Geochemical, Boron Isotope Characteristics and Geological Significance of Tourmaline from Tangyin Granitic Pegmatite in Yihuang, Jiangxi Province
-
摘要: 江西宜黄地区花岗伟晶岩极为发育,电气石广泛赋存于花岗伟晶岩及其围岩(黑云母二长花岗岩)中.在江西宜黄棠阴发现了三种类型的电气石,分别为黑云母二长花岗岩中随机浸染状的电气石(Tur-G型)、花岗伟晶岩中的未分带电气石(Tur-PU型)和分带电气石(Tur-PZ型).但是,电气石的类型、成因及其对花岗伟晶岩成因的指示意义并不清楚.利用电子探针(EMPA)和LA-(MC)-ICP-MS分别对电气石开展了主量、微量元素和硼同位素分析.从Tur-G型→Tur-PU型→Tur-PZ电气石核部(Core)→边部(Rim),呈现出Al、Fe含量先升再降,Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga、REE含量先降再升的规律.Tur-G、Tur-PU、Tur-PZ-Core、Tur-PZ-Rim电气石δ11B分别为-10.77‰~-8.87‰、-10.59‰~-8.73‰、-11.07‰~-10.09‰、-11.05‰~-8.95‰.研究表明,所有电气石属碱性电气石中的铁电气石‒镁电气石系列,均为岩浆成因.Tur-G、Tur-PU、Tur-PZ型电气石分别结晶于花岗岩熔体晚期阶段、花岗伟晶岩熔体早期阶段和晚期岩浆‒热液阶段,电气石Fe3+/Fe2+比值和V含量变化揭示了各阶段岩浆熔体中氧逸度表现为先降低再升高,电气石中Mg、Na、Ca、Ti、Sc、V、Cr、Co、Ni、Sr、Ga含量反映了熔体中元素含量的变化.棠阴花岗伟晶岩和黑云母二长花岗岩电气石具有集中且相似的硼同位素组成(-11.07‰~-8.73‰),指示两者具有一致的岩浆源区,初始岩浆来源于大陆地壳(贫钙富铝的变质泥岩、变质砂岩)的部分熔融.Abstract: Granitic pegmatite is extensively developed in the Yihuang area of Jiangxi Province, and tourmaline is commonly found within granitic pegmatite and its surrounding rocks (biotite monzogranite). Three distinct types of tourmalines have been identified in Tangyin area: randomly disseminated tourmaline (Tur-G) in biotite monzogranite, unzoned tourmaline (Tur-PU) and zoned tourmaline (Tur-PZ) in granitic pegmatite. However, the classification and origin of tourmaline, as well as its implications for the genesis of granitic pegmatite, remain unclear. This study analyzed the major, trace elements, and boron isotopic compositions using EPMA and LA-(MC)-ICP-MS. From Tur-G type→Tur-PU type→Tur-PZ tourmalines core to rim, the concentrations of Al and Fe initially increase and subsequently decrease, whereas the concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, Ga, and rare earth elements exhibit an opposite trend, decreasing first and then increasing. The δ11B values for Tur-G, Tur-PU, Tur-PZ type tourmalines core and rim are -10.77‰--8.87‰, -10.59‰--8.73‰, -11.07‰--10.09‰, and -11.05‰- -8.95‰, respectively. It is believed that all tourmalines belong to the iron-magnesium tourmaline series within the alkaline tourmaline group and are of magmatic origin. Specifically, Tur-G, Tur-PU, and Tur-PZ tourmalines crystallized during the late granite melt, the early granitic pegmatite melt, and the late magma-hydrothermal stages, respectively. The changes in the Fe3+/Fe2+ ratio and V content of the tourmaline revealed that the oxygen fugacity of the magma melt exhibit a trend of initially decreasing and subsequently increasing. The concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, and Ga in the tourmaline reflect variations in elemental composition within the melt. The tourmaline found in both the Tangyin granitic pegmatite and biotite monzogranite exhibits a concentrated and comparable boron isotope composition, ranging from -11.07‰ to -8.73‰. This similarity suggests that both rock types originated from the same magma source, with the initial magma being derived from the partial melting of the continental crust, specifically calcium-poor and aluminum-rich metamorphic mudstone and sandstone.
-
Key words:
- tourmaline /
- granitic pegmatite /
- geochemistry /
- boron /
- isotope /
- magmatic evolution /
- magma source /
- Tangyin /
- Jiangxi Province
-
图 1 华南加里东期花岗岩分布(a)、江西宜黄地区大地构造位置(b)和区域地质简图(c)
a.据郭春丽和刘泽坤(2021)修改;b,c.据袁晶等(2024)修改. 1.古近系新余组;2.白垩系莲荷组;3.白垩系塘边组;4.白垩系河口组;5.白垩系周田组;6.侏罗系水北组;7.三叠系安源组;8.寒武系外管坑组;9.南华‒震旦系洪山组;10.南华系万源岩组;11.青白口系周潭岩组;12.中侏罗世白云母花岗岩;13.晚志留世二长花岗岩;14.早志留世二长花岗岩;15.早志留世花岗闪长岩;16.地质界线;17.平行不整合界线;18.角度不整合界线;19.一般实测断层;20.重要实测断层;21.棠阴矿区位置
Fig. 1. Distribution map of Caledonian granite in South China (a), tectonic location (b) and regional geology schematic map (c) of Tangyin area
图 2 棠阴矿区地质矿产简图
据袁晶等(2024)修改.1.第四系联圩组;2.第四系莲塘组;3.南华系‒震旦系洪山组;4.志留纪黑云母二长花岗岩;5.花岗伟晶岩及编号;6.地质界线;7.花岗伟晶岩脉;8.槽探及编号;9.钻孔及编号;10.勘探线及编号
Fig. 2. Sketch map of geology and mineral in Tangyin mine lot
图 5 棠阴花岗伟晶岩和黑云母二长花岗岩中电气石分类图解(底图据Henry et al., 2011)
Fig. 5. Classification diagrams of tourmalines from Tangyin granitic pegmatite and biotite monzogranite (after Henry et al., 2011)
图 6 棠阴花岗伟晶岩和黑云母二长花岗岩中电气石成分Al-Fe-Mg(a)和Ca-Fe-Mg(b)三角图(据Henry and Guidotti, 1985)
1.富Li花岗岩及相关的花岗伟晶岩、细晶岩;2.贫Li花岗岩及相关的花岗伟晶岩、细晶岩;3.富Fe3+石英‒电气石岩(热液蚀变花岗岩);4.与Al饱和相共存的变质泥岩、变质砂岩;5.与Al饱和相不共存的变质泥岩、变质砂岩;6.富Fe3+石英‒电气石岩,钙硅酸盐及变质泥岩;7.低Ca变铁镁质岩和富Cr、V变质沉积岩;8.变质碳酸盐岩和变质灰岩;9.富Ca变质泥岩,变质砂岩及钙硅酸盐;10.贫Ca变质泥岩、变质砂岩和石英电气石岩;11.变质碳酸盐岩;12.变超铁镁质岩
Fig. 6. Ternary Al-Fe-Mg (a) and Ca-Fe-Mg (b) diagrams showing tourmaline compositions from Tangyin granitic pegmatite and biotite monzogranite (after Henry and Guidotti, 1985)
图 8 棠阴花岗伟晶岩和黑云母二长花岗岩电气石球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989)
Fig. 8. Chondrite-normalized REE diagrams of tourmalines from Tangyin granitic pegmatite and biotite monzogranite(normalization values after Sun and McDonough, 1989)
图 11 棠阴花岗伟晶岩和黑云母二长花岗岩电气石Zn-Li/Si (a), Mn-Li/Si (b), Cr-Li/Si (c)和V-Li/Si (d)图解(底图据 Harlaux et al.,2020)
Fig. 11. Plots of Zn-Li/Si (a), Mn-Li/Si (b), Cr-Li/Si (c), and V-Li/Si (d) of tourmalines from Tangyin granitic pegmatite and biotite monzogranite (after Harlaux et al., 2020)
-
Chen, X. J., Yun, X. R., Lei, M., et al., 2022. Chemical and Boron Isotopic Composition of Tourmaline from the Gonghe Triassic Intermediate-Acid Intrusive Rocks, Qinghai and Its Implications for Evolution of the Magmatic-Hydrothermal System. Acta Petrologica Sinica, 38(11): 3359-3374 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.11.07 Čopjaková, R., Prokop, J., Novák, M., et al., 2021. Hydrothermal Alteration of Tourmaline from Pegmatitic Rocks Enclosed in Serpentinites: Multistage Processes with Distinct Fluid Sources. Lithos, 380-381: 105823. https://doi.org/10.1016/j.lithos.2020.105823 Dai, Z. W., Li, G. M., Ding, J., et al., 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859 (in Chinese with English abstract). Drivenes, K., Larsen, R. B., Müller, A., et al., 2015. Late-Magmatic Immiscibility during Batholith Formation: Assessment of B Isotopes and Trace Elements in Tourmaline from the Land's End Granite, SW England. Contributions to Mineralogy and Petrology, 169(6): 56. https://doi.org/10.1007/s00410-015-1151-6 Dutrow, B. L., Henry, D. J., 2011. Tourmaline: A Geologic DVD. Elements, 7(5): 301-306. https://doi.org/10.2113/gselements.7.5.301 Dutrow, B. L., Henry, D. J., 2018. Tourmaline Compositions and Textures: Reflections of the Fluid Phase. Journal of Geosciences, 63(2): 99-110. https://doi.org/10.3190/jgeosci.256 Fuchs, Y., Lagache, M., Linares, J., 1998. Fe-Tourmaline Synthesis Under Different T and fO2 Conditions. American Mineralogist, 83(5-6): 525-534. https://doi.org/10.2138/am-1998-5-612 Gao, Y., Xu, Z., Tang, S., et al., 2025. Genesis of Caledonian Pegmatite-Type Lithium Deposits in Southern Jiangxi Province: Evidences from Cassiterite U-Pb Geochronology and Whole-Rock Petrogeochemistry. Acta Mineralogica Sinica, 45(4): 713-733 (in Chinese with English abstract). doi: 10.3724/j.1000-4734.2025.45.009 Guo, C. L., Liu, Z. K., 2021. Caledonian Granites in South China: The Geological and Geochemical Characteristics on Their Petrogenesis and Mineralization. Journal of Earth Sciences and Environment, 43(6): 927-961 (in Chinese with English abstract). Guo, J., Yan, H. B., Ling, M. X., et al., 2020. Chemical Composition of Tourmaline in the Biotite Granite, the Dachang District: Insights into Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 36(1): 171-183 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.16 Guo, R. H., Hu, X. M., Garzanti, E., et al., 2021. Boron Isotope Composition of Detrital Tourmaline: A New Tool in Provenance Analysis. Lithos, 400-401: 106360. https://doi.org/10.1016/j.lithos.2021.106360 Harlaux, M., Kouzmanov, K., Gialli, S., et al., 2020. Tourmaline as a Tracer of Late-Magmatic to Hydrothermal Fluid Evolution: The World-Class San Rafael Tin (-Copper) Deposit, Peru. Economic Geology, 115(8): 1665-1697. https://doi.org/10.5382/econgeo.4762 He, S. W., Wang, K. X., Liu, X. D., et al., 2022. Genesis of the Yihuang Strong Peraluminous S-Type Granite in Jiangxi Province and Its Constraints on Early Paleozoic Intracontinental Orogeny in South China. Geological Bulletin of China, 41(5): 788-809 (in Chinese with English abstract). Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15. Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline-Supergroup Minerals. American Mineralogist, 96(5-6): 895-913. https://doi.org/10.2138/am.2011.3636 Henry, D. J., Dutrow, B. L., 2012. Tourmaline at Diagenetic to Low-Grade Metamorphic Conditions: Its Petrologic Applicability. Lithos, 154: 16-32. https://doi.org/10.1016/j.lithos.2012.08.013 Hervig, R. L., Moore, G. M., Williams, L. B., et al., 2002. Isotopic and Elemental Partitioning of Boron between Hydrous Fluid and Silicate Melt. American Mineralogist, 87(5-6): 769-774. https://doi.org/10.2138/am-2002-5-620 Hong, T., Zhai, M. G., Xu, X. W., et al., 2021. Tourmaline and Quartz in the Igneous and Metamorphic Rocks of the Tashisayi Granitic Batholith, Altyn Tagh, Northwestern China: Geochemical Variability Constraints on Metallogenesis. Lithos, 400-401: 106358. https://doi.org/10.1016/j.lithos.2021.106358 Hou, K. J., Li, Y. H., Xiao, Y. K., et al., 2010. In Situ Boron Isotope Measurements of Natural Geological Materials by LA-MC-ICP-MS. Chinese Science Bulletin, 55(29): 3305-3311. https://doi.org/10.1007/s11434-010-4064-9 Jiang, S. Y., Han, F., Shen, J. Z., et al., 1999. Chemical and Rb-Sr, Sm-Nd Isotopic Systematics of Tourmaline from the Dachang Sn-Polymetallic Ore Deposit, Guangxi Province, P. R. China. Chemical Geology, 157(1-2): 49-67. https://doi.org/10.1016/S0009-2541(98)00200-9 Jiang, S. Y., Radvanec, M., Nakamura, E., et al., 2008. Chemical and Boron Isotopic Variations of Tourmaline in the Hnilec Granite-Related Hydrothermal System, Slovakia: Constraints on Magmatic and Metamorphic Fluid Evolution. Lithos, 106(1-2): 1-11. https://doi.org/10.1016/j.lithos.2008.04.004 Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare-Earth Element Geochemistry in Tourmaline and Cassiterite from the Yunlong Tin Deposit, Yunnan, China: Implication for Migmatitic-Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021 Kalliomäki, H., Wagner, T., Fusswinkel, T., et al., 2017. Major and Trace Element Geochemistry of Tourmalines from Archean Orogenic Gold Deposits: Proxies for the Origin of Gold Mineralizing Fluids? Ore Geology Reviews, 91: 906-927. https://doi.org/10.1016/j.oregeorev.2017.08.014 Li, L. G., Wang, L. X., Romer, R. L., et al., 2025. Using Tourmaline to Trace Li Mineralization in the Mufushan Granitic Batholith, South China. Chemical Geology, 671: 122485. https://doi.org/10.1016/j.chemgeo.2024.122485 Li, Z. Z., Qin, K. Z., Pei, B., et al., 2020. Mineralogical Features of Tourmaline in Baiyinchagan Sn-Ag-Pb-Zn Deposit, Southern Great Xing'an Range, and Its Implications for Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 36(12): 3797-3812 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.14 Liu, T., Jiang, S. Y., Su, H. M., et al., 2023. Tourmaline as a Tracer of Magmatic-Hydrothermal Evolution and Potential Nb-Ta-(W-Sn) Mineralization from the Lingshan Granite Batholith, Jiangxi Province, Southeast China. Lithos, 438-439: 107016. https://doi.org/10.1016/j.lithos.2022.107016 Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 London, D., 1999. Stability of Tourmaline in Pei Aluminous Granite Systems: The Boron Cycle from Anatexis to Hydrothermal Aureoles. European Journal of Mineralogy, 11(2): 253-262. https://doi.org/10.1127/ejm/11/2/0253 London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495 Maner, J. L., London, D., 2017. The Boron Isotopic Evolution of the Little Three Pegmatites, Ramona, CA. Chemical Geology, 460: 70-83. https://doi.org/10.1016/j.chemgeo.2017.04.016 Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left behind. Elements, 7(5): 313-319. https://doi.org/10.2113/gselements.7.5.313 Meyer, C., Wunder, B., Meixner, A., et al., 2008. Boron-Isotope Fractionation between Tourmaline and Fluid: An Experimental Re-Investigation. Contributions to Mineralogy and Petrology, 156(2): 259-267. https://doi.org/10.1007/s00410-008-0285-1 Pesquera, A., Torres-Ruiz, J., García-Casco, A., et al., 2013. Evaluating the Controls on Tourmaline Formation in Granitic Systems: A Case Study on Peraluminous Granites from the Central Iberian Zone (CIZ), Western Spain. Journal of Petrology, 54(3): 609-634. https://doi.org/10.1093/petrology/egs080 Slack, J. F., Trumbull, R. B., 2011. Tourmaline as a Recorder of Ore-Forming Processes. Elements, 7(5): 321-326. https://doi.org/10.2113/gselements.7.5.321 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Trumbull, R. B., Slack, J. F., 2018. Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits. Boron Isotopes: The Fifth Element, 249-272. https://doi.org/10.1007/978-3-319-64666-4_10 van Hinsberg, V. J., Henry, D. J., Marschall, H. R., 2011. Tourmaline: An Ideal Indicator of Its Host Environment. The Canadian Mineralogist, 49(1): 1-16. https://doi.org/10.3749/canmin.49.1.1 von Goerne, G., Franz, G., van Hinsberg, V. J., 2011. Experimental Determination of Na-Ca Distribution between Tourmaline and Fluid in the System CaO-Na2O-MgO-Al2O3-SiO2-B2O3-H2O. The Canadian Mineralogist, 49(1): 137-152. https://doi.org/10.3749/canmin.49.1.137 Watenphul, A., Schlüter, J., Bosi, F., et al., 2016. Influence of the Octahedral Cationic-Site Occupancies on the Framework Vibrations of Li-Free Tourmalines, with Implications for Estimating Temperature and Oxygen Fugacity in Host Rocks. American Mineralogist, 101(11): 2554-2563. https://doi.org/10.2138/am-2016-5820 Xia, Y. Q., Tuo, M. J., Li, N., et al., 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922-938 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2023.213 Yang, S. Y., Jiang, S. Y., Mao, Q., et al. 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(2): 186-200. https://doi.org/10.46770/AS.2021.912 Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015. Tourmaline as a Recorder of Magmatic-Hydrothermal Evolution: An In Situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5-6): 42. https://doi.org/10.1007/s00410-015-1195-7 Yuan, J., Tang, C. H., Zhou, Y., et al., 2024. Content Characteristics of Impurity Elements Analysis and Evaluation Method Discussion of High-Purity Quartz Raw Material of the Granite Pegmatite Type in Tangyin, Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(1): 34-44 (in Chinese with English abstract). Zhang, K., Liu, X., Zhao, K. D., et al., 2024. Elemental and Boron Isotopic Variations of Tourmalines from the Miocene Leucogranite-Pegmatite in Kuju, Eastern Himalaya: Implications for the Evolution of Magmatic Melts. Acta Petrologica Sinica, 40(8): 2334-2352 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.08.04 Zhao, H. D., Zhao, K. D., Palmer, M. R., et al., 2019. In-Situ Elemental and Boron Isotopic Variations of Tourmaline from the Sanfang Granite, South China: Insights into Magmatic-Hydrothermal Evolution. Chemical Geology, 504: 190-204. https://doi.org/10.1016/j.chemgeo.2018.11.013 Zhao, Z. H., Ma, L., 2025. The Relationship between Granitic Pegmatites and Granites. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.018 Zheng, B. Q., Chen, B., Sun, Y., 2023. Tracing the Evolution of the Pegmatite System and Its Interaction with the Country Rocks by Chemical and Boron Isotope Compositions of Tourmaline in the Qinghe Pegmatite from the Chinese Altay Orogen. Acta Petrologica Sinica, 39(1): 187-204 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.01.13 陈希节, 贠晓瑞, 雷敏, 等, 2022. 青海共和盆地三叠纪中酸性侵入岩中电气石化学组成、硼同位素特征及对岩浆‒热液演化的启示. 岩石学报, 38(11): 3359-3374. 代作文, 李光明, 丁俊, 等, 2019. 西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义. 地球科学, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043 高原, 徐喆, 唐石, 等, 2025. 赣南加里东期伟晶岩型锂矿成因: 来自锡石U-Pb年代学和岩石地球化学的证据. 矿物学报, 45(4): 713-733. 郭春丽, 刘泽坤, 2021. 华南地区加里东期花岗岩: 成岩和成矿作用的地质与地球化学特征. 地球科学与环境学报, 43(6): 927-961. 郭佳, 严海波, 凌明星, 等, 2020. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示. 岩石学报, 36(1): 171-183. 何世伟, 王凯兴, 刘晓东, 等, 2022. 江西宜黄强过铝质S型花岗岩成因及其对华南早古生代陆内造山运动的制约. 地质通报, 41(5): 788-809. 李真真, 秦克章, 裴斌, 等, 2020. 大兴安岭南段白音查干Sn-Ag-Zn-Pb矿床电气石矿物学特征及对岩浆‒热液演化过程的启示. 岩石学报, 36(12): 3797-3812. 夏永旗, 庹明洁, 李诺, 等, 2024. 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示. 地球科学, 49(3): 922-938. doi: 10.3799/dqkx.2023.213 袁晶, 唐春花, 周渝, 等, 2024. 江西棠阴花岗伟晶岩型高纯石英原料杂质元素含量特征研究及评价方法探讨. 东华理工大学学报(自然科学版), 47(1): 34-44. 张凯, 刘欣, 赵葵东, 等, 2024. 喜马拉雅东段库局中新世淡色花岗岩‒伟晶岩中电气石的元素和硼同位素变化: 对岩浆熔体演化的见解. 岩石学报, 40(8): 2334-2352. 赵振华, 马林, 2025. 花岗伟晶岩与花岗岩的关系. 地球科学, 1-65. doi: 10.3799/dqkx.2025.018 郑贝琪, 陈斌, 孙杨, 2023. 阿尔泰青河伟晶岩中电气石成分和硼同位素对伟晶岩体系演化及其与围岩相互作用的示踪. 岩石学报, 39(1): 187-204. -
袁晶 附表.xlsx
-




下载: