Crustal Growth of the Eastern North China Craton and Sulu Orogen as Revealed by U-Pb Dating and Hf Isotopes of Detrital Zircons from Modern Rivers

GENG Xian-lei1,2*, GAO Shan1,2,3*, CHEN Chen1

1. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
3. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China

Abstract: Detrital zircon from clastic sediment or sands of modern rivers is an ideal sample for studying the growth and evolution of the continental crust. In order to reveal the crustal growth of eastern North China craton and Sulu orogen, 396 concordant detrital zircons in three sand samples from the Daqing River, Chaobai River, Liao River, Dagu River and Jiala River in eastern North China were measured for U-Pb age and Hf isotopic compositions by excimer laser-ablation ICP-MS and MC-ICP-MS, respectively. The Dating River, Chaobai River and Liao River are characterized by two age peaks of 2.4–2.5 Ga and 1.8–1.9 Ga, which indicate contributions from the eastern North China craton. Some 100–500 Ma zircons from the Liao River with positive εHf(t) values and young Hf model ages, suggesting Phanerozoic crustal growth. In contrast, U-Pb ages of the Dagu River and Jiala River, which run through the Sulu orogen, are more complicated and characterized by age groups of 2.4–2.5 Ga, 1.8–1.9 Ga and 700–800 Ma, implying a mixed provenance of eastern North China craton and Yangtze craton. The Lu-Hf isotope compositions of the Dating River, Chaobai River and Liao River demonstrate the dominant growth at 2.4–
细粒沉积物和沉积岩（包括黄土、冰成岩、泥岩、泥砂岩等）由于源区范围广阔，因此可以作为整体大
陆上地壳的代表样品，是研究大陆上地壳化学组成、形成和演化的理想的天然样品（Goldschmidt, 1933;
Taylor et al., 1983; Taylor and McLennan, 1985; Taylor and McLennan, 1995; Jahn et al., 2001; McLennan, 2001; Rudnick and Gao, 2003; Hu and Gao, 2008; Liu et al., 2008; Hawkesworth et al., 2010）。锆石作为副矿物广泛赋存于各种火成岩、沉积
岩和变质岩中，并且具有非常稳固的物理化学属性。即使后期经历了强烈的变质作用和扰动，它也能幸存下来并完好保存原始的地球化学信息。碎屑锆石作为沉积岩和沉积物中最稳定的副矿物相，能够给我们提供非常有用的地质信息。另外，锆石往往具有不同的生长环境，这些环带的微量元素组成、U-Pb 年龄、Lu-Hf 同位素组成和氧同位素组成将记录锆石结晶时介质的状态，可揭示大陆地壳的形成和演化（Griffin et al., 2004; Condie et al., 2005; Izuka et al., 2005; Veer et al., 2005; Coogan and Hinton, 2006; Hawkesworth and Kemp, 2006a, 2006b; Kemp et al., 2006; Weislogel et al., 2006; Campbell and Allen, 2008; Condie et al., 2009; Yang et al., 2009; Condie and Aster, 2010; Hawkesworth et al., 2010）。锆石地质温度计计算出研究大陆地壳的形成演化过程中也发挥了重要作用（Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007）。由于古老大陆地壳自形成后经历了长期的剥蚀风化作用，因此一些古老的岩石在现今的地壳中没有得以保存或者很少出露，使得这些地壳物质的信息很难获取。然而这些在岩石中没有保存下来的地壳物质信息，却能被来自年轻沉积物或现代河流沉积物的碎屑锆石很好地记录下来。综合上述各种原因，碎屑锆石成为了研究大陆地壳生长最为有效的工具（Griffin et al., 2004; Condie et al., 2005; Izuka et al., 2005; Caowood et al., 2007; Liu et al., 2008; Pietranik et al., 2008）。

目前为止，有关利用碎屑锆石的 U-Pb 定年和 Hf 同位素来研究大陆地壳生长演化的例子已经有
很多了。Condie et al. (2005) 对全球一些典型的沉积层和现代河流碎屑锆石的 U-Pb 年龄和 Hf 同位素的研究，发现在 2.5 Ga 和 1.65～1.4 Ga 期间大地
壳有显著的生长，密西西比河碎屑锆石的 U-Pb 年龄和 Hf 同位素表明 1.6～2.0 Ga 是轻 地壳物质形成的主要时期（Izuka et al., 2005）。扬子克拉通新元古代碎屑沉积岩的碎屑锆石 U-Pb 年龄和 Hf 同位素揭示扬子克拉通在前寒武纪时有两个主要的生长阶段，即 3.2～3.8 Ga 和 720～910 Ma（Liu et al., 2008）。Yang et al. (2009) 对黄河、永定河和滦河碎屑锆石的 U-Pb 年龄和 Hf 同位素的研究表明 2.7～2.8 Ga 是华北克拉通地壳生长的高峰期。

根据前人的计算，目前大陆地壳的>50%形成于古生代，而在前寒武纪结束时大陆地壳>90%的物质已经形成（Taylor and McLennan, 1995; Hawkesworth and Kemp, 2006a）。另外，一些显生宙造山带的资料表明在显生宙时也有显著的地壳生长（Samson et al., 1989; DePaolo et al., 1991; Samson et al., 1995; Jahn et al., 2000a, 2000b; Wu et al., 2000; Meng et al., 2010）。全球年轻地壳的锆石年龄资料显示在 2.7 Ga、1.9 Ga 和 1.2 Ga 附近有非常显著的年龄峰，这表明在地幔柱活动期间大陆地壳阶段式的快速生长（Condie, 1998, 2000）。最新的全球碎屑锆石 U-Pb 年龄资料显示的年龄峰为 2.75～2.6 Ga、1.95～1.6 Ga、1.250～950 Ma, 650～400 Ma 和 350～225 Ma。分别与凯诺兰、哥伦比亚、罗迪尼、冈瓦纳和盘古超级联合大陆的汇聚时
间相对应（Campbell and Allen, 2008）。然而，这些锆石年龄峰不一定能够反映大陆地壳的生长，因为很多岩浆锆石可以在地壳的重熔再改造过程中形成。花岗岩 岩浆锆石有 Nd 同位素组成表明在 2.7 Ga、2.55 Ga、2.12 Ga、1.9 Ga、1.7 Ga, 1.65 Ga、800 Ma, 570 Ma 和 450 Ma 时有大量的年轻地壳物质的加入（Condie et al., 2009）。前寒武时期全球地壳生长的 4 个主要阶段分别为 4.4～4.5 Ga、3.8 Ga, 3.4 Ga 和 2.7～2.8 Ga (Pietranik et al., 2008)。前人的研究表明地壳的阶段式生长通常与超大陆的形成有一定的关联（Condie, 1998, 2000）。
作为全球典型的克拉通之一，华北克拉通与全球其他克拉通又存在十分不同的特征，即自中生代以来发生了强烈的活化作用（Gao et al., 2009）。因此，研究华北克拉通的地壳生长和改造，对于揭示大陆地壳的形成演化具有非常重要的意义。尽管 Yang et al. (2009) 报道了黄河、滦河和永定河碎屑锆石的U-Pb 年龄及 Hf 同位素组成，揭示出华北克拉通大陆地壳主要的生长阶段为 2.4～2.9 Ga，并且在 2.7～2.8 Ga 时达到最高峰。然而，华北克拉通由东部块体、西部块体和中间的中部造山带组成（Zhao et al., 1998, 2001）。东部块体和西部块体到古元古代晚期（～1.8 Ga）才并接在一起（Zhao et al., 1999），所以在古元古代之间两个块体应该具有不同的演化历史。Wu et al. (2005) 收集了前人报道的华北克拉通 3 个块体的全岩 Nd 同位素数据、Nd 模式年龄表明 3 个块体的地壳演化存在一些明显的差异。然而，全岩分析的结果可能是多种地质过程的混合结果，其可靠性受到怀疑。作者对来自大沽河（胶东半岛）、胶莱河（胶东半岛）、大清河（山西东部）、潮白河（河北）和辽河（内蒙古、辽宁）的碎屑锆石进行了 U-Pb 定年和 Hf 同位素组成分析。这 5 条河流的汇聚盆地主要包括华北克拉通东部、大兴安岭造山带南部和胶东半岛的苏鲁造山带。这些河流的碎屑锆石 U-Pb 年龄和 Hf 同位素组成将为揭示华北克拉通东部和苏鲁造山带的地壳生长和改造提供重要的理论依据。

1 地质背景及采样

大沽河位于胶东半岛内，起源于山东省招远市，自东北向西南流入胶州湾。全长约 180 km，总的流域面积为 4.631 km²，大沽河的流经区域位于苏鲁造山带附近，其北部为华北克拉通的东部块体，而南部则为苏鲁超高压－高压变质带。此河流所采集的河流沙样 DGH01 位置位于大沽河入海口处及河流的最下游（35°54′0″N, 116°27′24″E）(图 1)。

大沽河作为大汶河的下游，起源于山东省新泰市山阴山北麓，自东向西流人东平湖，最后在东平县汇入黄河，其全长为 208 km，总流域面积为 8 536 km²。大沽河的大部分流经区域位于华北克拉通东部块体范围内。此河流所采集的河流沙样 DQH01 位置位于大沽河入海口处及河流的最下游（35°54′0″N, 116°27′24″E）(图 1)。

潮白河上游主要由潮河和白河组成。潮河起源于河北的丰宁县，白河则起源于河北的沽源县。潮河与白河分别由北向南流入密云水库，出库后在河槽村汇合形成潮白河，并在靠近出海口处汇入永定河。潮白河干流全长 90 km，流域面积 19 500 km²，其流经区域位于华北克拉通块体范围内。所采集的河流沙样 CBH01 位置位于河北的香河县（39°46′34″N, 116°56′24″E）(图 1)。

辽河主要由辽河和西辽河两个水系组成，是中国东北南边最长的河流，全长 1 430 km，流域面积 229 000 km²。辽河位于辽宁省北部和吉林省西南部。
部，发源于吉林东辽县小葱顶子山东南；西辽河位于内蒙古东南部和辽宁北部，其支流主要有西拉木伦河、敦河、老哈河等，发源于内蒙古与河北交界
的七老图山和大兴安岭造山带的南部。辽河上游流经大兴安岭造山带的南部，下游则流经华北克拉通东部主体。此河流所采集的河流沙样 LHNO1位置位于下游的辽宁铁岭市(42°19′38″，0°N，123°50′06″，3°E) (图1)。由此可见，大清河和潮白河完全位于华北克拉通
中生代于内蒙古东南部和辽宁北部的七老图山和大兴安岭造山带的南部，尤其是大量的石榴石橄榄岩形成于中生代扬子板块与华北板块的碰撞过程中，
部块体和中部造山带岩类组成。华北克拉通东部
发源于吉林东辽县小葱顶子山东南部大兴安岭和七老图山在大地构造位置上均归属
大沽河和胶莱河位于其支流主要有西拉木
老哈河等而扬子克拉通位于其南部
变质学和地质年代学等各
次河流所采集的河流沙样
表明中亚造山带东部在显生宙具有一个明显的地壳生长过程。来自河流碎屑锆石原位HF同位素的证据
(Meng et al., 2010)也证实了这一点。

2 分析方法

锆石经重砂分选, 磁性分选等一系列过程从
5 kg的河沙样品中分离出来, 并最终在双目显微
镜下进行人工纯提纯分选。每个样品所挑选出的锆石
颗粒为数千颗粒不等，笔者从中随机选取>300 颗制
成环氧树脂胶，进行激光剥蚀电感耦合等离子体质谱
(LA-ICP-MS) 载体原位分析。在分析前对锆石
靶进行了表面抛光处理，并用 5%的硝酸和纯酒精
对其清洗，以降低普通铅的污染。根据阴极发光图像
(CLI)，分析所选取的锆石颗粒均具有振荡环带，因
为振荡环带上能看到指示锆石的岩浆或火成成因，
而非变质成因。另外，在确定分析位置时通过反射光
和透射光图像尽量避开包裹体和裂隙。

2.1 阴极发光

阴极发光图像在西北大学大地动力学国家重点
实验室完成。仪器型号为 Quanta 400FEG 高分辨率
扬生发射环境扫描电镜，并与 Oxford INCA350 能
谱仪系统和 Gatan Mono CL3 +CL 阴极发光系统联
合, 照相条件为 10 kv 的电压, 6.7 nm 的照相直径和
8.4 mm 的工作距离。

2.2 U-Pb 定年

锆石的 LA-ICP-MS U-Pb 定年分析在西北大学
大地动力学国家重点实验室完成。实验所采用的
电感耦合等离子体质谱仪 (ICP-MS) 为美国 Agilent
公司生产的 Agilent 7500a，激光剥蚀系统 (LA) 为
德国 Lambda Physik AG 公司生产的 GeoLas 2005。
该系统由德国 Lambda Physik 公司的 Compex102
ArF 准分子激光器 (波长 193 nm，200 ml 的最大能量
和 20 Hz 的最大脉冲速率) 与 MicroLas 公司的光
学系统组成。氩气作为载气。

激光束束大小和剥蚀频率分别为 32 μm 和
10 Hz。Lu-Hf 同位素和微量元素的数据与 U-Pb 同
位素的数据同时获得(Yuan et al., 2004)。U、Th 和
等，2006; Jian et al., 2008; Miao et al., 2008; Zhang
et al., 2008; Chen et al., 2009; Xu et al., 2009)作
为典型特征。这些花岗岩具有低的
Sr/Sr初始值, 正的εNd(t)值和年轻的Nd模式年龄(邵济安等, 1999; Chen et al., 2000; Jahn et al., 2000a; Wu
et al., 2002; Jahn et al., 2004; Wu et al., 2007), 表明
中亚造山带东部在显生宙具有一个明显的地壳生长
过程。来自河流碎屑锆石原位 HF 同位素的证据
(Meng et al., 2010)也证实了这一点。
用信号强度者利用分析测试得到的对仪器质量歧视和采样深度引起的元素和同位素分影响基本可以忽略不计。普通铅的校正

参考文献

和采样深度引起的元素和同位素分形进行标正，年龄计算、谐和图及谐图的绘制均采用ISOPLOT 3.0 (Ludwig, 2003)

在分析的过程中我们将标准物质GJ-01作为未知的样品进行测试，实验所给出该样品的206Pb/238U年

为202.2±0.4 Ma，与ID-TIMS 206Pb/238U年

龄（592.5～602.7 Ma）(Jackson et al., 2004)一致。普通铅的校正参考文献Andersen (2002)。由于分析所得的204Pb的含量在全 Pb 中的比例小于0.3%，因此在大多数情况下普通铅的校正不明显。

2.3 Lu-Hf同位素

Lu-Hf同位素的分析同样是在西北大学大学动力学国家重点实验室进行。分析所采用的仪器为Nu Plasma HR MC-ICP-MS (Nu Instruments Ltd., UK), 并与GeoLas 2005 ArF 准分子激光剥蚀系统联用。分析所采用的激光斑束和能量密度分别为10 μm和15～20 J/cm², 同样将 He 气作为载气。笔者采用了高纯度的 Ar 气 (99.999 5%)和高纯度的 He 气 (99.999 5%)净化柱，使208Pb和206Hg的背景水平分别降到<100 和 400 计数/s (Yuan et al., 2008)。

Yb 和 Lu 元素的干扰校正对于锆石的 Hf 同位素原位分析尤为重要 (Woodhead et al., 2004)。笔者利用分析测试得到的175Lu对176Hf 无干扰)强度和176Lu/175Lu 的推荐值 0.026 69 (De Bieve and Taylor, 1993)来校正176Lu 对176Hf 的干扰。同样道理，采用对178Hf 无干扰的172Yb 和172Yb/176Yb 的推荐值 0.548 6 (Chu et al., 2002)来校正176Yb 对176Hf的干扰，从而最终计算176Hf/177Hf 比值。与此同时，用分析点所得到的176Yb/177Yb 平均值来计算β_{Yb}平均值 (Izuka and Hirata, 2005)，然后通过172Yb 的信号强度和计算所得的β_{Yb}平均值来计算176Yb 的信号强度。笔者采用四级杆多接收等离子质谱与激光同时联机技术，同时测定锆石的 U-Pb 年龄、Hf 同位素和微量元素的组成 (Yuan et al., 2004)。

初始的176Hf/177Hf 比值计算采用锆石生长时的球粒陨石均值-库 (CHUR) 的值。$\epsilon_{Hf}(t)$定义为样品与球粒陨石均值-库 (CHUR) 在岩浆结晶时176Hf/177Hf 比值的差异。计算中采用的178Lu 衰变常数、176Hf/177Hf 比值分别为1.865×10^{-11}a$^{-1}$ (Scherer et al., 2001)，0.282 772 和 0.033 2 (Bichert-Toft and Albarède, 1997)。两阶段模式年龄是根据上地壳的176Hf/177Hf 比值与亏损地幔的176Hf/177Hf 比值一致。

3 结果

Vermecesch (2004) 提出对于碎屑锆石的物源示踪研究，单个样品的锆石颗粒数要不少于 117 个，以便给出有统计意义的结果。对于每个样品，笔者测定了 115～130 个锆石颗粒，基本满足了上述要求。样品 DQH01、CBH01、LH001、DGH01 和 JLH01 分别给出了 42,95,82,110 和 67 个锆石年龄和(年，得出结果为 90%～110%)。下面的讨论仅限于这些锆石和锆石的年龄。当年龄值 >1.0 Ga 时，选取206Pb/208Pb 年龄作为锆石的结晶年龄；当年龄值 <1.0 Ga 时，选取206Pb/238U 年龄作为锆石的结晶年龄。

3.1 U-Pb 年龄

如图 2 所示，样品 CBH01 和 LH001 的谐和锆石具有相似的3个年龄组，即 2.1～2.6 Ga (峰值为 2.4～2.5 Ga)、1.6～2.0 Ga (峰值为 1.8～1.9 Ga) 和 100～500 Ma。样品 LH001 还有 5 个锆石颗粒的年龄分布在 500～1300 Ma 区间内，分别为 511 Ma、631 Ma、859 Ma、1 001 Ma 和 1 297 Ma，而样品 CBH01 在这个年龄区间没有分布。另外，样品 LH001 100～500 Ma 锆石颗粒数量占总数的 45%，远多于样品 CBH01 (21%)，样品 CBH01 和 LH001 最老的年代分别为 2.5 Ga 和 2.6 Ga。

与样品 CBH01 和 LH001 相比，样品 DQH01 只有一个年龄组，即 2.3～2.7 Ga (峰值为 2.4～2.5 Ga)，而缺少 1.6～2.0 Ga 和 100～500 Ma 这两个年龄组 (图 2)。除 2.3～2.7 Ga 年龄组之外，样品 DQH01 还有一个 133 Ma 的年龄。样品 DQH01 最老的年龄为 2.7 Ga。

大沽河 (DGH01) 和胶莱河 (JLH01) 的锆石年龄分布特征相似，与前面的3条河流相比也复杂了很多，其年龄组的数量和范围，特别是年龄组，表现
图2 锆石U-Pb谐和图(a)和U-Pb年龄频谱图(b)

Fig. 2 U-Pb concordia plots of concordant detrital zircons (a) and corresponding relative probability plots of U-Pb ages for concordant detrital zircons (b)
出多而复杂的特征（图2）。DGH01 的年龄分布虽然比较复杂，但基本可以划分为4个主要年龄组：2.3～2.9 Ga（主峰为2.4～2.5 Ga，次峰为2.6～2.7 Ga和2.8～2.9 Ga），1.6～2.1 Ga（主峰1.8～1.9 Ga，次峰1.6～1.7 Ga），0.5～1.1 Ga（主峰为700～800 Ma）和100～400 Ma（主峰为100～200 Ma），另外还有一个由4个年龄组成的非常小的年龄组1.2～1.4 Ga。JLH01 的年龄分布与DGH01相似，可以划分为4个年龄组：2.4～2.9 Ga（主峰为2.4～2.5 Ga，次峰为2.6～2.7 Ga和2.8～2.9 Ga），1.6～2.3 Ga（主峰2.0～2.1 Ga，次峰1.8～1.9 Ga），600～800 Ma（主峰为700～800 Ma）和100～400 Ma。此外还有一个3.4 Ga 的古老年龄。样品 JLH01 与 DGH01 相比，0.5～1.1 Ga 和100～400 Ma 两个年龄区间的锆石颗数都少很多，但基本可以划分为3.4 Ga 的古老地壳模式年龄。

3.2 Lu-Hf 同位素

样品 LNH01 的82个谐和锆石同时进行了Lu-Hf 同位素微区原位分析。如图3所示，其 ε_{Hf}(t) 值对于不同的锆石 U-Pb 年龄组都有一个比较宽的分布范围，从负值到正值均有出现。2.1～2.6 Ga 年龄组的锆石具有−10.5 至 2.6 的 ε_{Hf}(t) 值和3.1～2.5 Ga 的地壳模式年龄（T_{DM2}），1.6～2.1 Ga 年龄组的锆石具有−13.3 至 6.2 的 ε_{Hf}(t) 值和3.2～2.1 Ga 的地壳模式年龄（T_{DM2}），而100～500 Ma 年龄组的锆石具有−12.8 至 12.0 的 ε_{Hf}(t) 值和1.8～0.4 Ga 的地壳模式年龄（T_{DM2}）。

对样品 CBH01 的94个谐和锆石进行了Lu-Hf 同位素微区原位分析。如图3 所示，其 ε_{Hf}(t) 值同样表现出比较宽的分布范围，从负值到正值均有出现。但是与 LNH01 的 ε_{Hf}(t) 值分布却有些不同，主要表现在两个方面。其一，有相当数量的 ε_{Hf}(t) 值位于亏损地幔演化线的线上或上方，其接近于亏损地幔的 ε_{Hf}(t) 值指示地壳物质的加入；其二，与 LNH01 不同，样品 CBH01 在区间100～500 Ma 中的锆石其绝大部分的 ε_{Hf}(t) 值都为负值，表明其古老地壳的重新改造熔融。具有接近或超过亏损地幔 ε_{Hf}(t) 值锆石共有11个，其 U-Pb 年龄分别为 2560 Ma，2551 Ma，2483 Ma，2464 Ma，2322 Ma，1825 Ma 和 275 Ma。与此同时，还有一颗 3215 Ma 的锆石颗粒位于 3.5 Ga 的地壳演化线上。表明源区 > 3.5 Ga 的古老地壳的存在。

![图3 谐和锆石的 U-Pb 年龄 - ε_{Hf}(t) 图](https://example.com/image)

图3 U-Pb age versus ε_{Hf}(t) value plots of concordant detrital zircons

对样品 DGH01 有 42 个谐和的锆石进行了Lu-Hf 同位素微区原位分析。如图3 所示，大部分的 ε_{Hf}(t) 值分布在−6～10 相对比较狭窄的区间。同时，绝大部分的 ε_{Hf}(t) 值都为正值，还有相当数量的 ε_{Hf}(t) 值接近或超过了亏损地幔相对应的 ε_{Hf}(t) 值。另外还有两个 2312 Ma 和 133 Ma 的锆石位于 3.5 Ga 的地壳演化线上，同样指示了源区 > 3.5 Ga 的古老地壳的存在。

样品 DGH01 和 JLH01 分别具有 110 个和 67 个谐和的锆石进行了同位素 Lu-Hf 同位素微区原位分析。如图3 所示，这两个样品虽然具有相似的锆石 U-Pb 年龄分布（如前所述），但是相同年龄组的锆石却具有明显的不同的 ε_{Hf}(t) 值分布特点。对于 0.5～1.1 Ga 和100～400 Ma 这两个年轻年龄组，DGH01 的 ε_{Hf}(t) 值虽然大部分都为负值，但也有相当数量的正 ε_{Hf}(t) 值；而 JLH01 的 ε_{Hf}(t) 值则除个别锆石颗粒（即663 Ma）外其余都为负值。与之相反，对于 2.3～2.9 Ga，1.6～2.3 Ga 这两个老的年龄组，DGH01 虽然有一些正的 ε_{Hf}(t) 值，但接近或超过亏损地幔演化线的 ε_{Hf}(t) 值数量却远少于 JLH01。

4 讨论

如图4 所示，大部分锆石的Th/U > 0.30，代表其岩浆成因（Hanchar and Hoskin, 2003）。具有明显变质成因 Th/U 比值特征（Th/U < 0.10）的锆石非常少（10个）。另外，几乎所有锆石的REE 分布曲线也显示出岩浆锆石的典型特征（Hanchar and Hoskin, 2003）。它富集 HREE，亏损 LREE，从 LREE 到 HREE 的球粒陨石归一化值呈逐步上升
广泛记录的年龄分布初步表明它们具有基本一致的物质来源。但这两条河流的物源分析必须考虑苏鲁超高压带和扬子克拉通来源物质的加入。这与中亚造山带和华北克拉通东部大量出露的晚古生代至中生代的花岗岩和中酸性火山岩的年代特征符合，共同表明锆石的岩浆成因。

4.1 物源示踪

本次研究所选取的5条河流的汇水盆地基本上都位于华北克拉通东部范围内，但也不是完全如此。因为辽河(LNH01)的上游实际上是属于大兴安岭造山带的，而大兴安岭造山带在区域构造位置上归属于中亚造山带(CAOB)的东部而非华北克拉通，因此在物质来源上不能不考虑来自中亚造山带(CAOB)东部的贡献。另外，胶东半岛的大沽河(DGH01)和胶莱河(JLH01)流经的区域位于华北克拉通东部与苏鲁超高压－高压带接触的位置，而苏鲁超高压－高压带的南部是扬子克拉通。因此，对于这两条河流的物源分析必须考虑苏鲁超高压－高压带和扬子克拉通来源物质的加入。

潮白河(CBHO1)和辽河(LNH01)相似的锆石年龄分布初步表明它们具有基本一致的物质来源。它们都具有2.4～2.5 Ga和1.8～1.9 Ga两个特征年龄峰，而这两个年龄正好是华北克拉通的特征年龄(Gao et al., 2004; Liu et al., 2008; Yang et al., 2009)(图5)。2.4～2.5 Ga的年龄被华北克拉通东部前寒武结晶基底大量的花岗岩类和长英质火山岩广泛记录(Zhao et al., 1998, 2000, 2001, 2005; Wu et al., 2005)，而1.8～1.9 Ga的年龄记录代表华北克拉通在这一时期发生的一次大规模变质事件(Zhao et al., 2000, 2001, 2005)。前寒武1.6 Ga之后的年龄没有或者极少出现，可能是由于华北克拉通1.9 Ga之后就处于长期的稳定期，直到奥陶纪被金伯利岩侵入(Gao et al., 2002)才开始重新活动。与此相反，扬子克拉通以大量保存有700～850 Ma的年龄为其典型特征(Li et al., 2002; 2003; Liu et al., 2008)，而这两条河流的锆石在700～850 Ma没有或者极少有年龄分布。如图5所示，华北克拉通与扬子克拉通在年龄分布上非常明显的差异。另外，这两条河流的汇水盆地位于华北克拉通东部，而且远离扬子克拉通区域。上述所有特征表明，潮白河(CBHO1)和辽河(LNH01)的物质来源于华北克拉通东部，而没有扬子克拉通来源的物质加入。与此同时，LNY01位于年龄区间的100～500 Ma的锆石数量(45%)远多于CBHO1在这一区间的锆石数量(21%)，这可能与辽河上游中亚造山带(CAOB)东部大量出露的晚古生代至中生代(280～120 Ma)的花岗岩和中酸性火山岩(Chen et al., 2000; Wu et al., 2000; Jahn et al., 2001; Sun et al., 2001; Wu et al., 2002; Fan et al., 2003; Wu et al., 2003; Shi et al., 2004; Wang et al., 2004; 葛文春等, 2005; Liu et al., 2005; 崑瑞玉等, 2006; Jian et al., 2008; Miao et al., 2008; Zhang et al., 2008; Chen et al., 2009; Xu et al., 2009)有关。另外，如图6所示，辽河(LNH01)100～500 Ma锆石的两阶段模式Hf模式年龄(TDM)呈现出了两组完全不同的分布区间，即1.4～1.9 Ga和0.4～1.3 Ga，与潮白河(CBHO1)100～500 Ma锆石的TDM分布相比，多出了0.4～1.3 Ga组。同时，TDM为0.4～1.3 Ga的锆石都具有正的εHf(t)值，这与中亚造山带(CAOB)东部古生代至中生代花岗岩低的87Sr/86Sr初始值、
耿显雷等：华北克拉通东部及苏鲁造山带的地壳生长

图 6 潮白河、辽河、大清河、大沽河和胶莱河不同年龄组锆石的 T_{IME} (Hf) 分布
Fig. 6 Corresponding relative probability plots of T_{IME} (Hf) for different age group zircons

图 7 辽河及中亚造山带东部显生宙锆石的 T_{IME} (Hf) 分布对比（中亚造山带东部的数据来自文献程瑞玉等，2006; Chen et al., 2009; Meng et al., 2010）
Fig. 7 Comparison of two-stage Hf crust formation model ages of Phanerozoic zircons for the Liao River and eastern of the central Asian orogenic belt (CAOB)

正的 $\varepsilon_{Nd}(t)$ 值和年轻的 Nd 模式年龄（Chen et al., 2000; Jahn et al., 2000a; Wu et al., 2002; Jahn et al., 2004; Wu et al., 2007）及二叠纪到三叠纪（260～220 Ma）碎屑锆石正的 $\varepsilon_{Nd}(t)$ 值和年轻的 Hf 模式年龄（Meng et al., 2010）一致，都指示中亚造山带（CAOB）东部显生宙的地壳增长。加之，潮白河（CBH01）这些 100～500 Ma 锆石与中亚造山带（CAOB）东部具有非常相似的 T_{IME} 分布（图 7）。因此，可以认为辽河（LNH01）这部分具有 T_{IME} 为 0.4～1.3 Ga 的 100～500 Ma 锆石来源于中亚造山带（CAOB）东部。而非华北克拉通东部。故而在研究华北克拉通东部的地壳生长演化时，这部分来自中亚造山带（CAOB）东部的锆石数据应予以剔除。总体而言，潮白河（CBH01）和辽河（LNH01）的物质基本上来源于华北克拉通东部。

大清河（DQH01）与潮白河（CBH01）和辽河（LNH01）相比，在前寒武只有一个 2.4～2.5 Ga 年龄峰。出现此结果的原因可能来自两个方面：其一可
大沽河(DGH01)和胶莱河(JLH01)复杂的锆石年龄分布特征（图3），初步表明这两条河流具有相对复杂的物质来源。尽管如此，2.4～2.5 Ga和1.8～1.9 Ga两个特征峰揭示出华北克拉通的物质来源(Zhao et al., 1998; Zhao et al., 2000; Zhao et al., 2001; Gao et al., 2004; Wu et al., 2005; Zhao et al., 2005; Yang et al., 2009)，而2.0～2.1 Ga和700～800 Ma的年龄峰与扬子克拉通的特征年龄(Liu et al., 2008)相对应，表明也有一部分物质来源于扬子克拉通。因此，大沽河(DGH01)和胶莱河(JLH01)的物质具有华北克拉通东部的供给。大沽河(DGH01)和胶莱河(JLH01)却存在较大的差异。如图6所示，胶莱河(JLH01)的锆石年龄大部分分布在2.4～2.9 Ga(主峰为2.4～2.5 Ga)、1.6～2.3 Ga(主峰2.0～2.1 Ga，次峰1.8～1.9 Ga)两个年龄组，而在600～800 Ma(主峰为700～800 Ma)组的分布较少。另外古宙的老龄较多，这些特征都指示出胶莱河(JLH01)的物质源区以华北克拉通为主，而扬子克拉通来源的物质相对较少。相反，大沽河(DGH01)的锆石虽然在1.6～2.1 Ga(主峰1.8～1.9 Ga)年龄组内分布较多，但在2.3～2.9 Ga(主峰为2.4～2.5 Ga)年龄组的分布却相对较少，年龄峰2.4～2.5 Ga也较小，而较多的出现在0.5～1.1 Ga和100～400 Ma两个年龄组内，并且具有一个很强的700～800 Ma和100～200 Ma的年龄峰。这些特征表明，华北克拉通和扬子克拉通对大沽河(DGH01)的物质供给具有同等重要的贡献，或者扬子克拉通的源区物质贡献更多一些。也就是说，扬子克拉通源区物质对于大沽河(DGH01)的供给比胶莱河(JLH01)更多一些，这与区域位置上大沽河比胶莱河更靠近扬子克拉通的事实一致。此外，又引出了一个存在很大争议的问题，即华北克拉通与扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献，或者扬子克拉通的物质供给具有同等重要的贡献。
演化以新生地壳的产生以及该时期地壳的生长和改造再循环

明华北克拉通东部地壳生长最显著的时期为 2.6～3.0 Ga, 其次是 2.3～2.6 Ga, 图 9 表示随着地质历史时间的变化, 华北克拉通东部地壳生长的速率变化, 该图表明 2.4～3.0 Ga 是华北克拉通东部大陆地壳生长的最主要时期, 特别是在 2.6～2.7 Ga 时处于生长的最高峰, 这与 Wu et al. (2005) 的两阶段 Nd 模式年龄 为 3.0 Ga, 与华北克拉通东部次一级的生长曲线为 2.3～3.0 Ga, 但这一时期的地壳生长期不显著。2.4～3.0 Ga 期间那样显著, 而且没有明显的生长期。图 8(b) 为不同年龄组锆石的分布图, 它揭示了不同年龄组锆石的物质来源及该时期地壳的生长和改造再循环。2.2～2.8 Ga 年龄组的锆石, 其两阶段 Hf 模式年龄 为 2.4～3.0 Ga, 虽略大于锆石的 U-Pb 年龄, 但二者的分布区间基本重合。这说明 2.2～2.8 Ga 年龄组的锆石来源于新生的地壳物质, 并且表明这一时期地壳的演化以新生地壳的产生 (或地壳生长) 为主, 并伴随着微弱的古老地壳重熔再改造。1.6～2.2 Ga 年龄组的锆石, 其 为 2.3～3.0 Ga 的区间, 而 1.6～2.2 Ga 区间的分布较少。这说明 1.6～2.2 Ga 年龄组的锆石大部分来源于太古宙～古元古代古老地壳重熔再循环的物质, 只有少部分来源于新生的地壳物质, 并且表明这一时期地壳的演化以太古宙～元古代古老地壳的重熔再改造为主, 并伴随着少量年轻地壳物质的产生 (或地壳生长)。在 1.6～0.5 Ma 的时间段内, 不论是锆石的 U-Pb 年龄还是两阶段 Hf 模式年龄 , 都非常罕见。因此, 华北克拉通东部在 1.6～0.5 Ma 这段时期处于长期的稳定, 既没有年轻地壳物质的加入, 也没有古老地壳物质的重熔再改造。是华北克拉通东部地壳演化的寂静期。最后, 100～500 Ma 这组锆石, 其 为 100～500 Ma 的锆石来源于古元古代～中元古代古老地壳重熔再循环的物质, 这一时期地壳的演化以古元古代古老地壳重熔再改造为绝对优势, 而几乎没有地壳的生长。如图 10 所示, 基于锆石 U-Pb 年龄的生长曲线上标志于 T 为 100～500 Ma 这组锆石, 这表示 100～500 Ma 的锆石来源于古元古代～中元古代古老地壳重熔再循环的物质, 这一时期地壳的演化以古元古代古老地壳重熔再改造为绝对优势, 而几乎没有地壳的生长。如图 10 所示, 基于锆石 U-Pb 年龄的生长曲线和基于 T 的生长曲线之间存在较大的差异, 这表明地壳的改造循环在大陆地壳的形成演化过程中起着非常重要的作用。基于 T 的地壳生长曲线揭示出 2.2 Ga 时华北克拉通东部现存大陆地壳的 80% 已经形成, 表明现存大陆地壳的绝大部分来源于太古宙和元古代的生长。

全球大陆地壳在前寒武的 4 个主要生长阶段分别为 4.4～4.5 Ga, 3.8 Ga, 3.4 Ga, 2.7～2.8 Ga (Pietranik et al., 2008), 华北克拉通东部 2.6～2.8 Ga 的 Hf 模式年龄分别与全球克拉通大陆地壳 2.7～2.8 Ga 的生长时间最接近, 而全球其他的 3 个大陆地壳生长峰在华北克拉通东部却没有反映。另外, 来自扬子克拉通太古代结晶基底碎屑沉积岩的碎屑锆石 U-Pb 定年和 Hf 同位素研究表明扬子克拉通发育前寒武的地壳生长峰为 3.2～3.8 Ga 和 720～
910 Ma 两阶段（Liu et al., 2008）。这说明全球不同克拉通的地壳生长阶段并不是完全一致的，它们之间存在着一些差异。

4.3 苏鲁造山带古生代的地壳生长

如图6所示，虽然大沽河（DGH01）和胶莱河（JLH01）具有相似的锆石U-Pb年龄分布，但是它们的两阶段HI模式年龄分布却有很大差异。胶莱河（JLH01）锆石的T_{LME}主要分布在区间2.4~3.3 Ga和1.3~2.3 Ga的地壳生长阶段相对应。另外，其不同年龄组锆石的T_{LME}特征显示出与华北克拉通东部大陆地壳非常吻合的演化特征。

与胶莱河（JLH01）不同，大沽河（DGH01）2.3~2.9 Ga、1.6~2.1 Ga、0.5~1.1 Ga和100~400 Ma 4个U-Pb年龄组锆石的T_{LME}分别分布在区间2.2~2.9 Ga、1.7~2.1 Ga、0.6~1.2 Ga和300~600 Ma，即大沽河（DGH01）锆石U-Pb年龄的分布和T_{LME}的分布具有惊人的重合性。这说明在这4个阶段，地壳生长都比较明显，而很少显示出古老地壳物质的重熔再改造作用。2.3~2.9 Ga的地壳生长可以很好的与华北克拉通东部太古宙-古元古代（2.4~3.0 Ga）的地壳生长时期相吻合。1.6~2.1 Ga的地壳生长可以与华北克拉通东部古元古代-中元古代（1.3~2.3 Ga）的地壳生长相对应。但是，根据前面的讨论分析，这一时期华北克拉通东部地壳的演化还存在非常显著的太古宙古老地壳的重熔再改造作用，而这一过程在大沽河1.6~2.1 Ga的锆石中却没有体现。0.5~1.1 Ga的地壳生长（峰值为800~900 Ma）与扬子克拉通720~910 Ma的地壳生长峰可以很好的吻合。100~400 Ma锆石虽然绝大部分都具有负的ε_{HF}（t）值，指示古老地壳物质重熔再改造的来源。但是，与华北显生宙锆石的特征完全不一样。华北显生宙锆石的物质来源是古元古代-中元古代（1.3~2.2 Ga）的古老地壳，并没有显示出显生宙大陆地壳的生长（Yang et al., 2009）。

华北显生宙锆石的物质来源是古元古代-中元古代（1.3~2.2 Ga）的古老地壳，并没有显示出显生宙大陆地壳的生长（Yang et al., 2009）。而大沽河100~400 Ma的锆石，其T_{LME}集中分布在300~500 Ma，指示古生代年轻地壳物质的加入。因此，这部分的锆石不可能来源于华北克拉通，这与西部的秦岭造山带存在大量古生代的蛇绿岩相吻合。这也与早古生代（433.3±4.1 Ma）的双峰式火山岩岩墙广泛分布于南秦岭的南部一致（Zhang et al., 2003；Yang et al., 2007）。这些基性火山岩具有正的ε_{HF}（t）值（+3.28±5.02），被解释为与南秦岭早古生代的地幔柱岩浆作用有关（Zhang et al., 2003；Zhang et al., 2007）。这说明早古生代可能有年轻地壳物质的加入。

5 结论

（1）大沽河和辽河的碎屑锆石具有3个非常一致的年龄组，即2.1~2.6 Ga、1.6~2.0 Ga和100~500 Ma。大沽河的碎屑锆石只有一个年龄组，即2.3~2.7 Ga。大沽河和胶莱河的碎屑锆石U-Pb年龄分布相对比较复杂。大沽河碎屑锆石的年龄主要分布在2.3~2.9 Ga、1.6~2.1 Ga、0.5~1.1 Ga和100~400 Ma 4个区间，而胶莱河碎屑锆石的年龄主要分布在2.4~2.9 Ga、1.6~2.3 Ga、600~800 Ma和100~400 Ma 4个区间。

（2）锆石的U-Pb年龄和HF同位素组成特征表明大沽河和胶莱河的物质完全来源于华北克拉通东部，而辽河和胶莱河除华北东部的主要物质供给外，分别还有少量物质来源于大兴安岭造山带（中亚造山带东部）和扬子克拉通。虽然华北克拉通东部对大沽河的物质来源有一定的贡献，但是大沽河的物质
主要来源于扬子克拉通。

（3）来自大清河、潮白河和辽河的锆石 U-Pb 年龄和 Hf 同位素证据，表明华北克拉通东部地壳生长的主要时期为 2.4～3.0 Ga，特别是在 2.6～2.7 Ga 时处于生长的最高峰，次一级的地壳生长期为 1.3～2.3 Ga，而在其他阶段几乎没有地壳的生长或者不明显。基于 T_{RMB} 的地壳生长曲线表明到 2.2 Ga 华北克拉通东部现今大陆地壳的 80% 已经形成，表明现今大陆地壳的绝大部分来源于太古宙和元古代的生长，而不古元古代开始大陆地壳的演化以古老地壳的重熔再改造为主。华北克拉通东部 2.6～2.7 Ga 的 Hf 模式年龄与全球克拉通大陆地壳 2.7～2.8 Ga 的生长峰最接近。而全球其他的 3 个大陆地壳生长峰在华北克拉通东部却没有反映。

（4）大沽河碎屑锆石的 Hf 同位素组成表明苏鲁造山带在古生代（300～500 Ma）存在明显扬子克拉通的地壳生长。

References
Fan, W. M., Guo, F., Wang, Y. J., et al., 2003, Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Dahinggan Mountains, northeastern

附中文参考文献

