Diagenetic-Metallogenic Age and Mineralization Potential of Longsang Porphyry Cu-Mo Deposit, Gongbu Jiangda County, Xizang
-
摘要: 隆桑矿区是目前冈底斯成矿带东段正在开展矿产勘查工作的一个斑岩型铜钼矿区,为进一步厘定矿区成岩-成矿时代,评价成矿潜力,开展了详细的野外地质调查、钻孔岩心编录,并对赋矿岩体黑云母花岗闪长岩和黑云母二长花岗斑岩开展锆石U-Pb定年和锆石微量元素分析、对辉钼矿脉开展Re-Os定年.测得赋矿岩体成岩年龄分别为(21.80±0.29)Ma和(21.68±0.23)Ma,辉钼矿成矿年龄为(19.1±0.6)Ma;此外,锆石微量元素具有较高的Ce/Nd、(Ce/Nd)/Y和较低的Dy/Yb比值,且有负Eu异常和正Ce异常,表明岩浆具有高氧逸度和含水性的特征,有利于铜、钼等成矿元素富集和运移.综上所述,隆桑矿区成岩-成矿时代为中新世、成矿潜力较好,研究成果对丰富冈底斯东段矿床时空分布规律具有重要意义.Abstract: The Longsang deposit is a porphyry copper-molybdenum mining area where mineral exploration is currently underway in the eastern section of the Gangdese metallogenic belt. To further constrain the magmatic-mineralization age and evaluate the metallogenic potential of the ore-bearing intrusions, detailed field geological surveys, and drill core logging were conducted, and zircon U-Pb dating and trace element analysis were performed on the mineralized rock bodies of biotite granodiorite and biotite monzogranite porphyry, with Re-Os dating of molybdenite veins in this study. The results indicate that the ore-bearing intrusions in the Longsang deposit are of crystallization ages of (21.80±0.29) Ma and (21.68±0.23) Ma, while the molybdenite mineralization age is (19.1±0.6) Ma. Additionally, zircon trace elements exhibit high Ce/Nd, (Ce/Nd)/Y, and low Dy/Yb ratios, along with negative Eu anomalies and positive Ce anomalies, indicating that the magma had high oxygen fugacity and water content, which facilitated the enrichment and transport of ore-forming elements such as Cu and Mo. In conclusion, the Longsang deposit underwent diagenetic mineralization during the Miocene epoch, demonstrating significant mineralization potential. These findings provide valuable insights into the spatiotemporal distribution patterns of deposits in the eastern Gangdese belt, contributing to a deeper understanding of regional metallogeny.
-
图 1 青藏高原大地构造简图(a,b.据Zhu et al.,2011修改)、冈底斯成矿带地质简图及矿床类型分布示意(c.据何青等,2023修改)
Fig. 1. A tectonic map of Himalayan-Tibetan orogen (a, b. modified after Zhu et al.,20l1), geological map of Gangdese and schematic diagram of deposit type distribution (c. modified after He et al., 2023)
图 11 隆桑矿区黑云母花岗闪长岩(a)和黑云母二长花岗斑岩(b)锆石稀土元素配分图(标准化值据Sun and McDonough,1989)
Fig. 11. Chondrites-normalized rare earth element patterns of zircons from biotite granodiorite (a) and biotite monzonitic granite porphyry (b) in Longsang deposit (standardized value according to Sun and McDonough, 1989)
图 12 冈底斯成矿带东段主要矿床岩浆演化与成矿关系
据郑有业等(2021)修改;主要矿床成岩‒成矿年龄数据来自侯增谦等(2004);王保弟等(2010);高一鸣等(2012);Wang et al.(2012a);Chen et al.(2014);Zheng et al.(2014,2016);Leng et al.(2016);Huang et al.(2017);Li et al.(2017);Shi et al.(2024)
Fig. 12. Magmatic evolution and mineralization relationship of the main deposits in the eastern section of the Gangdese orogenic belt
图 13 隆桑矿区黑云母花岗闪长岩和黑云母二长花岗斑岩锆石微量元素特征
冈底斯带斑岩型矿床数据引自Wang et al.(2018)、李秋耘等(2021)、Sun et al.(2023)
Fig. 13. Trace element characterization in zircon from biotite granodiorite and biotite monzonitic granite porphyry in Longsang deposit
图 14 隆桑矿区黑云母花岗闪长岩和黑云母二长花岗斑岩锆石T-logfO2图解
底图据Wang et al.(2012b)修改;HM.赤铁矿‒磁铁矿;NNO.自然镍-绿镍矿;FMQ.铁橄榄石‒磁铁矿‒石英;IW.自然铁‒方铁矿;QIF.石英=自然铁‒铁橄榄石
Fig. 14. T- logfO2 in zircon from biotite granodiorite and biotite monzonitic granite porphyry in Longsang deposit
图 15 隆桑矿区黑云母花岗闪长岩和黑云母二长花岗斑岩锆石△FMQ-锆石Ti温度计图解(a),锆石△FMQ-Ce zircon图解(b)(据Cao et al.,2021修改)
Fig. 15. Zircon △FMQ-zircon Ti thermometer (a) and zircon △FMQ-Ce zircon (b) in zircon from biotite granodiorite and biotite monzonitic granite porphyry in Longsang deposit(modified after Cao et al., 2021)
表 1 隆桑矿区黑云母花岗闪长岩和黑云母二长花岗斑岩锆石LA-ICP-MS U-Pb定年结果
Table 1. LA-ICP-MS U-Pb geochronology results of zircon from biotite granodiorite and biotite monzonitic granite porphyry in Longsang deposit
测点号 含量(10‒6) Th/U 同位素比值 年龄(Ma) Th U $ \frac{{}^{207}\mathrm{P}\mathrm{b}}{{}^{206}\mathrm{P}\mathrm{b}} $ 1σ $ \frac{{}^{207}\mathrm{P}\mathrm{b}}{{}^{235}\mathrm{U}} $ 1σ $ \frac{{}^{206}\mathrm{P}\mathrm{b}}{{}^{238}\mathrm{U}} $ 1σ $ \frac{{}^{206}\mathrm{P}\mathrm{b}}{{}^{238}\mathrm{U}} $ 1σ 黑云母花岗闪长岩 1 757 892 0.85 0.051 3 0.002 9 0.023 86 0.001 35 0.003 44 0.000 07 22.1 0.46 2 794 516 1.54 0.046 4 0.003 1 0.021 82 0.001 42 0.003 42 0.000 05 22.0 0.32 3 482 302 1.60 0.051 7 0.005 2 0.023 36 0.001 89 0.003 45 0.000 07 22.2 0.43 4 225 276 0.82 0.047 1 0.004 7 0.022 73 0.001 96 0.003 54 0.000 06 22.8 0.41 5 545 382 1.43 0.051 0 0.003 8 0.024 12 0.001 48 0.003 55 0.000 07 22.9 0.44 6 487 443 1.10 0.051 8 0.004 3 0.023 45 0.001 77 0.003 41 0.000 07 21.9 0.45 7 337 275 1.22 0.046 8 0.004 4 0.020 46 0.001 54 0.003 33 0.000 07 21.4 0.45 8 1 190 449 2.65 0.048 4 0.003 8 0.021 46 0.001 49 0.003 23 0.000 06 20.8 0.36 9 273 272 1.00 0.048 4 0.004 3 0.021 96 0.001 58 0.003 37 0.000 06 21.7 0.40 10 314 325 0.97 0.052 7 0.004 8 0.023 73 0.001 69 0.003 40 0.000 07 21.9 0.47 11 179 201 0.89 0.049 4 0.005 0 0.022 37 0.001 62 0.003 37 0.000 09 21.7 0.55 12 561 406 1.38 0.049 5 0.004 1 0.021 58 0.001 44 0.003 34 0.000 06 21.5 0.41 13 783 430 1.82 0.048 0 0.003 6 0.022 61 0.001 47 0.003 55 0.000 07 22.8 0.48 14 414 314 1.32 0.047 6 0.004 2 0.022 46 0.001 57 0.003 48 0.000 07 22.4 0.42 15 331 341 0.97 0.050 2 0.003 9 0.022 45 0.001 49 0.003 33 0.000 06 21.5 0.41 16 787 455 1.73 0.049 6 0.003 7 0.021 63 0.001 38 0.003 30 0.000 06 21.2 0.39 17 355 290 1.22 0.049 1 0.004 4 0.021 60 0.001 71 0.003 32 0.000 07 21.4 0.47 18 715 440 1.62 0.047 9 0.003 1 0.021 19 0.001 18 0.003 29 0.000 05 21.2 0.32 19 437 356 1.23 0.048 9 0.004 0 0.022 51 0.001 60 0.003 37 0.000 09 21.7 0.57 黑云母二长花岗斑岩 1 479 315 1.52 0.046 7 0.003 7 0.021 36 0.001 20 0.003 35 0.000 06 21.6 0.41 2 624 424 1.47 0.047 8 0.003 5 0.022 22 0.001 33 0.003 52 0.000 07 22.7 0.42 3 628 410 1.53 0.046 4 0.003 3 0.022 23 0.001 41 0.003 50 0.000 06 22.5 0.39 4 775 381 2.04 0.047 4 0.003 7 0.021 82 0.001 42 0.003 36 0.000 05 21.6 0.30 5 357 271 1.32 0.046 1 0.004 7 0.021 81 0.001 77 0.003 56 0.000 07 22.9 0.44 6 318 281 1.13 0.050 3 0.005 4 0.022 15 0.001 82 0.003 44 0.000 08 22.2 0.50 7 541 749 0.72 0.048 1 0.002 9 0.021 95 0.001 16 0.003 39 0.000 06 21.8 0.39 8 672 498 1.35 0.047 5 0.003 3 0.021 29 0.001 29 0.003 32 0.000 05 21.4 0.33 9 459 314 1.46 0.047 8 0.004 5 0.021 53 0.001 67 0.003 35 0.000 07 21.6 0.45 10 1 092 1 515 0.72 0.046 6 0.002 0 0.021 33 0.000 86 0.003 33 0.000 04 21.5 0.25 11 297 317 0.94 0.048 2 0.004 4 0.021 11 0.001 51 0.003 31 0.000 07 21.3 0.46 12 306 321 0.95 0.049 5 0.005 0 0.020 95 0.001 65 0.003 27 0.000 07 21.0 0.44 13 162 142 1.14 0.052 0 0.007 3 0.022 07 0.002 09 0.003 35 0.000 09 21.6 0.56 14 354 284 1.24 0.048 7 0.005 2 0.022 75 0.002 18 0.003 52 0.000 08 22.6 0.49 15 883 502 1.76 0.049 8 0.004 1 0.022 12 0.001 46 0.003 33 0.000 07 21.5 0.46 16 613 450 1.36 0.048 2 0.003 5 0.021 48 0.001 33 0.003 31 0.000 05 21.3 0.35 17 375 324 1.16 0.051 5 0.004 3 0.023 22 0.001 50 0.003 43 0.000 07 22.0 0.46 18 494 615 0.80 0.050 5 0.004 2 0.022 16 0.001 62 0.003 30 0.000 06 21.2 0.39 19 528 382 1.38 0.050 2 0.004 0 0.021 91 0.001 47 0.003 29 0.000 06 21.2 0.41 20 318 297 1.07 0.049 9 0.006 0 0.021 21 0.001 90 0.003 41 0.000 09 21.9 0.55 21 423 343 1.23 0.051 5 0.005 4 0.023 50 0.002 10 0.003 35 0.000 16 21.6 1.00 22 1 155 490 2.36 0.046 1 0.003 5 0.020 93 0.001 60 0.003 39 0.000 12 21.8 0.74 表 2 隆桑矿区辉钼矿Re-Os定年分析结果
Table 2. Molybdenite Re-Os isotopic analysis of representative samples in Longsang deposit
样品号 Re(10‒6) 187Re(10‒6) 187Os(10‒9) 模式年龄(Ma) 测定值 1σ 测定值 1σ 测定值 1σ 测定值 1σ ZK1111-396 158 081 1 995 98 959 1 249 31.77 1.35 19.3 0.8 ZK1107-416 74 217 1 916 46 460 1 199 14.65 0.36 18.9 0.5 ZK1107-416.2 68 072 781 42 613 489 13.96 0.62 19.7 0.9 ZK1103-102.8 99 458 1 942 62 261 1 216 19.75 0.69 19.0 0.7 ZK1103-321 369 727 11 417 231 449 7 147 73.60 2.49 19.1 0.6 -
Burnham, A. D., Berry, A. J., Halse, H. R., et al., 2015. The Oxidation State of Europium in Silicate Melts as a Function of Oxygen Fugacity, Composition and Temperature. Chemical Geology, 411: 248-259. https://doi.org/10.1016/j.chemgeo.2015.07.002 Cao, K., Yang, Z. M., Hou, Z. Q., et al., 2021. Contrasting Porphyry Cu Fertilities in the Yidun Arc, Eastern Tibet: Insights from Zircon and Apatite Compositions and Implications for Exploration. Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards (Volume Ⅱ). Society of Economic Geologists Special Publication, 24(2): 231-255. https://doi.org/10.5382/sp.24.13 Chen, R., Liu, Y. L., Guo, L. S., et al., 2014. Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet. Acta Geologica Sinica-English Edition, 88(3): 780-800. https://doi.org/10.1111/1755-6724.1223 Ci, Q., Zheng, Y. Y., Wu, S., et al., 2025. Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang. Earth Science, 50(4): 1305-1318 (in Chinese with English abstract). Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0 Gao, Y. M., Chen, Y. C., Tang, J. X., et al., 2012. A Study of Diagenetic and Metallogenic Geochronology of the Dagbo Cu (Mo) Deposit in Quxur County of Tibet and Its Geological Implications. Acta Geoscientica Sinica, 33(4): 613-623 (in Chinese with English abstract). He, Q., Lang, X. H., Wang, X. H., et al., 2023. Geological Characteristics, In-Situ Sulfur Isotope Composition, and Genesis of the Dongga Gold Deposit in Xiongcun Area, Tibet. Acta Geoscientica Sinica, 44(6): 1000-1016 (in Chinese with English abstract). Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 Hou, Z. Q., Gao, Y. F., Meng, X. J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract). Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of Giant Copper Deposits in Tibet Driven by Tearing of the Subducted Indian Plate. Earth-Science Reviews, 243: 104482. https://doi.org/10.1016/j.earscirev.2023.104482 Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638 (in Chinese with English abstract). Huang, Y., Li, G. M., Ding, J., et al., 2017. Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China. Acta Geologica Sinica - English Edition, 91(1): 109-134. https://doi.org/10.1111/1755-6724.13066 Huang, Y. G., Han, F., Kang, Z. Q., et al., 2024. Geochronology and Geochemistry of the Linzizong Volcanic Succession, Namling Basin, Xizang. Earth Science, 49(3): 822-836 (in Chinese with English abstract). Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Zircon U-Pb and Molybdenite Re-Os Ages of the Lakange Porphyry Cu-Mo Deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China. Resource Geology, 66(2): 163-182. https://doi.org/10.1111/rge.12091 Li, Q. Y., Yang, Z. M., Wang, R., et al., 2021. Zircon Trace Elemental and Hf-O Isotopic Compositions of the Miocene Magmaticsuite in the Giant Qulong Porphyry Copper Deposit, Southern Tibet. Acta Petrologica et Mineralogica, 40(6): 1023-1048 (in Chinese with English abstract). Li, Y., Selby, D., Condon, D., et al., 2017. Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit. Economic Geology, 112(6): 1419-1440. https://doi.org/10.5382/econgeo.2017.4515 Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Loader, M. A., Nathwani, C. L., Wilkinson, J. J., et al., 2022. Controls on the Magnitude of Ce Anomalies in Zircon. Geochimica et Cosmochimica Acta, 328: 242-257. https://doi.org/10.1016/j.gca.2022.03.024 Loucks, R. R., 2014. Distinctive Composition of Copper-Ore-Forming Arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. https://doi.org/10.1080/08120099.2013.865676 Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034 Loucks, R. R., Henríquez, G. J., Fiorentini, M. L., 2024. Zircon and Whole-Rock Trace Element Indicators of Magmatic Hydration State and Oxidation State Discriminate Copper Ore-Forming from Barren Arc Magmas. Economic Geology, 119(3): 511-523. https://doi.org/10.5382/econgeo.5071 Lu, Y. J., Loucks, R. R., Fiorentini, M. L., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. Society of Economic Geologists Special Publication, 19: 329-347. https://doi.org/10.5382/SP.19.13 Shi, S. D., Chen, S. Y., Luo, S., et al., 2024. Petrogenesis and Metallogenic Significance of the Demingding Mo-Cu Porphyry Deposit in the Gangdese Belt, Xizang: Insights from U-Pb and Re-Os Geochronology and Geochemistry. Minerals, 14(12): 1232. https://doi.org/10.3390/min14121232 Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645-656. https://doi.org/10.1007/s00126-019-00867-7 Sun, K. K., Deng, J., Wang, Q. F., et al., 2023. Formation of Sn-Rich Granitic Magma: A Case Study of the Highly Evolved Kafang Granite in the Gejiu Tin Polymetallic Ore District, South China. Mineralium Deposita, 58(2): 359-378. https://doi.org/10.1007/s00126-022-01130-2 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Sun, X., Li, R. Y., Si, X. B., et al., 2024. Timing and Mechanism of Ore Precipitation in Porphyry Cu Systems: Insight from LA-ICP-MS Analysis of Fluid Inclusions and In Situ Oxygen Isotope Analysis of Hydrothermal Quartz at Zhunuo Porphyry Cu Deposit, China. Economic Geology, 119(3): 593-616. https://doi.org/10.5382/econgeo.5064 Tang, J. X., Lin, B., Yang, H. H., et al., 2024. Geological Characteristics and Prospecting Direction of Porphyry-Skarn-Epithermal Deposits in Xizang. Mineral Deposits, 43(6): 1223-126 (in Chinese with English abstract). Wang, B. D., Xu, J. F., Chen, J. L., et al., 2010. Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum Coopper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt. Acta Petrologica Sinica, 26(6): 1820-1832 (in Chinese with English abstract). Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143. https://doi.org/10.1016/j.earscirev.2018.02.019 Wang, Y. F., Zhang, J. F., Jin, Z. M., et al., 2012a. Low Oxygen Fugacity Dependency for the Deformation of Partially Molten Lherzolite. Tectonophysics, 580: 114-123. https://doi.org/10.1016/j.tecto.2012.09.001 Wang, Z. H., Liu, Y. L., Liu, H. F., et al., 2012b. Geochronology and Geochemistry of the Bangpu Mo-Cu Porphyry Ore Deposit, Tibet. Ore Geology Reviews, 46: 95-105. https://doi.org/10.1016/j.oregeorev.2012.02.004 Yang, Z. M., Hou, Z. Q., White, N. C., et al., 2016. Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong, Tibet. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2009.03.003 Zhao, M., Hou, Z. Q., Yang, Z. S., et al., 2025. Mineralization Age and Magmatic Origin of the Pujue Cu-Polymetallic Deposit in the Western Gangdese Belt: Implication for Regional Exploration. Acta Petrologica Sinica, 41(2): 600-620 (in Chinese with English abstract). doi: 10.18654/1000-0569/2025.02.14 Zheng, W. B., Tang, J. X., Zhong, K. H., et al., 2016. Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024 Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029 Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(06): 1909-1940 (in Chinese with English abstract). Zhu, D. C., Wang, Q., Chung, S. L., et al., 2019. Gangdese Magmatism in Southern Tibet and India-Asia Convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583-604. https://doi.org/10.1144/sp483.14 Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 次琼, 郑有业, 吴松, 等, 2025. 西藏北姆朗斑岩型铜钼矿床的发现及意义. 地球科学, 50(4): 1305-1318. doi: 10.3799/dqkx.2024.120 高一鸣, 陈毓川, 唐菊兴, 等, 2012. 西藏曲水县达布斑岩铜(钼)矿床成岩成矿年代学研究. 地球学报, 33(4): 613-623. 何青, 郎兴海, 王旭辉, 等, 2023. 西藏洞嘎金矿床地质特征、原位硫同位素组成及成因探讨. 地球学报, 44(6): 1000-1016. 侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248. 黄倩, 吴松, 刘晓峰, 等, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代: 来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017 黄永高, 韩飞, 康志强, 等, 2024. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学, 49(3): 822-836. doi: 10.3799/dqkx.2022.196 李秋耘, 杨志明, 王瑞, 等, 2021. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究. 岩石矿物学杂志, 40(6): 1023-1048. 唐菊兴, 林彬, 杨欢欢, 等, 2024. 西藏斑岩-矽卡岩-浅成低温热液型矿床地质特征及找矿方向. 矿床地质, 43(6): 1223-1265. 王保弟, 许继峰, 陈建林, 等, 2010. 冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究. 岩石学报, 26(6): 1820-1832. 赵苗, 侯增谦, 杨竹森, 等, 2025. 冈底斯带西段普觉铜多金属矿床形成时代、岩浆起源及区域勘查启示. 岩石学报, 41(2): 600-620. 郑有业, 吴松, 次琼, 等, 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392 -
吴昌毅 附表.docx
-




下载: