Geochemistry and Tectonic Setting of Qingquangou Forearc Basalts in Central Tectonic Mélange of East Kunlun Orogen
-
摘要: 东昆中构造混杂岩带东段清泉沟玄武岩岩石源区及构造环境研究具有重要意义.通过对清泉沟玄武岩进行详细的地质、地球化学和构造环境研究,结果表明,该套玄武岩属于亚碱性拉斑玄武岩系列,球粒陨石标准化稀土元素配分图呈现轻稀土元素弱亏损-弱富集的特征,与正常大洋中脊玄武岩(NMORB)和西太平洋IBM弧前玄武岩(FAB)配分特征相似.岩石成因研究表明其源区具亏损地幔特征,且地幔熔融程度比NMORB源区熔融程度较高.构造环境研究表明该套玄武岩形成于大洋初始俯冲阶段的弧前环境.综合区域地质资料,认为东昆中古洋盆至少于中寒武世(510 Ma)之前开始向北俯冲,在俯冲初期形成了清泉沟弧前玄武岩,构成了俯冲带初始弧壳或不成熟洋内岛弧.Abstract: The research on magmatic source and tectonic setting of Qingquangou basalts in eastern section of East Kunlun is important for discussion of the tectonic evolution of East Kunlun ocean. This paper presents a systematic field geology, geochemistry, and tectonic setting research. The results show that the SiO2 contents of Qingquangou basalts range from 48.60% to 49.28%, MgO contents range from 7.72%-8.00%, TiO2 contents range from 1.07%-1.10% (average values, 1.09%), which are similar to the values of Izu-Bonin-Mariana forearc basalt, West Pacific. The basalts are classified into the tholeiitic basalt of subalkaline series based on the major elements feature. Qingquangou basalts are characterized by the ∑LREEs range from 22.64×10-6-33.31×10-6, ∑HREEs range from 13.13×10-6-18.37×10-6, ∑REEs range from 36.02×10-6-51.68×10-6, and (La/Yb)N range from 0.88-1.10. The chondrite normalized REE patterns show the widely enriched-depleted feature of LREE, resembling the feature of NMORB basalts and IBM forearc basalts, West Pacific. Moreover, the samples have low ratios of Ti/Y (312) and Ti/V (< 20), also indicative of the forearc basalt feature. The primitive mantle normalized trace element spider diagram shows enriched LILEs and undifferentiated HFSEs (e.g., Nb, Ta, Zr, Hf, etc.) features. Petrogenesis research shows that its source was derived from the depleted mantle, and further proves that its partial melting degree is higher than that of NMORB-type basalts. Additionally, the tectonic discrimination diagram suggests that the basalts formed in forearc tectonic setting. Combined with the previous data, it is concluded that East Kunlun ocean began to subduct northward at Middle Cambrian (ca.510 Ma), and that Qingquangou forearc basalts were generated meanwhile, forming the nascent island arc crust.
-
Key words:
- East Kunlun /
- ophiolite /
- Qingquangou /
- forearc basalt /
- geochemistry
-
图 5 清泉沟玄武岩稀土元素球粒陨石标准化配分图解
球粒陨石数据据Boynton(1984);IBM弧前玄武岩数据据Falloon et al.(2014)
Fig. 5. Chondrite-normalized REE patterns of Qingquangou basalts
图 6 清泉沟玄武岩微量元素NMORB标准化蛛网图解
原始地幔标准化数据据Sun and McDonough(1989)
Fig. 6. NMORB-normalized spidergram of Qingquangou basalts
图 7 清泉沟玄武岩Ti/Y-Zr/Y图解(a)和Ti-V图解(b)
a.据Meschede(1986); b.据Shervais(1982)
Fig. 7. Ti/Y-Zr/Y (a) and Ti-V (b) diagrams of Qingquangou basalts
图 8 清泉沟玄武岩Nb/Yb-Th/Yb图解(a)和La/Yb-Yb图解(b)
MORB,OIB数据据Baker et al.(1997); Pearce(2008); El-Rahman et al.(2009)
Fig. 8. Nb/Yb-Th/Yb (a) and La/Yb-Yb (b) diagrams of Qingquangou basalts
表 1 清泉沟玄武岩主量元素(%)和微量元素(10-6)分析结果
Table 1. Results of major elements(%) and trace elements (10-6) from Qingquangou basalts
样品 XRD380-1 XRD380-2 XRD380-3 XRD380-4 XRD380-6 XRD380-7 XRD380-8 SiO2 48.78 49.05 49.23 49.28 48.94 48.60 48.94 TiO2 1.10 1.08 1.07 1.07 1.09 1.10 1.09 Al2O3 14.14 13.97 13.69 13.85 13.57 13.97 13.86 Fe2O3T 13.45 12.80 12.83 12.77 13.01 12.23 12.31 MnO 0.20 0.18 0.19 0.19 0.20 0.19 0.21 MgO 7.65 7.75 7.63 7.62 7.81 8.00 7.92 CaO 10.67 11.16 11.10 11.35 11.42 11.40 11.14 Na2O 2.30 2.24 2.46 2.05 2.34 2.32 2.56 K2O 0.26 0.14 0.12 0.16 0.23 0.17 0.15 P2O5 0.08 0.09 0.08 0.09 0.09 0.09 0.08 LOI 0.69 1.07 0.82 0.84 0.69 0.90 0.68 Total 99.32 99.53 99.22 99.27 99.39 98.97 98.94 La 2.86 4.78 2.95 3.16 3.13 3.74 3.26 Ce 8.04 11.83 8.03 9.45 8.59 9.26 8.32 Pr 1.24 1.95 1.27 1.33 1.31 1.56 1.41 Nd 7.34 10.53 7.23 7.55 7.60 7.82 7.21 Sm 2.34 3.26 2.30 2.42 2.43 2.48 2.38 Eu 0.88 0.97 0.85 0.91 0.89 0.90 0.84 Gd 3.14 4.18 3.12 3.20 3.20 3.15 2.99 Tb 0.56 0.75 0.55 0.56 0.56 0.56 0.54 Dy 3.72 5.10 3.69 3.74 3.74 3.79 3.70 Ho 0.80 1.11 0.80 0.81 0.82 0.80 0.80 Er 2.38 3.34 2.36 2.37 2.39 2.26 2.32 Tm 0.35 0.50 0.34 0.35 0.35 0.36 0.37 Yb 2.03 2.92 1.95 1.99 2.00 2.38 2.49 Lu 0.33 0.47 0.33 0.33 0.33 0.37 0.37 ∑REE 36.02 51.68 35.77 38.16 37.35 39.43 37.00 ∑LREE 22.70 33.31 22.64 24.82 23.95 25.76 23.42 ∑HREE 13.32 18.37 13.13 13.34 13.40 13.67 13.58 ∑LREE/∑HREE 1.70 1.81 1.72 1.86 1.79 1.88 1.72 δEu 0.99 0.80 0.98 1.00 0.98 0.98 0.96 (La/Yb)N 0.95 1.10 1.02 1.07 1.06 1.06 0.88 (La/Sm)N 0.77 0.92 0.81 0.82 0.81 0.95 0.86 (Gd/Yb)N 1.25 1.16 1.29 1.30 1.29 1.07 0.97 V 373.26 363.51 374.17 378.38 367.85 313.00 323.00 Cr 211.38 197.93 198.17 197.87 263.13 166.00 164.00 Co 47.58 52.37 46.12 47.23 47.88 50.80 47.60 Ni 106.75 91.93 100.33 101.50 96.89 90.20 97.80 Rb 19.43 13.72 6.30 5.86 7.94 13.70 6.50 Sr 192.84 213.65 218.43 213.00 228.93 159.00 155.00 Y 19.42 27.59 19.02 19.11 18.12 22.80 22.90 Zr 53.70 54.17 54.55 53.39 56.19 56.60 53.70 Nb 2.48 2.82 2.50 2.51 2.68 2.83 2.53 Cs 0.92 2.09 0.67 0.64 0.25 2.88 0.93 Ba 51.52 33.70 41.35 56.75 237.76 33.60 40.10 Hf 1.46 1.50 1.53 1.46 1.56 1.86 1.78 Ta 0.16 0.19 0.16 0.16 0.18 0.19 0.17 Pb 4.85 3.12 1.22 1.39 4.32 3.07 1.36 Th 0.31 1.18 0.30 0.40 0.29 0.41 0.34 U 0.17 0.13 0.16 0.13 0.15 0.12 0.16 Nb/U 14.64 21.89 15.17 19.53 17.53 23.58 15.81 Nb/Ta 15.18 15.08 15.31 15.49 15.25 14.89 14.88 Nb/La 0.87 0.59 0.85 0.79 0.86 0.76 0.78 Ti/Y 339.55 234.66 337.28 335.62 360.63 289.23 285.35 Nb/Yb 1.22 0.96 1.28 1.26 1.34 1.19 1.02 Ta/Yb 0.08 0.06 0.08 0.08 0.09 0.08 0.07 Zr/Y 2.76 1.96 2.87 2.79 3.10 2.48 2.34 注:Mg#=Mg/(Fe+Mg). -
Baker, J.A., Menzies, M.A., Thirlwall, M.F., et al., 1997.Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen:Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization.Journal of Petrology, 38(10):1359-1390. https://doi.org/10.1093/petroj/38.10.1359 Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements: Meteorite Studies.In: Henderson, P., ed., Rare Earth Elements Geochemistry.Elservier, Amsterdam, 63-144. Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun.Acta Geologica Sinica, 87(2):178-196 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201302004 Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.129 Chen, N.S., He, L., Sun, M., et al., 2002.The Precise Limitation of the Paleozoic Metamorphic Peak Period and the Reverse Tectonic Deformation of East Kunlun Orogenic Belt.Chinese Science Bulletin, 47(8):628-631 (in Chinese). Chen, S.J., Li, R.S., Ji, W.H., et al., 2007.The Deposition Characteristics and Tectono-Paleogeographic Environment of Kunlun Orogenic Belt in Late Devonian.Geotectonica et Metallogenia, 31(1):44-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200701006 Coleman, R.G., 1971.Plate Tectonic Emplacement of Upper Mantle Peridotites along Continental Edges.Journal of Geophysical Research, 76:1212-1222. https://doi.org/10.1029/JB076i005p01212 Condie, K.C., 2003.Supercontinents, Superplumes and Continental Growth:The Neoproterozoic Record.Geological Society, London, Special Publications, 206(1):1-21. https://doi.org/10.1144/GSL.SP.2003.206.01.02 Dilek, Y., 2003.Ophiolite Concept and Its Evolution.In: Dilek, Y., Newcomb, S., eds., Ophilite Concept and the Evolution of Geological Thought.Special Paper of the Geological Society of America, 373: 1-16. Dilek, Y., Furnes, H., 2011.Ophiolite Genesis and Global Tectonics:Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere.Geological Society of America Bulletin, 123(3-4):387-411. https://doi.org/10.1130/B30446.1 Dilek, Y., Furnes, H., 2014.Ophiolites and Their Origins.Elements, 10(2):93-100. https://doi.org/10.2113/gselements.10.2.93 Dilek, Y., Shallo, M., Furnes, H., 2005.Rift-Drift, Seafloor Spreading, and Subduction Tectonics of Albanian Ophiolites.International Geology Review, 47(2):147-176. https://doi.org/10.2747/0020-6814.47.2.147 Dilek, Y., Thy, P., 2009.Island Arc Tholeiite to Boninitic Melt Evolution of the Cretaceous Kizildag (Turkey) Ophiolite:Model for Multi-Stage Early Arc-Forearc Magmatism in Tethyan Subduction Factories.Lithos, 113(1-2):68-87. https://doi.org/10.1016/j.lithos.2009.05.044 Dong, Y.P., He, D.F., Sun, S.S., et al., 2017.Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System.Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2017.12.006 Dong, Y.P., Santosh, M., 2016.Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China.Gondwana Research, 29(1):1-40. https://doi.org/10.1016/j.jseaes.2011.03.002 Dong, Y.P., Yang, Z., Liu, X.M., et al., 2016.Mesozoic Intracontinental Orogeny in the Qinling Mountains, Central China.Gondwana Research, 30:144-158. https://doi.org/10.1016/j.gr.2015.05.004 Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011.Tectonic Evolution of the Qinling Orogen, China:Review and Synthesis.Journal of Asian Earth Sciences, 41(3):213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 El-Rahman, Y.A., Polat, A., Dilek, Y., et al., 2009.Geochemistry and Tectonic Evolution of the Neoproterozoic Wadi Ghadir Ophiolite, Eastern Desert, Egypt.Lithos, 113(1-2):158-178. https://doi.org/10.1016/j.lithos.2008.12.014 Falloon, T.J., Meffre, S., Crawford, A.J., et al., 2014.Cretaceous Forearc Basalts from the Tonga Arc:Geochemistry and Implications for the Tectonic History of the SW Pacific.Tectonophysics, 630:21-32. https://doi.org/10.1016/j.tecto.2014.05.007 Feng, C.Y., Zhao, Y.M., Li, D.X., et al., 2016.Mineralogical Characteristics of the Xiarihamu Nickel Deposit in the Qiman Tagh Mountain, East Kunlun, China.Geological Review, 62(1):215-228 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201601018 Hao, J., Liu, X.H., Sang, H.Q., 2003.Geochemical Characteristics and 40Ar/39Ar Age of the Ayak Adamellite and Its Tectonic Significance in the East Kunlun, Xinjiang.Acta Petrologica Sinica, 19(3):517-522 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303017 Ishizuka, O., Kenichiro, T., Reagan, M.K., et al., 2014.Izu-Bonin-Mariana Forearc Crust as a Modern Ophiolite Analogue.Elements, 15:13608. https://doi.org/10.2113/gselements.10.2.115 Jensen, L.S., 1976.A New Caption Plot for Classifying Subalkalic Volcanic Rocks.Ontario Division of Mines, 66:22. Jiang, C.F., Wang, Z.Q., Li, J.Y., et al., 2000.The Opening-Closing Tectonic in the Central Orogenic Belt.Geological Publishing House, Beijing, 1-154 (in Chinese with English abstract). Li, B.L., Sun, F.Y., Yu, X.F., et al., 2012.U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt.Acta Petrologica Sinica, 28(4):1163-1172 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201204013 Li, R.B., 2012.Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation).Chang'an University, Xi'an, 1-150 (in Chinese with English abstract). Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012.Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun.Earth Science Frontiers, 19(5):244-254 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201205024 Li, R.B., Pei, X.Z., Li, Z.C., 2013a.Geochemical Features, Age, and Tectonic Significance of the Kekekete Mafic-Ultramafic Rocks, East Kunlun Orogen, China.Acta Geologica Sinica, 87(5):1319-1333. doi: 10.1111/acgs.2013.87.issue-5 Li, R.B., Pei, X.Z., Li, Z.C., 2013b.Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic:Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-Feldspar Granite.Acta Geologica Sinica, 87(2):333-345. doi: 10.1111/acgs.2013.87.issue-2 Li, R.B., Pei, X.Z., Li, Z.C., et al., 2015.Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen.Earth Science, 40(7):1148-1162 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.096 Li, R.B., Pei, X.Z., Li, Z.C., et al., 2017.Cambrian (~510 Ma) Ophiolites of East Kunlun Orogen, China:A Case Study from the Acite Ophiolite Complex.International Geological Journal. https://doi.org/10.1080/00206814.2017.1405366 Li, X.B., Pei, X.Z., Liu, C.J., et al., 2014.Ductile Shearing in the Eastern Segment of Central Kunlun Tectonic Belt and Its Geological Significance.Geology in China, 41(2):419-436 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201402009 Li, Z.C., Pei, X.Z., Li, R.B., 2016.Early Ordovician Island-Arc-Type Manite Granodiorite Pluton from the Buqingshan Tectonic Mélange Belt in the Southern Margin of the East Kunlun Orogen:Constraints on Subduction of the Proto-Tethyan Ocean.Geological Journal. https://doi.org/10.1002/gj.2785 Li, Z.C., Pei, X.Z., Liu, Z.Q., et al., 2013.Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications.Acta Geologica Sinica, 87(8):1089-1103 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201308005 Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012.Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes.Acta Petrologica Sinica, 28(6):1785-1807 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201206007 Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004.Mingling between Crust-and Mantle-Derived Magmas of the East Kunlun:Evidence from Zircon SHRIMP Geochronology.Chinese Science Bulletin, 49(6):596-602 (in Chinese). http://d.wanfangdata.com.cn/Periodical/kxtb200406018 Liu, J.L., Sun, F.Y., Li, L., et al., 2015.Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.081 Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011a.Geological Characteristics of the Buqingshan Tectonic Melange Belt in the Southern Margin of East Kunlun and Its Tectonic Implications.Geological Bulletin of China, 30(8):1182-1195 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201108002 Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011b.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194 (in Chinese with English abstract). Long, X.P., Wang, L.S., Yu, N., 2004.Geochemical Characteristics of the Qingshuiquan Mafic-Ultramafic Rocks, East Kunlun.Geological Bulletin of China, 23(7):664-669 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200407005 Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015.Intensity and Cyclicity of Orogenic Magmatism:An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau.Acta Petrologica Sinica, 31(12):3555-3568 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512004 Meng, F.C., Cui, M.F., Jia, L.H., et al., 2015.Paleozoic Continental Collision of the East Kunlun Orogen:Evidence from Protoliths of the Eclogites.Acta Petrologica Sinica, 31(12):3581-3594. Meng, F.C., Cui, M.H., Wu, X.K., et al., 2013a.Heishan Mafic-Ultramafic Rocks in the Qimantag Area of Eastern Kunlun, NW China:Remnants of an Early Paleozoic Incipient Island Arc.Gondwana Research, 27(2):745-759. https:doi.org/10.1016/j.gr.2013.09.023 Meng, F.C., Zhang, J.X., Cui, M.H., et al., 2013b.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. https://doi.org/org/10.1016/j.gr.2012.06.007 Meschede, M., 1986.A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.Chemical Geology, 56(3-4):207-218. doi: 10.1016/0009-2541(86)90004-5 Pan, Y.S., Zhou, W.M., Xu, R.H., et al., 1996.Geological Characteristics and Evolution of Kunlun Mountains during the Early Paleozoic Era.Science in China (Series D:Earth Sciences), 26(4):302-307 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199604000.htm Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 Pearce, J.A, Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/BF00375192 Pei, X.Z., Hu, N., Liu, C.J., et al., 2015.Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region.Geological Review, 61(2):307-323 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2015.02.006 Qi, X.P., Fan, X.G., Yang, J., et al., 2016.The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance.Geological Bulletin of China, 35(11):1771-1783 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201611002 Reagan, M.K., 2010.Forearc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System.Geochem., Geophys., Geosyst., 11(3):Q03X12. https://doi.org/10.1029/2009GC002871 Rehkamper, M., Hofmann, A.W., 1997.Recycled Ocean Crust and Sediment in Indian Ocean MORB.Earth and Planetary Science Letters, 147(1-4):93-106. https://doi.org/10.1016/S0012-821X(97)00009-5 Rollinson, H.R., 1993.Using Geochemical Data:Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Harlow, 352. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212504962/ Sang, J.Z., Pei, X.Z., Li, R.B., et al., 2016.LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Gabbro in Qingshuiquan, East Section of East Kunlun, and Its Tectonic Significance.Geological Bulletin of China, 35(5):700-710 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201605007.htm Shervais, J.W., 1982.Ti-V Plots and the Origin of Modern and Ophiolitic Lavas.Earth and Planetary Science Letters, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0 Shervais, J.W., Kimbrough, D.L., Renne, P., et al., 2004.Multi-Stage Origin of the Coast Range Ophiolite, California:Implications for the Life Cycle of Supra-Subduction Zone Ophiolites.International Geology Review, 46:289-315. doi: 10.2747/0020-6814.46.4.289 Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.003 Song, S.G., 1997.Tectonic Evolution of Subductive Complex Belts in the North Qilian Mountains.Advance in Earth Sciences, 12(4):351-365 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700058029 Song, S.G., Zhang, C., Li, X.H., et al., 2011.HP/UHP Metamorphic Time of Eclogite in the Xitieshan Terrane, North Qaidam UHPM Belt, NW China.Acta Petrologica Sinica, 27(4):1191-1197 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201104023 Sun, W.D., McDonough, W.F., 1989.Chemical and Isotopic Systematic of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Wang, G.C., Zhang, T.P., Liang, B., et al., 1999.Composite Ophiolitic Melange Zone in Central Part of Eastern Section of Eastern Kunlun Orogenic Zone and Geological Significance of "Fault Belt in Central Part of Eastern Section of Eastern Kunlun Orogenic Zone".Earth Science, 24(2):129-138 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx199902005 Whattam, S.A., Stern, R.J., 2011.The Subduction Initiation Rule:A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation.Contributions to Mineralogy and Petrology, 162(5):1031-1045. https://doi.org/10.1007/s004-10-011-0638-z Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magmas Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2 Xia, L.Q., Li, X.M., Yu, J.Y., et al., 2016.Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain.Geology in China, 43(4):1087-1138(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201604001 Xiong, F.H., Ma, C.Q., Jiang, H.A., et al., 2014.Geochronology and Geochemistry of Middle Devonian Mafic Dykes in the East Kunlun Orogenic Belt, Northern Tibet Plateau:Implications for the Transition from Prototethys to Paleotethys Orogeny.Chemie der Erde, 74:225-235. https://doi.org/10.1016/j.chemer.2013.07.004 Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011.LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt.Acta Petrologica Sinica, 27(11):3350-3364 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111016 Xu, Z.Q., Xu, H.F., Zhang, J.X., et al., 1994.The Zhoulangnanshan Caledonian Subductive Complex in the Northern Qilian Mountains and Its Dynamics.Acta Geologica Sinica, 68(1):1-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400804917 Yang, J.S., Robinson, P.T., Jiang, C.F., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231. doi: 10.1016/0040-1951(95)00199-9 Yin, H.F., Zhang, K.X., 1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):339-342 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201803019 Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015.Subduction, Accretion and Closure of Proto-Tethyan Ocean:Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian Qaidam Orogenic System.Acta Petrologica Sinica, 31(12):3531-3554. Zhang, Q., 1995.Some Problems Concerning the Ophiolite Study.Acta Petrologica Sinica, 11(S1):37-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB5S1.018.htm Zhang, Q., 2014.Classifications of Mafic-Ultramafic Rocks and Their Tectonic Significance.Chinese Journal of Geology, 49(3):982-1017 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201403023 Zhao, F.F., Sun, F.Y., Liu, J.L., et al., 2017.Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting.Earth Science, 42(6):927-940 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.073 Zhou, B., Dong, Y.P., Zhang, F.F., et al., 2016.Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau:Origin and Tectonic Implications.Journal of Asian Earth Sciences, 130:265-281. https://doi.org/10.1016/j.jseaes.2016.08.011 Zhu, Y.H., Zhang, K.X., Pan, Y.M., et al., 1999.Determination of Different Ophiolitic Belts in Eastern Kunlun Orogenic Zone and Their Tectonic Significance.Earth Science, 24(2):134-138 (in Chinese with English abstract). 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义.地质学报, 87(2):178-196. doi: 10.3969/j.issn.0001-5717.2013.02.004 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. http://earth-science.net/WebPage/Article.aspx?id=3384 陈能松, 何蕾, 孙敏, 等, 2002.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定.科学通报, 47(8):628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016 陈守建, 李荣社, 计文化, 等, 2007.昆仑造山带晚泥盆世沉积特征及构造古地理环境.大地构造与成矿学, 31(1):44-51. doi: 10.3969/j.issn.1001-1552.2007.01.006 丰成友, 赵一鸣, 李大新, 等, 2016.东昆仑祁漫塔格山地区夏日哈木镍矿床矿物学特征.地质论评, 62(1):215-228. http://d.old.wanfangdata.com.cn/Periodical/dzlp201601018 郝杰, 刘小汉, 桑海清, 2003.新疆东昆仑阿牙克岩体地球化学与40Ar/39Ar年代学研究及其大地构造意义.岩石学报, 19(3):517-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303017 姜春发, 王宗起, 李锦轶, 等, 2000.中央造山带开合构造.北京:地质出版社, 1-154. 李碧乐, 孙丰月, 于晓飞, 等, 2012.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究.岩石学报, 28(4):1163-1172. http://d.old.wanfangdata.com.cn/Conference/7667375 李瑞保, 2012.东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文).西安: 长安大学, 1-150. 李瑞保, 裴先治, 李佐臣, 等, 2012.东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应.地学前缘, 19(5):244-254. http://d.wanfangdata.com.cn/Periodical/dxqy201205024 李瑞保, 裴先治, 李佐臣, 等, 2015.东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因.地球科学, 40(7):1148-1162. http://earth-science.net/WebPage/Article.aspx?id=3118 李小兵, 裴先治, 刘成军, 等, 2014.东昆仑东段东昆中构造带韧性剪切作用及其地质意义.中国地质, 41(2):419-436. doi: 10.3969/j.issn.1000-3657.2014.02.009 李佐臣, 裴先治, 刘战庆, 等, 2013.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义.地质学报, 87(8):1089-1103. doi: 10.3969/j.issn.0001-5717.2013.08.005 刘彬, 马昌前, 张金阳, 等, 2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报, 28(6):1785-1807. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. doi: 10.3321/j.issn:0023-074X.2004.06.018 刘金龙, 孙丰月, 李良, 等, 2015.青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201506003.htm 刘战庆, 裴先治, 李瑞保, 等, 2011a.东昆仑南缘布青山构造混杂岩带的地质特征及大地构造意义.地质通报, 30(8):1182-1195. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201108002 刘战庆, 裴先治, 李瑞保, 等, 2011b.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201102004 龙晓平, 王立社, 余能, 2004.东昆仑山清水泉镁铁质-超镁铁质岩的地球化学特征.地质通报, 23(7):664-669. doi: 10.3969/j.issn.1671-2552.2004.07.005 马昌前, 熊富浩, 尹烁, 等, 2015.造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例.岩石学报, 31(12):3555-3568. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512004 潘裕生, 周伟明, 许荣华, 等, 1996.昆仑山早古生代地质特征与演化.中国科学(D辑:地球科学), 26(4):302-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600918643 裴先治, 胡楠, 刘成军, 等, 2015.东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析.地质论评, 61(2):307-323. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502006 祁晓鹏, 范显刚, 杨杰, 等, 2016.东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义.地质通报, 35(11):1771-1783. doi: 10.3969/j.issn.1671-2552.2016.11.002 桑继镇, 裴先治, 李瑞保, 等, 2016.东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义.地质通报, 35(5):700-710. doi: 10.3969/j.issn.1671-2552.2016.05.007 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1):35-54. http://earth-science.net/WebPage/Article.aspx?id=3217 宋述光, 1997.北祁连山俯冲杂岩带的构造演化.地球科学进展, 12(4):351-365. doi: 10.3321/j.issn:1001-8166.1997.04.006 宋述光, 张聪, 李献华, 等, 2011.柴北缘超高压带中锡铁山榴辉岩的变质时代.岩石学报, 27(4):1191-1197. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104023 王国灿, 张天平, 梁斌, 等, 1999.东昆仑造山带东段昆中复合蛇绿混杂岩带及"东昆中断裂带"地质涵义.地球科学, 24(2):129-138. doi: 10.3321/j.issn:1000-2383.1999.02.005 夏林圻, 李向民, 余吉远, 等, 2016.祁连山新元古代中-晚期至早古生代火山作用与构造演化.中国地质, 43(4):1087-1138. http://www.cqvip.com/QK/90050X/201604/669848882.html 熊富浩, 马昌前, 张金阳, 等, 2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报, 27(11):3350-3364. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111016 许志琴, 徐惠芬, 张建新, 等, 1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报, 68(1):1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199401000.htm 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. doi: 10.3321/j.issn:1000-2383.1997.04.001 张旗, 1995.蛇绿岩研究中的几个问题.岩石学报, 11(S1):37-46. http://d.old.wanfangdata.com.cn/Periodical/dxqy200304011 张旗, 2014.镁铁-超镁铁岩的分类及其构造意义.地质科学, 49(3):982-1017. doi: 10.3969/j.issn.0563-5020.2014.03.022 赵菲菲, 孙丰月, 刘金龙, 等, 2017.东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景.地球科学, 42(6):927-940. http://earth-science.net/WebPage/Article.aspx?id=3588 朱云海, 张克信, Pan, Y.M., 等, 1999.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学, 24(2):134-138. http://earth-science.net/WebPage/Article.aspx?id=776