Construction of a Deep Prospecting Model for Baiyinchang Xiaotieshan VHMS-Type Deposit Based on Wide-Field Coded-Source Electromagnetic Sounding Method
-
摘要:
深边部就矿找矿是白银厂VHMS型铜多金属矿田找矿突破的关键,但传统地球物理方法受浅表电磁干扰与深部低分辨率限制.为克服上述难题,本研究创新联合广域电磁法(WFEM)与编码源电磁测深法(CSES)开展小铁山矿区深部勘查.结果表明:铁锰硅质岩和铅锌矿石电阻率低于100 Ω·m,赋矿石英角斑凝灰岩电阻率平均值约191 Ω·m,主要控矿地质体次石英角斑岩电阻率较高(平均值约1 976 Ω·m),电性差异显著.次火山岩侵入体呈树枝状高阻异常(> 1 500 Ω·m),其两侧过渡带低阻异常(ρ < 400 Ω·m)、矿体延深部位及顶部低阻异常为有利找矿地段.2种方法在火山岩复杂地层区联合应用可发挥协同效应,广域电磁法可有效揭示火山岩基底及深部高阻岩体电性结构,编码源电磁测深法可实现对中浅层低阻矿化带的精细刻画.结合成矿动力学机制,提出“火山机构‒热液对流‒构造活化”复合成因模型,并构建了地质‒地球物理“岩浆‒构造‒蚀变”协同找矿模型,据此圈定4处找矿靶区.为钻探工程验证提供了依据,对白银厂矿田深边部勘查及区域示范具有重要的指导意义.
Abstract:Prospecting for ore bodies in the deep and peripheral zones remains pivotal for breakthroughs in the volcanic-hosted massive sulfide (VHMS)-type Cu-polymetallic ore field of the Baiyinchang district. However, conventional geophysical methods have limitations in application due to shallow electromagnetic interference and insufficient resolution at depth. To address these challenges, this study innovatively integrates the Wide-Field Electromagnetic Method (WFEM) and Coded Source Electromagnetic Sounding (CSES) for deep exploration in the Xiaotieshan mining area. The results demonstrate that the resistivity of ferromanganese siliceous rocks and lead-zinc ores is below 100 Ω·m, while the ore-hosting Quartz-keratophyre tuffs exhibit a low resistivity (mean value: 191 Ω·m). In contrast, the subquartz-keratophyre, as the main ore-controlling geological unit, shows significantly higher resistivity (mean value: 1 976 Ω·m), revealing quantifiable electrical contrasts. Subvolcanic intrusions are characterized by dendritic high-resistivity anomalies (> 1 500 Ω·m), with favorable prospecting targets identified in transitional zones (< 400 Ω·m), deep extensions of known ore bodies, and low-resistivity anomalies atop high-resistivity zones. The combined application of two geophysical methods in complex stratigraphic regions of volcanic rocks demonstrates synergistic effects: the wide-field electromagnetic method effectively reveals the electrical structure of volcanic basement and deep-seated high-resistivity rock masses, while the encoded-source electromagnetic sounding method enables high-precision delineation of middle-shallow low-resistivity mineralized zones. Based on integrating geophysical anomalies and metallogenic dynamics, a composite genetic model-termed "volcanic structure-hydrothermal convection-tectonic activation"-is proposed to elucidate the multi-stage mineralization processes. A geological-geophysical "magma-tectonic-alteration synergistic prospecting model" is established, delineating four prospective targets. These findings provide critical constraints for drill hole verification and offer scientific guidance for deep-peripheral exploration in the Baiyinchang ore field and regional analog studies.
-
图 1 甘肃白银厂铜多金属矿田构造地质简图
a.据邬介人(1992)修改;b.据郭小刚等(2025)修改
Fig. 1. Tectonic and geological sketch of the Baiyinchang Cu-polymetallic field, Gansu
图 2 甘肃白银厂铜多金属矿田小铁山矿床地质简图(据廖时理,2014修改)
Fig. 2. Geological sketch map of Xiaotieshan deposit, Baiyinchang Cu-polymetallic field, Gansu (after Liao, 2014)
图 3 小铁山矿床联合剖面(廖时理,2014)
Fig. 3. Joint section of the Xiaotieshan deposit (from Liao, 2014)
图 4 剩余重磁异常场等值线
郭小刚等(2022). a. 剩余布格重力异常;b. 剩余磁异常
Fig. 4. Contours of residual gravity and magnetic anomaly field
图 6 白银厂铜多金属矿田小铁山矿床广域电磁测深反演剖面
a.T7线反演剖面;b.T9线反演剖面;c.T11线反演剖面;d.T13线反演剖面. 1. 次石英角斑岩;2. 石英角斑岩;3. 石英角斑凝灰熔岩;4. 石英角斑凝灰岩;5. 集块岩;6. 细碧岩;7. 角斑岩;8. 角斑凝灰岩;9. 千枚岩;10. 花岗斑岩;11. 矿化蚀变带;12. 铁帽;13. 实/推测不整合界限;14. 矿体;15. 钻孔
Fig. 6. Wide-field electromagnetic method inversion sections of the Xiaotieshan deposit in the Baiyinchang Cu-polymetallic field
图 7 白银厂铜多金属矿田小铁山矿床编码源电测深反演剖面
a. L7线反演剖面;b. L9线反演剖面;c. L11线反演剖面;d. L13线反演剖面. 1.次石英角斑岩;2.石英角斑岩;3.石英角斑凝灰熔岩;4.石英角斑凝灰岩;5.集块岩;6.细碧岩;7.角斑岩;8.角斑凝灰岩;9.千枚岩;10.花岗斑岩;11.矿化蚀变带;12.铁帽;13.实/推测不整合界限;14.矿体;15.钻孔
Fig. 7. Coded source electromagnetic sounding method inversion sections of the Xiaotieshan deposit in the Baiyinchang Cu-polymetallic field
表 1 研究区岩(矿)石标本物性参数统计
Table 1. The statistic of physical parameters of rocks (ores) in the study area
序号 样本名称 样本数 电阻率(Ω·m) 极小值 极大值 算数均值 几何均值 1 绢云母千枚岩 30 138.13 930.13 420.85 370.40 2 粉砂质千枚岩 29 954.79 8 055.46 3 866.19 3 389.50 3 含炭质千枚岩 28 287.64 8 709.91 2 307.59 1 804.15 4 硅质千枚岩 30 87.50 1 141.26 584.00 499.06 5 次石英钠长斑岩 25 446.54 5 609.54 2 706.31 2 223.31 6 硅质岩 31 1 332.77 11 490.25 5 563.50 4 948.44 7 花岗斑岩脉 34 68.95 557.54 209.64 173.52 8 细碧岩 35 100.52 1 076.7 293.13 248.12 9 次石英角斑岩 31 976.53 3 518.36 1 996.45 1 868.10 10 石英角斑岩 32 334.82 4 671.19 1 729.41 1 276.29 11 石英角斑凝灰熔岩 33 200.88 3 282.58 1 305.79 1 111.38 12 石英角斑凝灰岩 30 90.11 378.32 191.96 168.76 13※ 铅锌矿 33 15.35 231.72 59.64 14※ 铁锰硅质岩 31 21.23 139.78 54.48 15※ 角斑凝灰岩 35 316.98 444.86 375.51 16※ 角斑岩 33 468.88 756.52 595.58 注:物性参数采用加拿大生产的GDDSCIP型电性参数仪测定,标※数据来自收集资料. -
Bian, Q. T., 1989. Geological Structure and Mineralization Model of Baiyinchang Ore Field. Seismological Press, Beijing, 59-65 (in Chinese). Di, Q. Y., Zhu, R. X., Xue, G. Q., et al., 2019. New Development of the Electromagnetic (EM) Methods for Deep Exploration. Chinese Journal of Geophysics, 62(6): 2128-2138 (in Chinese with English abstract). Duan, W. Y., Li, X. P., Schertl, H. P., et al., 2022. C-O-H-S Fluids Released by Oceanic Serpentinite in Subduction Zones: Implications for Arc-Magma Oxidation. Earth and Planetary Science Letters, 594: 117709. https://doi.org/10.1016/j.epsl.2022.117709 Franklin, J. M., Gibson, H. L., Jonasson, I. R., et al., 2005. Volcanogenic Massive Sulfide Deposits. Economic Geology 100th Anniversary Volume, 98: 523-560. Gao, S. D., Luo, W. B., Su, Y. G., et al., 2017. Georesistivity Observational Experiment Based on Encoded Source. Acta Seismologica Sinica, 39(4): 506-519, 633 (in Chinese with English abstract). Guo, X. G., Chen, S. Y., Li, Z. C., et al., 2022. Gravity-Magnetic Anomalies and Tectonic Characteristics of the Baiyinchang Cu-Polymetallic Ore Field in Gansu Province. Geology and Exploration, 58(5): 1057-1069 (in Chinese with English abstract). Guo, X. G., Dai, S., Han, F., et al., 2025. Research Progress on Genesis and Metallogenic Model of Baiyinchang Cu Polymetallic Ore District in Gansu: A Review. Mineral Deposits, 44(2): 432-456 (in Chinese with English abstract). He, J. S., 2010. Wide Field Electromagnetic Sounding Methods. Journal of Central South University (Science and Technology), 41(3): 1065-1072 (in Chinese with English abstract). He, J. S., 2019. Theory and Technology of Wide Field Electromagnetic Method. The Chinese Journal of Nonferrous Metals, 29(9): 1809-1816 (in Chinese with English abstract). Hou, Z. Q., Zaw, K., Rona, P., et al., 2008. Geology, Fluid Inclusions, and Oxygen Isotope Geochemistry of the Baiyinchang Pipe-Style Volcanic-Hosted Massive Sulfide Cu Deposit in Gansu Province, Northwestern China. Economic Geology, 103(1): 269-292. https://doi.org/10.2113/gsecongeo.103.1.269 Ji, B., Li, X. M., Shi, C., et al., 2024. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian. Earth Science, 49(7): 2490-2507 (in Chinese with English abstract). Jia, C. X., Cheng, H., Fu, S. Y., et al., 2024. High Frequency Electromagnetic Experiment Based on Spread Spectrum Coded Signals. Progress in Geophysics, 39(3): 1251-1259 (in Chinese with English abstract). Liang, W. J., Yan, G. S., Li, J. C., et al., 2016. Characteristics of Fluid Inclusions of the Xiaotieshan Lead Zinc Polymetallic Deposit in Gansu Province. Bulletin of Mineralogy, Petrology and Geochemistry, 35(2): 317-327 (in Chinese with English abstract). Liao, S. L., 2014. Progressively Determine Prospecting Targets and Quantitative Forecast of Baiyin Ore District, Gansu Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Liu, J. X., Sun, H. L., Chen, B., et al., 2016. Review of the Gravity and Magnetic Methods in the Exploration of Metal Deposits. Progress in Geophysics, 31(2): 713-722 (in Chinese with English abstract). Liu, J. X., Tong, X. Z., Yang, X. H., et al., 2008. Application of Real Coded Genetic Algorithm in Two-Dimensional Inversion of Magnetotelluric Sounding. Progress in Geophysics, 23(6): 1936-1942 (in Chinese with English abstract). Luo, W. B., Ding, Z. J., Gao, S. D., et al., 2021. Wide Field Electromagnetic Sounding Using Y-Component Magnetic Field with Horizontal Current Dipole Source. Geophysical and Geochemical Exploration, 45(1): 46-56 (in Chinese with English abstract). Luo, W. B., Li, Q. C., Tang, J. T., 2012. Coded Source Electromagnetic Sounding Method. Chinese Journal of Geophysics, 55(1): 341-349 (in Chinese with English abstract). Nozaki, T., Nagase, T., Takaya, Y., et al., 2021. Subseafloor Sulphide Deposit Formed by Pumice Replacement Mineralisation. Scientific Reports, 11: 8809. https://doi.org/10.1038/s41598-021-87050-z Peng, L. G., Li, X. M., Ren, Y. X., et al., 1998. Researches on Metallogenetic Regularity and Deep-Seated Ore-Hunting in Zheyaoshan Deposit, Baiyin Ore Field, Gansu. Northwest Geoscience, (1): 1-51 (in Chinese with English abstract). Shi, H., Pei, J., Luo, Z. J., et al., 2017. A Comparison of the Exploration Effect of Wide Field Electromagnetic Method and Controlled Source Audio Frequency Electromagnetic Method in the Production Mine: A Case Study of Shuikoushan Deposit. Mineral Resources and Geology, 31(4): 766-772 (in Chinese with English abstract). Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378-1401. https://doi.org/10.1016/j.gr.2012.02.004 Song, S. H., 1982. A Study of Pyritic Copper and Polymetallic Mineral Deposits (Cu, Pb, Zn): The Correlation and Research Tendency of Some of the Worldwide Mineral Belts and Ore Deposit Types. In: Collected Works of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences (5). Geological Publishing House, Beijing, 5-37 (in Chinese). Suo, G. Y., Li, D. Q., Hu, Y. F., 2019. One-Dimension Parallel Constrained Inversion of E-Ex Wide Field Electromagnetic Method Based on Analytical Jacobian Matrix. Computing Techniques for Geophysical and Geochemical Exploration, 41(1): 55-61 (in Chinese with English abstract). Tang, J. T., He, J. S., 2005. Controlled Source Audio Magnetotelluric Method and Its Application. Central South University Press, Changsha (in Chinese with English abstract). Tang, J. T., Luo, W. B., 2008. Pseudo-Random Electromagnetic Exploration Based on Invert-Repeated M-Sequence Correlation Identification. Chinese Journal of Geophysics, 51(4): 1226-1233 (in Chinese). Tang, J. T., Ren, Z. Y., Zhou, C., et al., 2015. Frequency-Domain Electromagnetic Methods for Exploration of the Shallow Subsurface: A Review. Chinese Journal of Geophysics, 58(8): 2681-2705 (in Chinese with English abstract). The Third Team of Gansu Metallurgical Geology, 1975. A Study on the Relationship between Acidic Volcanic Activities and Mineralization in the Baiyin Area. Geology and Exploration, (8): 32-40 (in Chinese). Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006 Wang, R., Yin, C. C., Wang, M. Y., et al., 2014. CSAMT Sensitivity Analysis for 1D Models. Progress in Geophysics, 29(3): 1284-1291 (in Chinese with English abstract). Wang, S. T., Lin, C. H., Wang, X. D., 2023. Effect of Transmitter Waveform on 1D Modeling and Inversion of Transient Electromagnetic Method Data. Geoscience, 37(1): 99-106 (in Chinese with English abstract). Wu, J. R., 1992. Analysis of Geologic Characteristics and Ore-Forming Conditions of Pyritic-Copper-Polymetallic Deposits in Baiyinchang Orefield Gansu. Northwest Geoscience, (2): 83-96 (in Chinese with English abstract). Xia, L. Q., Li, X. M., Yu, J. Y., et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain. Geology in China, 43(4): 1087-1138 (in Chinese with English abstract). Xiao, B., Chen, H. Y., Feng, Y. Z., et al., 2025. Episodic Magmatism Contributes to Sub-Seafloor Copper Mineralization: Insights from Textures and Geochemistry of Zoned Pyrite in the Ashele VMS Deposit. American Mineralogist, 110(5): 767-775. https://doi.org/10.2138/am-2023-9250 Xiao, X., Li, Y. H., Tang, J. T., et al., 2024. Application of Wide-Field Electromagnetic Method in Deep Mineral Exploration of Tongling: A Case Study of the Dongguashan Copper Mine. Mineral Exploration, 15(9): 1593-1606 (in Chinese with English abstract). Zhang, X., Liu, K. H., Li, X., 2010. Application of Static Correction CSAMT-Joint Inversion Method. Northwestern Geology, 43(2): 38-43 (in Chinese with English abstract). Zhang, X. T., Li, X. L., Zhou, B., et al., 2024. Application of Wide-Field Electromagnetic Sounding Method to Deep Prospecting in the Mangling Ore Concentration Area in North Qinling: A Case Study of the Yaozhuang Ore District. Geophysical and Geochemical Exploration, 48(6): 1609-1617 (in Chinese with English abstract). Zhao, S. Y., Yang, A. Y., Langmuir, C. H., et al., 2022. Oxidized Primary Arc Magmas: Constraints from Cu/Zr Systematics in Global Arc Volcanics. Science Advances, 8(12): eabk0718. https://doi.org/10.1126/sciadv.abk0718 Zhao, Z. X., Wei, J. H., Santosh, M., et al., 2018. Late Devonian Postcollisional Magmatism in the Ultrahigh-Pressure Metamorphic Belt, Xitieshan Terrane, NW China. Geological Society of America Bulletin, 130(5/6): 999-1016. https://doi.org/10.1130/B31772.1 Zhen, S. J., Du, Z. Z., Liang, W. J., et al., 2013. Sericitization of Baiyinchang Copper Polymetallic Deposit. Acta Mineralogica Sinica, 33(S2): 544-545 (in Chinese). Zhu, Y. Z., Xu, C. Y., 2011. The Experimental Application of Wider Field Electromagnetic Method to the Prospectiang for Deep Ore Deposits. Geophysical and Geochemical Exploration, 35(6): 743-746 (in Chinese with English abstract). 边千韬, 1989. 白银厂矿区地质构造及成矿模式. 北京: 地震出版社, 59-65. 底青云, 朱日祥, 薛国强, 等, 2019. 我国深地资源电磁探测新技术研究进展. 地球物理学报, 62(6): 2128-2138. 高曙德, 罗维斌, 苏永刚, 等, 2017. 编码源地电阻率观测试验. 地震学报, 39(4): 506-519, 633. 郭小刚, 陈守余, 李志晨, 等, 2022. 甘肃白银厂铜多金属矿田重磁异常及构造特征. 地质与勘探, 58(5): 1057-1069. 郭小刚, 戴霜, 韩峰, 等, 2025. 甘肃白银厂铜多金属矿田矿床成因及成矿模式研究进展综述. 矿床地质, 44(2): 432-456. 何继善, 2010. 广域电磁测深法研究. 中南大学学报(自然科学版), 41(3): 1065-1072. 何继善, 2019. 大深度高精度广域电磁勘探理论与技术. 中国有色金属学报, 29(9): 1809-1816. 计波, 李向民, 时超, 等, 2024. 北祁连东段白银岩群双峰式火山岩锆石U-Pb年龄、Hf同位素及地球化学特征. 地球科学, 49(7): 2490-2507. doi: 10.3799/dqkx.2022.484 贾晨星, 程辉, 傅崧原, 等, 2024. 基于扩频编码信号的高频电磁测深实验研究. 地球物理学进展, 39(3): 1251-1259. 梁婉娟, 严光生, 李景朝, 等, 2016. 甘肃小铁山铅锌多金属矿床流体包裹体特征. 矿物岩石地球化学通报, 35(2): 317-327. 廖时理, 2014. 甘肃省白银地区找矿靶区逐级圈定与定量预测(博士学位论文). 武汉: 中国地质大学(武汉). 柳建新, 孙欢乐, 陈波, 等, 2016. 重磁方法在国内外金属矿中的研究进展. 地球物理学进展, 31(2): 713-722. 柳建新, 童孝忠, 杨晓弘, 等, 2008. 实数编码遗传算法在大地电磁测深二维反演中的应用. 地球物理学进展, 23(6): 1936-1942. 罗维斌, 丁志军, 高曙德, 等, 2021. 测量磁场水平分量Hy的电性源广域电磁测深法. 物探与化探, 45(1): 46-56. 罗维斌, 李庆春, 汤井田, 2012. 编码电磁测深. 地球物理学报, 55(1): 341-349. 彭礼贵, 李向民, 任有祥, 等, 1998. 甘肃白银厂折腰山矿床成矿规律及深部找矿研究. 西北地质科学, (1): 1-51. 石郝, 裴婧, 罗振军, 等, 2017. 广域电磁法和可控源音频大地电磁法在生产矿山探测效果的比对: 以水口山为例. 矿产与地质, 31(4): 766-772. 宋叔和, 1982. 黄铁矿型铜和多金属矿床——世界范围内一些主要矿带和矿床类型的对比及研究趋势. 见: 中国地质科学院矿床地质研究所文集(5). 北京: 地质出版社, 5-37. 索光运, 李帝铨, 胡艳芳, 2019. 基于解析雅克比矩阵的E-Ex广域电磁法一维并行约束反演. 物探化探计算技术, 41(1): 55-61. 汤井田, 何继善, 2005. 可控源音频大地电磁法及其应用. 长沙: 中南大学出版社. 汤井田, 罗维斌, 2008. 基于相关辨识的逆重复m序列伪随机电磁法. 地球物理学报, 51(4): 1226-1233. 汤井田, 任政勇, 周聪, 等, 2015. 浅部频率域电磁勘探方法综述. 地球物理学报, 58(8): 2681-2705. 甘肃冶金地质三队, 1975. 白银地区酸性火山活动与成矿关系的探讨. 地质与勘探, 11(8): 32-40. 王若, 殷长春, 王妙月, 等, 2014. CSAMT法一维层状介质灵敏度分析. 地球物理学进展, 29(3): 1284-1291. 王胜涛, 林昌洪, 王旭东, 2023. 发射电流波形对瞬变电磁一维正反演的影响. 现代地质, 37(1): 99-106. 邬介人, 1992. 白银厂矿田黄铁矿型铜‒多金属矿床的地质特征及成矿条件分析. 西北地质科学(2): 83-96. 夏林圻, 李向民, 余吉远, 等, 2016. 祁连山新元古代中‒晚期至早古生代火山作用与构造演化. 中国地质, 43(4): 1087-1138. 肖晓, 李银航, 汤井田, 等, 2024. 广域电磁法在深部矿产勘查中的应用: 以铜陵冬瓜山铜矿为例. 矿产勘查, 15(9): 1593-1606. 张旭, 刘宽厚, 李貅, 2010. CSAMT的静校正应用: 联合反演法. 西北地质, 43(2): 38-43. 张晓团, 李新林, 周斌, 等, 2024. 广域电磁法在北秦岭蟒岭矿集区深部找矿中的应用: 以腰庄矿区为例. 物探与化探, 48(6): 1609-1617. 甄世军, 杜泽忠, 梁婉娟, 等, 2013. 白银厂铜多金属矿床的绢云母化. 矿物学报, 33(S2): 544-545. 朱裕振, 许聪悦, 2011. 广域电磁法深部找矿实验效果. 物探与化探, 35(6): 743-746. -




下载: