• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    超高压榴辉岩-脉体体系成因和俯冲带变质流体演化

    郭顺 唐盼 陈意

    郭顺, 唐盼, 陈意, 2019. 超高压榴辉岩-脉体体系成因和俯冲带变质流体演化. 地球科学, 44(12): 4072-4080. doi: 10.3799/dqkx.2019.238
    引用本文: 郭顺, 唐盼, 陈意, 2019. 超高压榴辉岩-脉体体系成因和俯冲带变质流体演化. 地球科学, 44(12): 4072-4080. doi: 10.3799/dqkx.2019.238
    Guo Shun, Tang Pan, Chen Yi, 2019. Genesis of UHP Eclogite-Vein System and Metamorphic Fluid Evolution in Subduction Zones. Earth Science, 44(12): 4072-4080. doi: 10.3799/dqkx.2019.238
    Citation: Guo Shun, Tang Pan, Chen Yi, 2019. Genesis of UHP Eclogite-Vein System and Metamorphic Fluid Evolution in Subduction Zones. Earth Science, 44(12): 4072-4080. doi: 10.3799/dqkx.2019.238

    超高压榴辉岩-脉体体系成因和俯冲带变质流体演化

    doi: 10.3799/dqkx.2019.238
    基金项目: 

    国家重点基础研究发展计划项目 2015CB856103

    国家自然科学基金项目 41672059

    中国科学院青年创新促进会项目 2017090

    详细信息
      作者简介:

      郭顺(1982-), 男, 博士, 副研究员, 主要从事俯冲带变质作用和流体演化研究

    • 中图分类号: P595

    Genesis of UHP Eclogite-Vein System and Metamorphic Fluid Evolution in Subduction Zones

    • 摘要: 超高压岩石-脉体体系是认识俯冲带流体性质和行为的天然实验室.通过总结大别超高压变质带3个榴辉岩(角闪岩)-脉体体系的研究成果,探讨了大陆俯冲带变质流体的溶解-结晶过程和氧逸度变化规律以及流体对轻元素硼的迁移过程.对榴辉岩-复合高压脉体的研究发现超高压流体通过溶解矿物富集溶质组分,流体随后经历3期结晶过程,分别形成绿辉石-绿帘石脉、绿帘石-石英脉和蓝晶石-绿帘石-石英脉.绿帘石La、Cr和δEu值是判断结晶次序的关键指标.对榴辉岩-角闪岩-低压脉体研究表明大陆俯冲带低压变质流体的氧逸度明显高于高压-超高压变质流体.高氧逸度条件也导致一些反常矿物(如退变金红石)的生长.对含电气石榴辉岩-脉体研究揭示变质碳酸盐岩是大陆俯冲板片中重硼同位素的重要储库,其在汇聚板块边界的脱硼作用显著影响深部硼循环.上述研究成果为理解俯冲带变质流体演化和物质循环提供重要科学依据.

       

    • 图  1  花凉亭超高压榴辉岩和复合多期高压脉体的野外分布(a)和绿帘石矿物成分(b和c)

      引自Guo et al.(2015)

      Fig.  1.  The field distribution (a) and epidote compositions (b and c) of Hualiangting UHP eclogites and multiple HP veins

      图  2  计算的绿片岩相变质流体的氧逸度条件(a)和绿片岩相条件下退变质金红石的形成(b和c)

      引自Guo et al.(2017)

      Fig.  2.  Calculated oxygen fugacity conditions of the greenschist-facies retrograde fluid (a) and the growth of retrograde rutile at the greenschist-facies condition (b and c)

      图  3  白羊岭含电气石超高压榴辉岩和脉体的手标本(a)和榴辉岩-围岩大理岩的手标本(b)

      引自Guo et al.(2019)

      Fig.  3.  Hand specimens of the Baiyangling UHP eclogite-vein system (a) and eclogite-marble system (b)

      图  4  大别超高压岩石中电气石的硼同位素与主要硼储库的硼同位素对比

      引自Guo et al.(2019)

      Fig.  4.  Boron isotopic compositions of tourmaline from the Dabie UHP rocks in comparison with major boron reservoirs

    • Arculus, R.J., 1985.Oxidation Status of the Mantle:Past and Present.Annual Review of Earth and Planetary Sciences, 13:75-95. https://doi.org/10.1146/annurev.ea.13.050185.000451
      Bali, E., Audétat, A., Keppler, H., 2010.The Mobility of U and Th in Subduction Zone Fluids:An Indicator of Oxygen Fugacity and Fluid Salinity.Contributions to Mineralogy and Petrology, 161(4):597-613. https://doi.org/10.1007/s00410-010-0552-9
      Beinlich, A., Klemd, R., John, T., et al., 2010.Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit:Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction.Geochimica et Cosmochimica Acta, 74(6):1892-1922. https://doi.org/10.1016/j.gca.2009.12.011
      Cao, Y., Song, S.G., Niu, Y.L., et al., 2011.Variation of Mineral Composition, Fabric and Oxygen Fugacity from Massive to Foliated Eclogites during Exhumation of Subducted Ocean Crust in the North Qilian Suture Zone, NW China.Journal of Metamorphic Geology, 29(7):699-720. doi: 10.1111/j.1525-1314.2011.00937.x
      Chen, R.X., Zheng, Y.F., Hu, Z.C., 2012.Episodic Fluid Action during Exhumation of Deeply Subducted Continental Crust:Geochemical Constraints from Zoisite-Quartz Vein and Host Metabasite in the Dabie Orogen.Lithos, 155:146-166. https://doi.org/10.1016/j.lithos.2012.08.023
      Chen, Y., Chen, S., Su, B., et al., 2018.Trace Element Systematics of Granulite-Facies Rutile.Earth Science, 43(1):127-149(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.008
      Chen, Y., Su, B., Guo, S., 2015.The Dabie-Sulu Orogenic Peridotites:Progress and Key Issues.Science China:Earth Sciences, 58(10):1679-1699. doi: 10.1007/s11430-015-5148-9
      Davies, J.H., 1999.The Role of Hydraulic Fractures and Intermediate-Depth Earthquakes in Generating Subduction-Zone Magmatism.Nature, 398:142-145. https://doi.org/10.1038/18202
      De Hoog, J.C.M., Savov, I.P., 2018.Boron Isotopes as aTracer of Subduction Zone Processes.In: Marschall, H.R., Foster, G.L., eds., Boron Isotopes.Advances in Isotope Geochemistry.Springer, Cham, 217-247.
      Dutrow, B.L., Henry, D.J., 2011.Tourmaline:A Geologic DVD.Elements, 7(5):301-306. https://doi.org/10.2113/gselements.7.5.301
      Enami, M., Liou, J.G., Mattinson, C.G., 2004.Epidote Minerals in High P-T Metamorphic Terranes:Subduction Zone and High-to Ultrahigh-Pressure Metamorphism.Reviews in Mineralogy and Geochemistry, 56(1):347-398. https://doi.org/10.2138/gsrmg.56.1.347
      Foster, G.L., Pogge von Strandmann, P.A.E., Rae, J.W.B., 2010.Boron and Magnesium Isotopic Composition of Seawater.Geochemistry, Geophysics, Geosystems, 11(8):Q08015. https://doi.org/10.1029/2010gc003201
      Franz, L., Rolf, L.R., Klemd, R., et al., 2001.Eclogite-Facies Quartz Veins within Metabasites of the Dabie Shan (Eastern China):Pressure-Temperature-Time-Deformation Path, Composition of the Fluid Phase and Fluid Flow during Exhumation of High-Pressure Rocks.Contributions to Mineralogy and Petrology, 141(3):322-346. doi: 10.1007/s004100000233
      Glodny, J., Austrheim, H., Molina, J.F., et al., 2003.Rb\Sr Record of Fluid-Rock Interaction in Eclogites:The Marun-Keu Complex, Polar Urals, Russia.Geochimica et Cosmochimica Acta, 67(22):4353-4371. https://doi.org/10.1016/s0016-7037(03)00370-3
      Guo, S., Chen, Y., Ye, K., et al., 2015.Formation of Multiple High-Pressure Veins in Ultrahigh-Pressure Eclogite (Hualiangting, Dabie Terrane, China):Fluid Source, Element Transfer, and Closed-System Metamorphic Veining.Chemical Geology, 417:238-260. https://doi.org/10.1016/j.chemgeo.2015.10.006
      Guo, S., Tang, P., Su, B., et al., 2017.Unusual Replacement of Fe-Ti Oxides by Rutile during Retrogression in Amphibolite-Hosted Veins (Dabie UHP Terrane):A Mineralogical Record of Fluid-Induced Oxidation Processes in Exhumed UHP Slabs.American Mineralogist, 102(11):2268-2283. https://doi.org/10.2138/am-2017-6120
      Guo, S., Yang, Y.H., Chen, Y., et al., 2016.Grain-Scale Sr Isotope Heterogeneity in Amphibolite (Retrograded UHP Eclogite, Dabie Terrane):Implications for the Origin and Flow Behavior of Retrograde Fluids during Slab Exhumation.Lithos, 266-267:383-405. https://doi.org/10.1016/j.lithos.2016.10.014
      Guo, S., Ye, K., Yang, Y.H., et al., 2014.In Situ Sr Isotopic Analyses of Epidote:Tracing the Sources of Multi-Stage Fluids in Ultrahigh-Pressure Eclogite (Ganghe, Dabie Terrane).Contributions to Mineralogy and Petrology, 167(2):975. https://doi.org/10.1007/s00410-014-0975-9
      Guo, S., Zhao, K.D., John, T., et al., 2019.Metasomatic Flow of Metacarbonate-Derived Fluids Carrying Isotopically Heavy Boron in Continental Subduction Zones:Insights from Tourmaline-Bearing Ultra-High Pressure Eclogites and Veins (Dabie Terrane, Eastern China).Geochimica et Cosmochimica Acta, 253:159-200. https://doi.org/10.1016/j.gca.2019.03.013
      Jiang, S.Y., Yu, J.M., Ling, H.F., et al., 2000.Boron Isotope as a Tracer in the Study of Crust-Mantle Evolution and Subduction Processes.Earth Science Frontiers, 7(2):391-399(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=3a88fa1a5b44118c3736f24ff04ec2c1&encoded=0&v=paper_preview&mkt=zh-cn
      John, T., Gussone, N., Podladchikov, Y.Y., et al., 2012.Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs.Nature Geoscience, 5(7):489-492. https://doi.org/10.1038/ngeo1482
      John, T., Klemd, R., Klemme, S., et al., 2010.Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition.Contributions to Mineralogy and Petrology, 161(1):35-45. https://doi.org/10.1007/s00410-010-0520-4
      Li, X.P., Zheng, Y.F., Wu, Y.B., et al., 2004.Low-T Eclogite in the Dabie Terrane of China:Petrological and Isotopic Constraints on Fluid Activity and Radiometric Dating.Contributions to Mineralogy and Petrology, 148(4):443-470. https://doi.org/10.1007/s00410-004-0616-9
      Luvizotto, G.L., Zack, T., 2009.Nb and Zr Behavior in Rutile during High-Grade Metamorphism and Retrogression:An Example from the Ivrea-Verbano Zone.Chemical Geology, 261(3-4):303-317. https://doi.org/10.1016/j.chemgeo.2008.07.023
      Marschall, H.R.M., 2018.Boron Isotopes in the Ocean Floor Realm and the Mantle.In: Marschall, H.R., Foster, G.L., eds., Boron Isotopes.Advances in Isotope Geochemistry.Springer, Cham, 191-217.
      Marschall, H.R.M, Korsakov, A.V., Luvizotto, G.L., et al., 2009.On the Occurrence and Boron Isotopic Composition of Tourmaline in (Ultra) High-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):811-823. https://doi.org/10.1144/0016-76492008-042
      Martin, L.A.J., Wood, B.J., Turner, S., et al., 2011.Experimental Measurements of Trace Element Partitioning between Lawsonite, Zoisite and Fluid and Their Implication for the Composition of Arc Magmas.Journal of Petrology, 52(6):1049-1075. https://doi.org/10.1093/petrology/egr018
      Mattinson, C.G., Zhang, R.Y., Tsujimori, T., et al., 2004.Epidote-Rich Talc-Kyanite-Phengite Eclogites, Sulu Terrane, Eastern China:P-T-O2 Estimates and the Significance of the Epidote-Talc Assemblage in Eclogite.American Mineralogist, 89(11-12):1772-1783. https://doi.org/10.2138/am-2004-11-1224
      McCulloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374. https://doi.org/10.1016/0012-821x(91)90029-h
      Ni, H.W., Zheng, Y.F., Mao, Z., et al., 2017.Distribution, Cycling and Impact of Water in the Earth's Interior.National Science Review, 4(6):879-891. https://doi.org/10.1093/nsr/nwx130
      Ota, T., Kobayashi, K., Katsura, T., et al., 2008b.Tourmaline Breakdown in a Pelitic System:Implications for Boron Cycling through Subduction Zones.Contributions to Mineralogy and Petrology, 155(1):19-32. https://doi.org/10.1007/s00410-007-0228-2
      Ota, T., Kobayashi, K., Kunihiro, T., et al., 2008a.Boron Cycling by Subducted Lithosphere; Insights from Diamondiferous Tourmaline from the Kokchetav Ultrahigh-Pressure Metamorphic Belt.Geochimica et Cosmochimica Acta, 72(14):3531-3541. https://doi.org/10.1016/j.gca.2008.05.002
      Palmer, M.R., 2017.Boron Cycling in Subduction Zones.Elements, 13(4):237-242. https://doi.org/10.2138/gselements.13.4.237
      Pawley, A.R., Holloway, J.R., McMillan, P.F., 1992.The Effect of Oxygen Fugacity on the Solubility of Carbon-Oxygen Fluids in Basaltic Melt.Earth and Planetary Science Letters, 110(1-4):213-225. https://doi.org/10.1016/0012-821x(92)90049-2
      Poli, S., Schmidt, M.W., 2004.Experimental Subsolidus Studies on Epidote Minerals.Reviews in Mineralogy and Geochemistry, 56(1):171-195. https://doi.org/10.2138/gsrmg.56.1.171
      Putnis, A., John, T., 2010.Replacement Processes in the Earth's Crust.Elements, 6(3):159-164. https://doi.org/10.2113/gselements.6.3.159
      Sheng, Y.M., Zheng, Y.F., Wu, Y.B., 2011.Studies of Metamorphic Vein in Ultrahigh-Pressure Rocks.Acta Petrologica Sinica, 27(2):490-500(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201102009
      Spandler, C., Hermann, J., 2006.High-Pressure Veins in Eclogite from New Caledonia and Their Significance for Fluid Migration in Subduction Zones.Lithos, 89(1-2):135-153. https://doi.org/10.1016/j.lithos.2005.12.003
      Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004.Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization.Nature, 431:975-978. https://doi.org/10.1038/nature02972
      Trumbull, R.B., Slack, J.F., 2018.Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits.In: Marschall, H.R., Foster, G.L., eds., Boron Isotopes.Advances in Isotope Geochemistry.Springer, Cham, 249-272.
      Wang, S.J., Wang, L., Brown, M., et al., 2017.Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust:Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China.Journal of Metamorphic Geology, 35(6):601-629. https://doi.org/10.1111/jmg.12248
      Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
      Williams, H.M., Peslier, A.H., McCammon, C., et al., 2005.Systematic Iron Isotope Variations in Mantle Rocks and Minerals:The Effects of Partial Melting and Oxygen Fugacity.Earth and Planetary Science Letters, 235(1-2):435-452. https://doi.org/10.1016/j.epsl.2005.04.020
      Wu, Y.B., Gao, S., Zhang, H.F., et al., 2009.U-Pb Age, Trace-Element, and Hf-Isotope Compositions of Zircon in a Quartz Vein from Eclogite in the Western Dabie Mountains:Constraints on Fluid Flow during Early Exhumation of Ultrahigh-Pressure Rocks.American Mineralogist, 94(2-3):303-312. https://doi.org/10.2138/am.2009.3042
      Xiao, Y.L., Hoefs, J., Hou, Z.H., et al., 2011.Fluid/Rock Interaction and Mass Transfer in Continental Subduction Zones:Constraints from Trace Elements and Isotopes (Li, B, O, Sr, Nd, Pb) in UHP Rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China.Contributions to Mineralogy and Petrology, 162(4):797-819. https://doi.org/10.1007/s00410-011-0625-4
      Zhang, R.Y., Liou, J.G., Ernst, W.G., 2009.The Dabie-Sulu Continental Collision Zone:A Comprehensive Review.Gondwana Research, 16(1):1-26. https://doi.org/10.1016/j.gr.2009.03.008
      Zhang, Z.M., Shen, K., Sun, W.D., et al., 2008.Fluids in Deeply Subducted Continental Crust:Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China.Geochimica et Cosmochimica Acta, 72(13):3200-3228. https://doi.org/10.1016/j.gca.2008.04.014
      Zhao, Y.J., Wu, Y.B., Liu, X.C., et al., 2016.Distinct Zircon U-Pb and O-Hf-Nd-Sr Isotopic Behaviour during Fluid Flow in UHP Metamorphic Rocks:Evidence from Metamorphic Veins and Their Host Eclogite in the Sulu Orogen, China.Journal of Metamorphic Geology, 34(4):343-362. https://doi.org/10.1111/jmg.12184
      Zheng, Y.F., Gao, T.S., Wu, Y.B., et al., 2007.Fluid Flow during Exhumation of Deeply Subducted Continental Crust:Zircon U-Pb Age and O-Isotope Studies of a Quartz Vein within Ultrahigh-Pressure Eclogite.Journal of Metamorphic Geology, 25(2):267-283. https://doi.org/10.1111/j.1525-1314.2007.00696.x
      Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93
      Zheng, Y.F., Zhang, L.F., McClelland, W.C., et al., 2012.Processes in Continental Collision Zones:Preface.Lithos, 136-139:1-9. https://doi.org/10.1016/j.lithos.2011.11.020
      陈意, 陈思, 苏斌, 等, 2018.麻粒岩相金红石微量元素体系.地球科学, 43(1):127-149. https://doi.org/10.3799/dqkx.2018.008
      蒋少涌, 于际民, 凌洪飞, 等, 2000.壳-幔演化和板块俯冲作用过程中的硼同位素示踪.地学前缘, 7(2):391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008
      盛英明, 郑永飞, 吴元保, 2011.超高压岩石中变质脉的研究.岩石学报, 27(2):490-500. http://d.old.wanfangdata.com.cn/Conference/5806439
    • 加载中
    图(4)
    计量
    • 文章访问数:  3658
    • HTML全文浏览量:  1920
    • PDF下载量:  131
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-28
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回