Reservoir Characteristics of High-Quality Shale of Carboniferour Luzhai Formation in Rongshui Area, Guangxi
-
摘要: 主要以桂融页1井石炭系鹿寨组页岩为研究对象,利用全岩-黏土X衍射、氩离子抛光扫描电镜、核磁共振、现场解吸和地化分析等多种测试手段,结合测录井解释成果,从岩石学、有机地球化学、矿物组成、孔隙类型、储层物性及含气性等方面,系统评价了鹿寨组优质页岩储层特征.结果表明:①石炭系鹿寨组鹿一段优质页岩以黑色碳质页岩和灰黑色灰质页岩为主,主要形成于裂陷海槽沉积环境下的深水相,优质页岩连续厚度大,具备良好的页岩气沉积基础;②页岩有机碳含量高,热演化程度适中,具备良好的生烃基础和生烃能力;③页岩脆性好,孔隙空间发育良好,现场解吸含气性好,具备良好的页岩气储集能力;④页岩分布连续稳定,顶底板条件好,逆断封堵断层有利于页岩气富集保存,具备良好的页岩气保存条件.进一步证实了该地区石炭系鹿寨组具备良好的页岩气富集成藏条件.Abstract: This paper mainly takes the shale of Carboniferous Luzhai Formation of Guirongye 1 well as the research object, systematically evaluates the characteristics of high-quality shale reservoir of Luzhai Formation through the aspects of petrology, organic geochemistry, mineral composition, pore type, reservoir physical property and gas bearing property by using a variety of testing methods such as whole rock clay X-ray diffraction, argon ion polishing scanning electron microscope, nuclear magnetic resonance, field desorption and geochemical analysis, combined with logging interpretation results. The analysis results shows: ① the high-quality shale in the first member of Luzhai Formation of Carboniferous system is mainly black carbonaceous shale and gray black calcareous shale, which is mainly formed in deep-water facies under the sedimentary environment of rift trough. The high-quality shale has a continuous thickness and has a good shale gas sedimentary foundation; ②Luzhai shale formation has high organic carbon content, moderate degree of thermal evolution, and has good hydrocarbon generation basis and hydrocarbon generation capacity; ③Luzhai shale formation has good brittleness, well developed pore space, good desorption gas bearing property on site and good shale gas storage capacity; ④ The distribution of shale is continuous and stable, and the conditions of roof and floor are good. Fault reverse plugging is conducive to the enrichment and preservation of shale gas, which has good conditions for shale gas preservation. It is further confirmed that the Carboniferous Luzhai Formation in this area has good conditions for rich shale gas accumulation.
-
图 10 桂融页1井石炭系鹿寨组页岩氩离子抛光+扫描电子显微镜检测结果
a. 全貌, 结构致密, 各矿物组分相间分布, 方解石含量较高, 溶蚀现象多见, 有机质多呈线状(100×);b. 图片01局部放大, 粒径不一的方解石发育溶蚀孔、粒内裂隙,能谱确认(800×); c. 图片02局部放大,微晶方解石、片状云母、高岭石等相间分布,黏土矿物发育层间缝,能谱确认(6 000×); d. 图片01局部放大,微粒状石英发育稀疏状孔隙,方解石发育溶蚀孔(800×);e. 图片01局部放大,散块状有机质与周围矿物组分致密接触(2 400×);f. 图片05局部放大,有机质发育孤立状孔隙(30 000×);g. 图片01局部放大,微粒状方解石发育少量溶蚀孔,有机质充填方解石粒缘孔隙(2 000×); h. 图片07局部放大,有机质致密充填草莓状黄铁矿晶间孔(16 000×)
Fig. 10. Argon ion polishing and scanning electron microscope test results of Luzhai Formation shale of Carboniferous system in Guirongye 1 well
表 1 石炭系海相页岩岩相分类
Table 1. Lithofacies classification of Carboniferous marine shale
大类 亚类 硅质含量 灰质含量 泥质含量 硅岩 > 75% < 25% < 25% S 硅质页岩 S-1 富灰硅质页岩 50%~75% 25%~50% < 25% S-2 硅质页岩 50%~75% < 25% < 25% S-3 富泥硅质页岩 50%~75% < 25% 25%~50% M 混合质页岩 M-1 富灰/硅混合质页岩 25%~50% 25%~50% < 25% M-2 富泥/硅混合质页岩 25%~50% < 25% 25%~50% M-3 混合质页岩 25%~50% 25%~50% 25%~50% M-4 富泥/灰混合质页岩 < 25% 25%~50% 25%~50% 泥岩 < 25% < 25% > 75% CM 泥质页岩 CM-1 富硅泥质页岩 25%~50% < 25% 50%~75% CM-2 泥质页岩 < 25% < 25% 50%~75% CM-3 富灰泥质页岩 < 25% 25%~50% 50%~75% 灰岩 < 25% > 75% < 25% C 灰质页岩 C-1 富硅灰质页岩 25%~50% 50%~75% < 25% C-2 灰质页岩 < 25% 50%~75% < 25% C-3 富泥灰质页岩 < 25% 50%~75% 25%~50% 表 2 桂融页1井取心样品X-衍射全岩矿物分析
Table 2. X-ray diffraction whole-rock mineral analysis of Guirongye 1 well coring sample
深度(m) 矿物成分含量(%) 石英 钾长石 斜长石 方解石 白云石 菱铁矿 黄铁矿 黏土矿物 1 417.90 39 0 0 31 5 0 2 23 1 535.00 27 0 0 43 5 0 2 23 1 547.50 48 0 0 7 0 0 3 42 1 552.00 33 0 0 25 6 0 2 34 1 566.00 43 0 0 20 3 0 2 32 1 603.10 47 0 0 11 0 0 4 38 1 608.10 44 0 0 8 0 0 3 45 1 615.60 38 0 0 24 0 0 3 35 1 617.98 48 0 0 25 0 0 2 25 1 624.06 35 0 0 42 5 0 3 15 1 625.80 25 0 0 41 4 0 3 27 1 626.75 19 0 0 70 0 0 0 11 1 629.50 42 0 0 9 0 0 4 45 1 631.80 40 0 0 19 0 0 3 38 1 633.80 9 0 0 80 5 0 2 4 3 014.80 35 0 6 0 16 0 3 40 3 023.80 68 0 6 0 0 0 2 24 3 265.30 28 0 17 0 0 0 0 55 3 266.50 37 2 24 0 0 0 0 37 3 288.40 38 0 22 21 2 0 0 17 表 3 桂融页1井取心样品X-衍射粘土矿物分析
Table 3. X-ray diffraction clay mineral analysis of Guirongye 1 well coring sample
深度(m) 黏土矿物含量(%) 伊/蒙混层比(%) 蒙皂石 伊利石 高岭石 绿泥石 伊/蒙混层 绿/蒙混层 蒙皂石层 伊利石层 S I K C I/S C/S S(%) I(%) 1 417.90 0 66 16 2 16 0 10 90 1 535.00 0 52 29 5 14 0 10 90 1 547.50 0 55 24 5 16 0 10 90 1 552.00 0 54 24 5 17 0 10 90 1 566.00 0 60 21 4 15 0 10 90 1 603.10 0 61 19 4 16 0 10 90 1 608.10 0 63 17 3 17 0 10 90 1 613.60 0 58 22 2 18 0 10 90 1 615.60 0 59 21 3 17 0 10 90 1 617.98 0 38 14 4 44 0 5 95 1 624.06 0 36 20 5 39 0 5 95 1 625.80 0 59 23 2 16 0 10 90 1 626.75 0 40 42 8 10 0 5 95 1 629.50 0 37 21 5 37 0 5 95 1 633.80 0 14 66 13 7 0 5 95 3 014.80 0 54 6 30 10 0 5 95 3 023.80 0 61 4 20 15 0 5 95 3 265.30 0 43 6 40 11 0 5 95 3 266.50 0 61 3 28 8 0 5 95 3 288.40 0 54 6 33 7 0 5 95 表 4 桂融页1井取心样品镜质体反射率Ro分析测试结果
Table 4. Laboratory Ro test results of Guirongye 1 well coring sample
采样深度(m) 镜质体反射率Ro(%) 最小值 最大值 平均值 1 256.00 1.82 2.23 2.08 1 362.06 2.5 2.79 2.62 1 417.90 2.15 2.30 2.32 1 419.98 2.45 2.72 2.65 1 461.00 2.07 2.28 2.16 1 535.00 2.35 2.62 2.43 1 536.01 2.56 2.89 2.67 1 547.50 2.65 2.91 2.71 1 552.00 2.52 2.89 2.73 1 554.50 2.52 2.87 2.64 1 566.00 2.56 2.95 2.82 1 603.10 2.53 2.97 2.85 1 605.00 2.1 2.32 2.21 1 608.10 2.45 2.93 2.84 1 615.60 2.59 3.05 2.87 1 617.98 2.29 2.6 2.46 1 629.50 2.59 2.82 2.68 2 350.00 3.25 3.39 3.32 3 014.80 3.08 3.52 3.29 3 265.30 3.75 4.08 3.91 TT-03 2.18 2.4 2.29 TT-08(b) 2.22 2.47 2.31 TT-13(t) 2.17 2.45 2.34 表 5 桂融页1井取心样品干酪根显微组分鉴定及类型划分
Table 5. Identification and classification of kerogen macerals of Guirongye 1 well coring sample
深度(m) 腐泥组(%) 壳质组(%) 镜质组(%) 惰质组(%) 类型 腐泥组无定形体 腐殖无定形体 正常镜质体 丝质体 类型指数 类型 1 419.98 43 36 10 11 42.5 Ⅱ1 1 536.01 34 43 13 10 35.8 Ⅱ2 1 554.50 44 35 9 12 42.8 Ⅱ1 1 603.05 38 39 10 13 37.0 Ⅱ2 1 629.50 40 43 9 8 46.8 Ⅱ1 1 417.90 42 42 12 4 50.0 Ⅱ1 1 535.00 38 39 21 2 39.8 Ⅱ2 1 547.50 37 45 16 2 45.5 Ⅱ1 1 566.00 39 41 17 3 43.8 Ⅱ1 1 603.10 40 38 20 2 42.0 Ⅱ1 1 608.10 35 46 18 1 43.5 Ⅱ1 1 615.60 37 48 13 2 49.3 Ⅱ1 1 625.80 39 47 11 3 51.3 Ⅱ1 -
Chen, X. L., Yuan, K., Lin, T., et al., 2021. Discovery of Shale Gas within Upper Paleozoic Marine Facies by Qian Shuidi-1 Well in the Northwest of Yaziluo Rift Trough, Sichuan Province. Geology in China, 48(2): 661-662(in Chinese with English abstract). Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36(in Chinese with English abstract). Guo, X. S., 2014. Rules of Two-Factor Enrichiment for Marine Shale Gas in Southern China—Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area. Acta Geologica Sinica, 88(7): 1209-1218 (in Chinese with English abstract). He, X. Y., Yao, G. S., He, X. S., et al., 2010. Bitumen Genesis and Hydrocarbon Accumulation Pattern of Well Guizhong-1 in Guizhong Depression. Acta Petrolei Sinica, 31(3): 420-425, 431 (in Chinese with English abstract). Hou, F. H., Huang, J. X., Fang, S. X., et al., 1988. Sedimentary Characteristics Tectonic Activity and Oil-Gas Prospects of the Deep-Water Deposltional Environment During Devonian and Carboniferous Periods in South China. Journal of Southwest Petroleum Institute, 10(4): 1-19(in Chinese with English abstract). Hu, D. F., Zhang, H. R., Ni, K., Yu, G. C., 2014. Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Natural Gas Industry, 34(6): 17-23. Hu, D. F., Wei, Z. H., Liu, R. B., et al., 2018. Development Characteristics and Shale Gas Exploration Potential of Lower Carboniferous Black Shale in Guizhong Depression. Natural Gas Industry, 38(10): 28-37 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2018.10.004 Huang, J. L., Zou, C. N., Li, J. Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract). Jin, Z. J., Hu, Z. Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10 (in Chinese with English abstract). Li, A., Shi, W. R., Yuan, Z. H., et al., 2016. Main Factors Controlling Marine Shale Gas Accumulation in Jiaoshiba Shale Gas Field of Fuling Area. Unconventional Oil & Gas, 3(1): 27-34 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-8471.2016.01.005 Liang, D. G., Guo, T. L., Bian, L. Z., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. Marine Origin Petroleum Geology, 14(2): 1-19 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2009.02.001 Liu, S. G., Ran, B., Guo, T. L., et al., 2014. Lower Palaeozoic Organic-Matter-Rich Black Shale in the Sichuan Basin and Its Periphery: From Oil-Prone Source Rock to Gas-Producting Shale Reservoir. Science Press, Beijing, 42-294 (in Chinese with English abstract). Liu, B., Fu, Y. W., 2016. Practice on Shale Gas Volume Fracturing for Qiongzhusi Formation in JY1HF Well. Complex Hydrocarbon Reservoirs, 9(3): 69-73 (in Chinese with English abstract). Luo, H. W., Hou, M. C., Liu, Y., et al., 2019. Geochemical Characteristics and Organic Matter Enrichment of the Lower Section of Luzhai Formation in Luzhai Area, Guangxi, China. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2): 227-239 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2019.02.11 Luo, S. Y., Wang, C. S., Peng, Z. Q., 2016. Shale Gas Research of Luzhai Formation, Low Carboniferous in Guizhong Depression. Geology and Mineral Resources of South China, 32(2): 180-190 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2016.02.011 Ma, Y. S., Cai, X. Y., Zhao, P. R., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574 (in Chinese with English abstract). Mei, J., Ji, Y. B., Ren, J. L., et al., 2021. Shale Gas Accumulation Conditions in the Lower Carboniferous Jiusi Formation of Dianqianbei Depression. Natural Gas Industry, 41(S1): 51-59 (in Chinese with English abstract). Meng, Q. F., Hou, G. T., 2012. Geological Controls on Shale Gas Play and Potential of Shale Gas Resource in Upper Yangtze Region, China. Petroleum Geology and Recovery Efficiency, 19(1): 11-14, 111 (in Chinese with English abstract). Mu, C. L., Zhou, K. K., Liang, W., et al., 2011. Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration. Acta Geologica Sinica, 85(4): 526-532 (in Chinese with English abstract). Nie, H. k., Jin, Z. j., Bian, R. k., et al., 2016. The "Source-Cap Hydrocarbon-Controlling" Enrichment of Shale Gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 37(5): 557-571 (in Chinese with English abstract). Ou, X. Y., Li, H. L., Yang, F. Q., et al., 2019. Application of Integrated Gravitational, Magnetic and Electrical Geophysical Methods to the Shale Gas Geological Exploration in Southern: A Case Study of Luzhai, Guizhong Depression. Progress in Geophysics, 34(3): 1081-1088 (in Chinese with English abstract). Peng, Z. Q., Wang, C. S, Li, Z. H., et al., 2014. The Early Carboniferous Sequence Stratigraphy on the Eastern Margin of the Guizhong Depression, Guangxi. Geology in China, 41(5): 1503-1514 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2014.05.008 Shan, C. A., Zhang, T. S., Guo, J. J., et al., 2015. Geological Characteristics and Resource Potential of the Upper Sinian Doushantuo Formation Shale Gas in the North of Middle Yangtze Region. Geology in China, 42(6): 1944-1958(in Chinese with English abstract). Wang, H. Y., Guo, W., Liang, F., et al., 2015. Biostratigraphy Characteristics and Scientific Meaning of the Wufeng and Longmaxi Formation Black Shales at Well Wei 202 of the Weiyuan Shale Gas Field, Sichuan Basin. Journal of Stratigraphy, 39(3): 289-293 (in Chinese with English abstract). Wang, S. J., Wang, L. S., Huang, J. L., et al., 2009. Accumulation Conditions of Shale Gas Reservoirs in Silurian of the Upper Yangtze Region. Natural Gas Industry, 29(5): 45-50, 137 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2009.05.009 Wang, Y. F., Zhai, G. Y., Bao, S. J., et al., 2017a. Evaluation of Sinian Doushantuo Formation Shale Gas Content and Fracturing Property of Eyangye1 Well in Hubei Province. China Mining Magazine, 26(6): 166-172 (in Chinese with English abstract). Wang, Y. F., Zhai, G. Y., Leng, J. G., et al., 2017b. Well TX1 Fracturing Effect Evaluation of Niutitang Formation Shale in Cengong, Guizhou. Earth Science, 42(7): 1107-1115 (in Chinese with English abstract). Wang, Y. F., Zhai, G. Y., Lu, Y. C., et al., 2018. Sedimentary Lithofacies Characteristics and Sweet-Spot Interval Characterization of the Sinian Doushantuo Formation in Upper Yangtze Platform, South China. China Geology, 2(3): 261-275. https://doi.org/10.31035/cg2018119 Xin, Y. L., Wang, J. Z., Jin, C. S., 2018. Sedimentary System and the Shale-Gas Favorable Area of the Carboniferous in the Nanpanjiang Basin. Geoscience, 32(4): 774-785 (in Chinese with English abstract). Yang, G. Q., Hou, D. J., Bao, S. J., et al., 2012. Division Methods of Vertical Assessment Units of Shale Gas Plays. Natural Gas Industry, 32(12): 118-122, 137 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2012.12.026 Zhai, G. Y., Wang, Y. F., Zhou, Z., et al., 2018. Exploration and Research Progress of Shale Gas in China. China Geology, 1(2): 257-272. https://doi.org/10.31035/cg2018024 Zhai, G. Y., Wang, Y. F., Bao, S. J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7): 1057-1068(in Chinese with English abstract). Zhai, G. Y., Wang, Y. F., Liu, G. H., et al., 2019. The Sinian-Cambrian Formation Shale Gas Exploration and Practice in Southern Margin of Huangling Paleo-Uplift. Marine and Petroleum Geology, 109: 419-433. https://doi.org/10.1016/j.marpetgeo.2019.06.036 Zhai, G. Y., Wang, Y. F., Liu, G. H., et al., 2020. Accumulation Model of the Sinian-Cambrian Shale Gas in Western Hubei Province, China. Journal of Geomechanics, 26(5): 696-713(in Chinese with English abstract). Zhang, K. M., Fan, Z. W., Ma, C. X., et al., 2018. Analysis of the Provenance and Lithofacies Palaeogeography Sedimentary Facies in Simen Formation in the Lower Carboniferous in Guizhong Area. Journal of Northeast Petroleum University, 42(6): 10-21, 5 (in Chinese with English abstract). Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). doi: 10.11698/PED.2016.04.01 Zhou, W., Jiang, Z. X., Qiu, H. Y., et al., 2019. Shale Gas Accumulation Conditions and Prediction of Favorable Areas for the Lower Carboniferous Luzhai Formation in Guizhong Depression. ActaPetroleiSinica, 40(7): 798-812 (in Chinese with English abstract). Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects(Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract). doi: 10.11698/PED.2015.06.01 陈相霖, 苑坤, 林拓, 等, 2021. 四川垭紫罗裂陷槽西北缘(黔水地1井)发现上古生界海相页岩气. 中国地质, 48(2): 661-662. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102023.htm 郭彤楼, 张汉荣, 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm 郭旭升, 2014. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识. 地质学报, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm 贺训云, 姚根顺, 贺晓苏, 等, 2010. 桂中坳陷桂中1井沥青成因及油气成藏模式. 石油学报, 31(3): 420-425, 431. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201003011.htm 侯方浩, 黄继祥, 方少仙, 等, 1988. 中国南方泥盆纪、石炭纪深水沉积环境沉积特征、构造活动及含油气性. 西南石油学院学报, 10(4): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY198804000.htm 胡东风, 张汉荣, 倪楷, 余光春, 2014. 四川盆地东南缘海相页岩气保存条件及主控因素. 天然气工业, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm 胡东风, 魏志红, 刘若冰, 等, 2018. 桂中坳陷下石炭统黑色页岩发育特征及页岩气勘探潜力. 天然气工业, 38(10): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201810005.htm 黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm 金之钧, 胡宗全, 高波, 等, 2016. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm 李昂, 石文睿, 袁志华, 等, 2016. 涪陵页岩气田焦石坝海相页岩气富集主控因素分析. 非常规油气, 3(1): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201601005.htm 梁狄刚, 郭彤楼, 边立曾, 等, 2009. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htm 刘斌, 付育武, 2016. JY1HF井筇竹寺组页岩气体积压裂实践. 复杂油气藏, 9(3): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201603015.htm 刘树根, 冉波, 郭彤楼, 等, 2014. 四川盆地及周缘下古生界富有机质黑色页岩: 从优质烃源岩到页岩气产层. 北京: 科学出版社, 42-294. 罗宏谓, 侯明才, 刘宇, 等, 2019. 桂中鹿寨地区鹿寨组下段地球化学特征及有机质富集因素. 成都理工大学学报(自然科学版), 46(2): 227-239. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201902012.htm 罗胜元, 王传尚, 彭中勤, 2016. 桂中坳陷下石炭统鹿寨组页岩气研究. 华南地质与矿产, 32(2): 180-190. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201602012.htm 马永生, 蔡勋育, 赵培荣, 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm 梅珏, 计玉冰, 任景伦, 等, 2021. 滇黔北坳陷下石炭统旧司组页岩气成藏条件. 天然气工业, 41(S1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1008.htm 孟庆峰, 侯贵廷, 2012. 页岩气成藏地质条件及中国上扬子区页岩气潜力. 油气地质与采收率, 19(1): 11-14, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201201008.htm 牟传龙, 周恳恳, 梁薇, 等, 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探. 地质学报, 85(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htm 聂海宽, 金之钧, 边瑞康, 等, 2016. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气"源-盖控藏"富集. 石油学报, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htm 区小毅, 黎海龙, 杨富强, 等, 2019. 重磁电综合物探技术在南方页岩气地质调查中的应用研究: 以桂中坳陷鹿寨地区为例. 地球物理学进展, 34(3): 1081-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903027.htm 彭中勤, 王传尚, 李志宏, 等, 2014. 广西桂中坳陷东缘早石炭世斜坡相层序地层研究. 中国地质, 41(5): 1503-1514. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201405008.htm 单长安, 张廷山, 郭军杰, 等, 2015. 中扬子北部上震旦统陡山沱组地质特征及页岩气资源潜力分析. 中国地质, 42(6): 1944-1958. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201506021.htm 王红岩, 郭伟, 梁峰, 等, 2015. 四川盆地威远页岩气田五峰组和龙马溪组黑色页岩生物地层特征与意义. 地层学杂志, 39(3): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201503006.htm 王社教, 王兰生, 黄金亮, 等, 2009. 上扬子区志留系页岩气成藏条件. 天然气工业, 29(5): 45-50, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905009.htm 王玉芳, 翟刚毅, 包书景, 等, 2017a. 鄂阳页1井陡山沱组页岩储层含气性及可压性评价. 中国矿业, 26(6): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201706032.htm 王玉芳, 翟刚毅, 冷济高, 等, 2017b. 贵州岑巩TX1井牛蹄塘组页岩压裂效果评价. 地球科学, 42(7): 1107-1115. doi: 10.3799/dqkx.2017.089 辛云路, 王劲铸, 金春爽, 2018. 南盘江盆地石炭系沉积体系及页岩气有利区带. 现代地质, 32(4): 774-785. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201804014.htm 杨光庆, 侯读杰, 包书景, 等, 2012. 页岩气纵向评价单元划分的方法. 天然气工业, 32(12): 118-122, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201212039.htm 翟刚毅, 王玉芳, 包书景, 等, 2017. 我国南方海相页岩气富集高产主控因素及前景预测. 地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085 翟刚毅, 王玉芳, 刘国恒, 等, 2020. 鄂西地区震旦系—寒武系页岩气成藏模式. 地质力学学报, 26(5): 696-713. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005007.htm 张矿明, 范志伟, 马成宪, 等, 2018. 桂中地区下石炭统寺门组物源特征与岩相古地理分析. 东北石油大学学报, 42(6): 10-21, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201806003.htm 赵文智, 李建忠, 杨涛, 等, 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm 周雯, 姜振学, 仇恒远, 等, 2019. 桂中坳陷下石炭统鹿寨组页岩气成藏条件和有利区预测. 石油学报, 40(7): 798-812. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201907005.htm 邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506002.htm