[1] Agangi, A., Hofmann, A., Wohlgemuth-Ueberwasser, C. C., 2013. Pyrite Zoning as a Record of Mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa. Economic Geology, 108(6): 1243-1272. https://doi.org/10.2113/econgeo.108.6.1243
[2] Belissont, R., Boiron, M.C., Luais, B., et al., 2014.LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac-Saint-Salvy Deposit (France):Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochimica et Cosmochimica Acta, 126:518-540. https://doi.org/10.1016/j.gca.2013.10.052
[3] Bralia, A., Sabatini, G., Troja, F., 1979.A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems.Mineralium Deposita, 14(3):353-374. http://www.sciencedirect.com/science/article/pii/S1053811905001527
[4] Brill, B., 1989.Trace-Element Contents and Partitioning of Elements in Ore Minerals from the CSA Cu-Pb-Zn Deposit, Australia.Canadian Mineralogist, 27:263-274.
[5] Chen, L.M., Song, X.Y., Danyushevsky, L.V., et al., 2015.A Laser Ablation ICP-MS Study of Platinum-Group and Chalcophile Elements in Base Metal Sulfide Minerals of the Jinchuan Ni-Cu Sulfide Deposit, NW China.Ore Geology Reviews, 65:955-967. https://doi.org/10.1016/j.oregeorev.2014.07.011
[6] Cook, N.J., Chryssoulis, S.L., 1990.Concentrations of Invisible Gold in the Common Sulfides.The Canadian Mineralogist, 28(1):1-16.
[7] Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V., et al., 2011. Minor and Trace Elements in Bornite and Associated Cu-(Fe)-Sulfides:A LA-ICP-MS Study Bornite Mineral Chemistry. Geochimica et Cosmochimica Acta, 75 (21): 6473-6496. https://doi.org/10.1016/j.gca.2011.08.021
[8] Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICP-MS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
[9] Franchini, M., McFarlane, C., Maydagán, L., et al., 2015. Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina:Textural Features and Metal Zoning at the Porphyry to Epithermal Transition.Ore Geology Reviews, 66: 366-387. https://doi.org/10.1016/j.oregeorev.2014.10.022
[10] Gong, W., Jiang, X. D., 2017. Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005
[11] Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen: A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3): 2-24. https://doi.org/10.1016/j.oregeorev.2009.05.001
[12] Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen:New Advances.Acta Geoscientica Sinica, 29(3): 275-292(in Chinese with English abstract).
[13] Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogenic Gold Deposit in Tibet, China. Ore Geology Reviews, 36(1-3): 160-173. https://doi.org/10.1016/j.oregeorev.2009.03.006
[14] Large, R.R., Bull, S.W., Maslennikov, V.V., 2011.A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 106(3): 331-358. https://doi.org/10.2113/econgeo.106.3.331
[15] Leng, C. B., 2017. Genesis of Hongshan Cu Polymetallic Large Deposit in the Zhongdian Area, NW Yunnan:Constraints from LA-ICP-MS Trace Elements of Pyrite and Pyrrhotite. Earth Science Frontiers, 24(6): 162-175(in Chinese with English abstract).
[16] Lin, Y., Cook, N.J., Ciobanu, C.L., et al., 2011.Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICP-MS Study. Ore Geology Reviews, 39(4): 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001
[17] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
[18] Mikucki, E.J., Ridley, J.R., 1993.The Hydrothermal Fluid of Archæan Lode-Gold Deposits at Different Metamorphic Grades: Compositional Constraints from Ore and Wallrock Alteration Assemblages. Mineralium Deposita, 28 (6):469-481. https://doi.org/10.1007/bf02431603
[19] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract).
[20] Pals, D. W., Spry, P. G., Chryssoulis, S., 2003. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji:Implications for Gold Distribution and Deposition.Economic Geology, 98(3): 479-493. https://doi.org/10.2113/gsecongeo.98.3.479
[21] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
[22] Pei, Y. R., Sun, Q. Z., Zheng, Y. C., et al., 2016. Genesis of the Bangbu Orogenic Gold Deposit, Tibet: Evidence from Fluid Inclusion, Stable Isotopes, and Ar-Ar Geochronology. Acta Geologica Sinica (English Edition), 90(2): 722-737. https://doi.org/10.1111/1755-6724.12700
[23] Phillips, G.N., Evans, K.A., 2004.Role of CO2 in the Formation of Gold Deposits.Nature, 429:860-863. https://doi.org/10.1038/nature02644
[24] Phillips, G.N., Powell, R., 2010.Formation of Gold Deposits: A Metamorphic Devolatilization Model.Journal of Metamorphic Geology, 28(6): 689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
[25] Reich, M., Kesler, S.E., Utsunomiya, S., et al., 2005.Solubility of Gold in Arsenian Pyrite.Geochimica et Cosmochim ica Acta, 69(11):2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
[26] Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models.Reviews in Economic Geology, 13:141-162.
[27] Sun, Q. Z., Zheng, Y. C., Hou, Z. Q., et al., 2013. Genesis of Bangbu Orogenic Gold Deposit in Tibet: Constraints from Fluid Inclusions and Isotopic Composition. Mineral Deposits, 32(2): 353-366(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201302011.htm
[28] Sun, Q.Z., Zheng, Y.C., Li, W., et al., 2012.Study on the Occurrence State of Au in the Bangbu Orogenic Gold Deposit, Southern Tibet. Journal of East China Institute of Technology(Natural Science), 35(2): 136-142(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201202006
[29] Sun, X. M., Shi, G. Y., Xiong, D. X., et al., 2007. Platinum Group Elements Geochemistry and Re-Os Isotopic Compositions of Daping Gold Deposit in Ailaoshan Gold Belt, Yunnan Province, China and Their Metallogenic Implications. Acta Geologica Sinica, 81(3): 394-404(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200703011
[30] Sun, X. M., Wei, H. X., Zhai, W., et al., 2016. Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China. Ore Geology Reviews, 74: 196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021
[31] Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China. Ore Geology Reviews, 36(1-3): 235-249. https://doi.org/10.1016/j.oregeorev.2009.05.002
[32] Wei, H.X., Sun, X.M., Zhai, W., et al., 2010.He-Ar-S Isotopic Compositions of Ore-Forming Fluids in the Bangbu Large-Scale Gold Deposit in Southern Tibet, China.Acta Petrologica Sinica, 26(6): 1685-1691(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006005
[33] Ye, T., Li, N., 2015.The Application of Pyrite LA-ICP-MS Trace Element Analysis to Gold Deposits. Chinese Journal of Geology, 50(4):1178-1199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201504010
[34] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
[35] Zhang, X., Deng, X.G., Yang, Z.S., et al., 2017.Genesis of the Gold Deposit in the Indus-Yarlung Tsangpo Suture Zone, Southern Tibet: Evidence from Geological and Geochemical Data. Acta Geologica Sinica(English Edition), 91(3): 947-970. https://doi.org/10.1111/1755-6724.13318
[36] Zhao, X.Y., Yang, Z.S., Hou, Z.Q., et al., 2019.The Structural Deformation Characteristics and the Control of Gold Mineralization of the Upper Triassic Flysch (Langjiexue Group) in Tibetan Plateau. Geological Journal, 54(3): 1331-1342. https://doi.org/10.1002/gj.3230
[37] Zhao, Z.H., Zhao, H.L., Yang, W.H., et al., 1987.Trace Element Geochemical Characteristics of Cambrian-Ordovician Boundary Strata in the Duibian and Wushan Profiles.Geochimica, 16(2):99-112(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000258178
[38] Zhou, F., Sun, X. M., Zhai, W., et al., 2011. Geochemistry of Ore-Forming Fluid and Metallogenic Mechanism for Zhemulang Gold Deposit in Southern Tibet, China. Acta Petrologica Sinica, 27(9): 2775-2785(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201109026.htm
[39] Zhou, T.F., Zhang, L.J., Yuan, F., et al., 2010.LA-ICP-MS in Situ Trace Element Analysis of Pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis. Earth Science Frontiers, 17 (2):306-319(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201002026
[40] Zhu, X.Q., Guo, X.W., Zhang, X.H., et al., 2018.Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 43 (6):1903-1920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806009
[41] 宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2): 223-239. http://earth-science.net/WebPage/Article.aspx?id=3430
[42] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003
[43] 冷成彪, 2017.滇西北红山铜多金属矿床的成因类型:黄铁矿和磁黄铁矿LA-ICP-MS微量元素制约.地学前缘, 24 (6):162-175. http://d.old.wanfangdata.com.cn/Periodical/dxqy201706014
[44] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
[45] 孙清钟, 郑远川, 侯增谦, 等, 2013.西藏邦布石英脉型金矿床的成因:流体包裹体及氢-氧同位素证据.矿床地质, 32 (2):353-366. doi: 10.3969/j.issn.0258-7106.2013.02.010
[46] 孙清钟, 郑远川, 李为, 等, 2012.西藏邦布造山型金矿金的赋存状态研究.东华理工大学学报(自然科学版), 35(2): 136-142. doi: 10.3969/j.issn.1674-3504.2012.02.006
[47] 孙晓明, 石贵勇, 熊德信, 等, 2007.云南哀牢山金矿带大坪金矿铂族元素(PGE)和Re-Os同位素地球化学及其矿床成因意义.地质学报, 81(3):394-404. doi: 10.3321/j.issn:0001-5717.2007.03.011
[48] 韦慧晓, 孙晓明, 翟伟, 等, 2010.藏南邦布大型金矿成矿流体He-Ar-S同位素组成及其成矿意义.岩石学报, 26(6): 1685-1691. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006005
[49] 叶甜, 李诺, 2015.黄铁矿原位LA-ICP-MS微量元素分析在金矿床中应用.地质科学, 50(4):1178-1199. doi: 10.3969/j.issn.0563-5020.2015.04.010
[50] 赵振华, 赵惠兰, 杨蔚华, 等, 1987.碓边和武山寒武-奥陶系界线剖面微量元素地球化学特征.地球化学, 16(2): 99-112. doi: 10.3321/j.issn:0379-1726.1987.02.001
[51] 周峰, 孙晓明, 翟伟, 等, 2011.藏南折木朗造山型金矿成矿流体地球化学和成矿机制.岩石学报, 27(9):2775-2785. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109025
[52] 周涛发, 张乐骏, 袁峰, 等, 2010.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘, 17(2):306-319. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002026
[53] 朱晓青, 郭兴伟, 张训华, 等, 2018.青藏高原中-南部新生代构造演化的热年代学制约.地球科学, 43(6): 1903-1920. http://earth-science.net/WebPage/Article.aspx?id=3854