001.鱼洞子群变质岩年龄及秦岭造山带太古宙基底.地质学报, 75(2):198-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200102008