[1] Anders, E., Ebihara, M., 1982. Solar⁃System Abundances of the Elements. Geochimica et Cosmochimica Acta, 46(11): 2363-2380. https://doi.org/10.1016/0016⁃7037(82)90208⁃3
[2] Anderson, D. L., 1983. Chemical Composition of the Mantle. Journal of Geophysical Research, 88(S01): B41. https://doi.org/10.1029/jb088is01p00b41
[3] Anders, E., Grevesse, N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53(1): 197-214. https://doi.org/10.1016/0016⁃7037(89)90286⁃x
[4] Brownlow, A. H., 1979. Geochemistry. Prentice⁃Hall, New Jersey, 1-580.
[5] Che, Y. X., Shen, P. W., 1999. Chemical Elemental Periodic System. Nankai University Press, Tianjin, 1-322 (in Chinese).
[6] Chen, J., Wang, H. N., 2004. Geochemistry. Science Press, Beijing, 1-418 (in Chinese).
[7] Gao, S., Luo, T. C., Zhang, B. R., et al., 1998a. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/s0016⁃7037(98)00121⁃5
[8] Gao, S., Zhang, B. R., Jin, Z. M., et al., 1998b. How Mafic is the Lower Continental Crust? Earth and Planetary Science Letters, 161(1/2/3/4): 101-117. https://doi.org/10.1016/s0012⁃821x(98)00140⁃x
[9] Gaschnig, R. M., Rudnick, R. L., McDonough, W. F., et al., 2016. Compositional Evolution of the Upper Continental Crust through Time, as Constrained by Ancient Glacial Diamictites. Geochimica et Cosmochimica Acta, 186: 316-343. https://doi.org/10.1016/j.gca.2016.03.020
[10] Harkins, W. D., 1917. The Evolution of Elements and the Stability of Complex Atoms. Journal of the American Chemical Society, 39(5): 856-879. https://doi.org/10.1021/ja02250a002
[11] Henderson, P., 1982. Inorganic Geochemistry. Pergamon Press, New York, 1-353
[12] Hu, Z. C., Gao, S., 2008. Upper Crustal Abundances of Trace Elements: A Revision and Update. Chemical Geology, 253(3/4): 205-221. https://doi.org/10.1016/j.chemgeo.2008.05.010
[13] Institute of Geochemistry, Chinese Academy of Science, 2000. Advanced Geochemistry. Science Press, Beijing, 1-491 (in Chinese).
[14] Krauskopf, K. B., Bird, D. K., 1995. Introduction to Geochemistry. McGraw⁃Hill, New York, 1-647
[15] Li, T., 1976. Chemical Element Abundances in the Earth and It's Major Shells. Geochimica, (3): 167-174 (in Chinese with English abstract). http://www.researchgate.net/publication/285181510_Chemical_element_abundances_in_the_earth_and_it's_major_shells
[16] Li, T., Ni, S., 1990. The Abundance of Chemical Elements in Earth and Its Crust. Geological Publishing House, Beijing, 1-136 (in Chinese).
[17] Li, G., 2001. Periodic Table of Element (New Century Edition). Qinghai People Press, Xining, 1 (in Chinese).
[18] Morgan, J. W., Anders, E., 1980. Chemical Composition of Earth, Venus, and Mercury. Proceedings of the National Academy of Sciences, 77(12): 6973-6977. https://doi.org/10.1073/pnas.77.12.6973
[19] Oyang, Z. Y., 1988. Astrochemistry. Science Press, Beijing, 1-361 (in Chinese).
[20] Ojha, L., Wilhelm, M. B., Murchie, S. L., et al., 2015. Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars. Nature Geoscience, 8(11): 829-832. https://doi.org/10.1038/ngeo2546
[21] Palme, H., Suess, H. E., Zeh, H. D., 1981. Landolt⁃Börnstein : Group Ⅵ Astronomy and Astrophysics, Vol. 2a Abundances of the Elements in the Solar System. Springer, Berlin Heidelberg, 257-272.
[22] Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle. McGraw⁃Hill, New York, 1-618.
[23] Ross, J. E., Aller, L. H., 1976. The Chemical Composition of the Sun. Science, 191(4233): 1223-1229. https://doi.org/10.1126/science.191.4233.1223
[24] Rudnick, R. L., Gao, S., 2003. 3.01⁃Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. http://www.researchgate.net/publication/320752604_301_-_Composition_of_the_Continental_Crust
[25] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
[26] Sautter, V., Toplis, M. J., Wiens, R. C., et al., 2015. In Situ Evidence for Continental Crust on Early Mars. Nature Geoscience, 8(8): 605-609. https://doi.org/10.1038/ngeo2474
[27] Tu, G. Z., 1984. Geochemistry. Shanghai Science and Technology Press, Shanghai, 1-447 (in Chinese).
[28] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxfrod, 1-312.
[29] Wedepohl, K., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016⁃7037(95)00038⁃2
[30] Yang, J. Y., 2010. Acid Removal Rate of Trace Elements and Its Organic⁃Inorganic Affinity in Coal: in a Case of the Late Paleozoic Coal Seam 5 from Weibei. Journal of Fuel Chemistry and Technology, 38(5): 522-527 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX201005003.htm
[31] Yang, J. Y., 2011. The Periodic Law of Trace Elements in Coal: A Case Study of the 5# Coal from the Weibei Coalfield. Science China Earth Sciences, 54(10): 1542-1550. https://doi.org/10.1007/s11430⁃011⁃4256⁃4
[32] Yang, J. Y., 2013. Re⁃Exploration on the Law of Trace Elements Migration During the Pyrolysis of Coal. Journal of China Coal Society, 38(12): 2227-2233 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000012/art00022
[33] Yang, J. Y., Zhang, W. G., Zhao, Z., Wang, G. H., 2014. Preliminary Study About Combination Between Trace Elements and Organic Matter in Coal: an Example of 8# Coal Seam from Taiyuan Xishan. Journal of Fuel Chemistry and Technology, 42(6): 662-670 (in Chinese with English abstract). http://www.researchgate.net/publication/287574725_Preliminary_study_about_combination_between_trace_elements_and_organic_matter_in_coal_-_An_example_of_8_coal_seam_from_Taiyuan_Xishan
[34] Yang, J. Y., Wang, G. H., Zhang, W. G., 2016. The Trace Elements are Bounded by Organic Functional Groups in Coal: A Studying Result Based on FTIR Analysis. Acta Geologica SinicaEnglish Edition, 90(1): 154-165. https://doi.org/10.1111/1755⁃6724.12648
[35] Yang, J. Y., Zhang, W. G., Qu, L. Y., 2018. Preliminary Study on Acid Removal Rate of Element in the Different Rank of Coal. Journal of China Coal Society, 43(2): 519-528 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201802027.htm
[36] Yang, J. Y., Zhang, W. G, Zou, J. H., 2020. Distribution and Migration Regulations of Associated Elements in Coal. Chinese Journal of Rare Metals, 44(4): 440-448 (in Chinese with English abstract).
[37] Zhang, D. H., Zhao, L. S., 2013. Geochemistry. Geological Publishing House, Beijing, 1-534 (in Chinese).
[38] 车云霞, 申泮文, 1999. 化学元素周期系. 天津: 南开大学出版社, 1-322.
[39] 陈骏, 王鹤年, 2004. 地球化学. 北京: 科学出版社, 1-418.
[40] 黎彤, 1976. 化学元素的地球丰度. 地球化学, (3): 167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004
[41] 黎彤, 倪守斌, 1990. 地球和地壳的化学元素丰度. 北京: 地质出版社, 1-136.
[42] 李贵全, 2001. 新世纪版元素周期表. 西宁: 青海人民出版社, 1
[43] 欧阳自远, 1988. 天体化学. 北京: 科学出版社, 1-361
[44] 涂光帜, 1984. 地球化学. 上海: 上海科学技术出版社, 1-447
[45] 杨建业, 2010. 煤中微量元素的酸脱除率与元素周期律——以渭北晚古生代5号煤层为例. 燃料化学学报, 38(5): 522-527. doi: 10.3969/j.issn.0253-2409.2010.05.003
[46] 杨建业, 2013. 煤热解中微量元素迁移规律的再探索. 煤炭学报, 38(12): 2227-2233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312026.htm
[47] 杨建业, 张卫国, 赵洲, 等, 2014. 微量元素与煤有机质的结合关系初探——以太原西山矿区8号煤层为例. 燃料化学学报, 42(6): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX201406004.htm
[48] 杨建业, 张卫国, 屈联莹, 2018. 不同煤级的微量元素酸脱除率初探. 煤炭学报, 43(2): 519-528. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802027.htm
[49] 杨建业, 张卫国, 邹建华, 2020. 煤中伴生稀有元素及其分布、迁移的几个规律. 稀有金属, 44(4): 440-448. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202004013.htm
[50] 中国科学院地球化学研究所, 2000. 高等地球化学. 北京: 科学出版社, 1-491
[51] 张德会, 赵伦山, 2013. 地球化学. 北京: 地质出版社, 1-534.