## 银山矿床成矿作用微量元素地球化学研究

凌其聪<sup>1,2</sup>,刘丛强<sup>1</sup>

(1. 中国科学院地球化学研究所,贵州贵阳 550002;2. 中国地质大学地球科学学院,湖北武汉 430074)

摘要:对银山矿床中矿石、岩体和矿体的蚀变围岩及其原岩的稀土及微量元素特征研究表明,热液蚀变作用导致蚀变岩的  $\Sigma$ REE 普遍升高,而近岩体  $\Sigma$ REE 则稍低于原岩.蚀变围岩出现 Eu 亏损, w (LREE)/w (HREE)值亦较原岩低.定量计算表明, $\Sigma w$  (REE)总升幅中有 31% 以下是由围岩质量迁移引起的表观浓缩现象,而另外的 69%以上的效应则因流体带入了 REE 所致.热液具有 w (LREE)/w (HREE)值低、强 Eu 正异常的特征.热液的还原性质促使 Eu<sup>3+</sup>还原为 Eu<sup>2+</sup>而被活化迁出,导致围岩的 Eu 负异常扩大;Sr 普遍地比原岩降低,Ba 普遍显著地升高,而 Rb 则相对稳定; Hf,Th,U,V,Cr,Co,Nb,Mo,Ta,Zr 表现为不活动或弱活动性,成矿元素 Cu,Pb,Zn,Ag 和 Sn 等被大量带入,Y,Sc 被活化迁出.

关键词:微量元素;地球化学;热液蚀变;浅变质岩;双桥山群;银山矿床.

中图分类号: P<sup>595</sup> 文献标识码: A

**文章编号:** 1000-2383(2001)05-0473-08

作者简介:凌其聪(1963一),男,副教授,博士后,从事地球化学、矿床学及矿物学的科研及教 学工作.

银山矿床是一个大型一超大型多金属矿床.有 关其成因存在多种不同的观点<sup>[1~5]</sup>.对其矿化分带 及蚀变分带,有人认为其发育非常完善<sup>[4, 6]</sup>,也有人 提出异议<sup>[3]</sup>.尽管对矿床的成因及其形成机制存在 不同的看法,但有一点是一致的:成矿作用与岩浆活 动密切相关,岩体与围岩的接触带是流体源和热源 中心<sup>[6]</sup>.以岩体为中心,从接触带向外,围岩经受从 相对高温至相对低温的热液蚀变作用,该矿床的围 岩蚀变作用与成矿作用密切相关,它们可能是同一 流体体系不同演化阶段的产物.

本文旨在通过对银山矿床中岩体、矿体蚀变围 岩及原岩的微量元素(包括稀土元素)的对比研究, 揭示热液蚀变过程中微量元素的地球化学行为特征,并讨论稀土元素特征的地球化学意义.

银山矿床位于赣东北地区,成矿构造背景复杂<sup>[6]</sup>.区内主要为中元古界双桥山群绢云母千枚岩,矿物组合以绢云母为主,含少量石英、方解石及极少量的其他矿物.双桥山群是主要的容矿岩石.矿区内双桥山群岩层普遍遭受热液蚀变作用,有面型蚀变







和线型蚀变两种类型,并以前者为主<sup>[6]</sup>.面型蚀变有 石英绢云母化、碳酸盐化、高岭石化和绿泥石化.这些 蚀变类型以岩体为中心从内向外呈面型分带(图1). 远离航区则双桥山群基本未受岩浆活动影响.杰文,

**收稿日期**:)2004-20214 China Academic Journal Electro **基金项目**:科技部"九五"攀登预选项目(<sup>95-</sup>预<sup>-39</sup>);国家杰 出青年科学家基金项目(No.49625304).

以矿区内最发育的石英绢云母化带为研究对象. 岩体主要有流纹英安斑岩和英安斑岩,两者同 源同根,均是深部隐伏岩浆房的产物<sup>[4,6]</sup>,本次工作 主要涉及其中的流纹英安斑岩(13<sup>#</sup>号岩体).

矿体分为:陡倾脉状矿体、浸染状和细脉浸染状 矿体和缓倾斜层状矿体 3 类·本文主要针对其中的 陡倾脉状矿体类型,其分布最广,工业价值最大·矿 体明显地受裂隙的控制·矿石主要由石英、方铅矿、 闪锌矿和黄铁矿组成·金属硫化物主要呈自形细粒 状,与它形粒状石英呈共生关系.

1 样品采集及分析方法

#### 1.1 样品采集

在详细岩相研究的基础上,测样选择如下:(1) 以主岩体岩<sup>①</sup>为中心,2~3 m间距定一个采样点, 样品空间分布:岩体→接触带围岩→向外不同蚀变 程度的围岩;(2)选择两个代表性矿体10<sup>#</sup>大矿体和 101<sup>#</sup>小矿体<sup>②</sup>,以0.5~1 m间距定一个采样点,由 内向外取:矿体→接触带围岩→矿体脉旁蚀变围岩. 本文给出的主剖面样品分析结果为<sup>-60</sup> m中段主 巷道,平面位置如图1所示.

因主岩体 13<sup>#</sup>已受到强烈蚀变,为了解岩体的 原岩特征,本文以远离矿化中心蚀变较弱的同期岩 体的样品平均近似代表新鲜岩体作对比研究.

每个测样以同一采样点的 3~4 块岩样组合混 合加工,最后缩分,以确保测试数据的代表性.

### 1.2 分析方法

样品预处理选用手工操作完成.首先用钢钵、棒 锤砸成细块,再用玛瑙钵锤研细到 200 目,然后送 测·主量元素用湿化学法测定.稀土及微量元素用 ICP-MS 法测定,测样过程中以目前国际上认可的 标样 AMH-1 和 OU-3 为作质量监控,详细测样 方法及过程见文献[7].REE 测试精度好于 5%.其 余元素的精度优于 10%.样品分析在中国科学院地 球化学研究所矿床地球化学开放实验室完成.

2 结果

### 2.1 稀土元素特征

样品号 Y1 至 Y7, Y10-1 至 Y10-4 和 Y101

 $①3^{#}, 13^{#}$ 在容但上紧邻,是银山矿床 Au<sup>—</sup>Cu 矿化中心,也是 热液流体上升和围岩蚀变分带的中心。

②10<sup>#</sup>矿体与101<sup>#</sup>矿体实际上是两个独立的矿体,但因产出空间位置毗邻,为方便起见,生产上把101<sup>#</sup>划作10<sup>#</sup>矿体的支矿体.

-1 至 Y<sup>101-4</sup> 分别是从岩体、矿体的接触带向外 逐渐远离岩体、矿体分布·表 1 是银山矿床岩体、矿 体及围岩样品的元素分析结果,图 2 是样品的稀土 配分曲线.

稀土总量( $\Sigma_w$ (REE))从岩体接触带向外逐渐 升高.绝大多数样品的 $\Sigma_w$ (REE)值均较原岩有所 提高,增幅为9.2%~54.8%.但蚀变最强的接触带 上及其紧邻处的样品(Ys1,Ys2)的 $\Sigma_w$ (REE)值低 于原岩.

 $w(LREE)/w(HREE), w(Ce)_n/w(Yb)_n, w(La)_n/w(Yb)_n等能反映轻重稀土分异特征的参数值, 一致显示了较明显的轻重稀土之间的分异, 即$  $蚀变围岩具轻稀土富集的特征, 其 <math>w(Ce)_n/w$ (Yb)<sub>n</sub> 值变化于3.83 至 5.41 之间, 参数值普遍较 原岩降低( $w(Ce)_n/w(Yb)_n=5.87$ ).

δ(Ce)值均为 1 左右, 无 Ce 异常; δ(Eu)值介于 0.65 $\sim$ 0.82 之间, Eu 表现为弱到稍强的负异常, 与 原岩相似·但负异常程度比原岩有所扩大·而接触带



图 2 银山矿床围岩、岩体及矿体的稀土元素配分曲线

Fig.<sup>2</sup> Chondrite-normalized REE patterns of sericite-phylnic Publishing House. All rights reserved. http://www.cnl lite, magmatic rocks and ores in Yinshan deposit

a. 岩体的围岩; b. 矿体的围岩; c. 矿石

上的样品 Y1 则例外地表现为微弱的正异常或近于 无异常( $\delta(Eu)=1.02$ ).

蚀变围岩与原岩的 REE 球粒陨石标准化分布 模式曲线变化趋势相似,均为右倾型,富轻稀土,Eu 负异常,但蚀变围岩的曲线几乎全部分布于原岩之 上(图 2a, 2b).

矿体的围岩稀土元素特征与岩体围岩的相似, 但矿石则显著不同: $10^{\#}$ 矿体和 $101^{\#}$ 矿体的矿石 REE 的配分曲线亦为右倾的轻稀土富集型(图 2c), 但 Eu 为强烈正异常, $\delta$ (Eu)分别高达 1.38 和 2.71. 稀土总量( $\Sigma w$ (REE))却比围岩低得多.此外,矿体 规模越大,接触带上及其紧邻围岩的 REE 相对含量 降低则越强烈.如表 1 所示,小矿体 $101^{\#}$ 矿体  $\Sigma w$ (REE)为 235.81×10<sup>-6</sup>161.88×10<sup>-6</sup>,而大矿体  $10^{\#}$ 矿体 $\Sigma w$ (REE)则为 206.66×10<sup>-6</sup>108.32× 10<sup>-6</sup>.

### 2.2 其他微量元素

微量元素(表 1)具如下特征:(1)大离子亲石元 素:Rb,Sr,Ba的行为表现不一致.Sr 普遍地比原岩 降低,Ba 普遍显著地升高,而 Rb 相对稳定.与文献 上常见的三者变化特征一致的现象不同.(2)Zr,Hf, Th,U,V,Cr,Co,Nb,Mo和Ta总体上变化很小,尤 其是Zr表现相当稳定.(3)成矿元素Cu,Pb,Zn,Ag 和Sn的质量分数极为显著地升高.Y,Sc下降,W 变化规律不明显.

3 讨论

### 3.1 热液蚀变过程中微量元素的行为

如上所述,除了接触带及其紧邻的样品外,蚀变

围岩的<sup>Σ</sup>REE 普遍比原岩升高,这种特征在以原岩 作标准化的蚀变岩 REE 分布图中更为清晰,蚀变围 岩的几乎全在1之上(图 <sup>3</sup>).

Campbell 等<sup>[8]</sup>提出,确定微量元素(包括稀土 元素)活动性有两个前提条件:一是岩石蚀变前后的 质量分数准确已知;二是活动的元素其质量分数及 比值在蚀变岩与原岩之间必然是变化的.即单凭岩 石中微量元素蚀变前后质量分数的增减,尚不能说 明微量元素是否活动,或是否有微量元素的加入.因 为主元素的迁出或加入会引起"浓缩"或"稀释"效 应,从而导致不活动微量元素出现表观富集或表观 亏损现象.因此,要回答原岩中的微量元素是否活 动、是否有外来加入或迁移问题,还需考察:(1)它 们是否被"浓缩"或"稀释";(2)具标志性的元素比值 是否出现一定幅度的变化.

3.1.1 热液蚀变过程质量迁移对不活动元素的浓 缩效应 表1显示,岩体及矿体的蚀变围岩的主量 元素表现出一致的变化规律:除接触带样品的Si质 量分数接近或稍高于原岩之外,其余样品Si,Na, Mg 均明显迁出·其中Si质量分数从岩体和矿体的 接触带向外逐渐下降(图4)·Fe 明显带入,K,Ca, Al 基本不变,Mn 质量分数的变化不显示明显规律 性.不同的是,Ti 在岩体的围岩中有明显迁出,而在 矿体围岩中则基本不变,表明Ti 在弱蚀变条件下较 稳定,而强蚀变时则活化迁移.

如上所述, 热液蚀变过程确实迁出了 Si, Na, Mg 等部分主量元素, 其中以 Si 的迁移为主.

利用 Ague<sup>[9]</sup>建立的关于岩石在变质或蚀变过 程中体系质量迁移的定量计算方法的结果表明(以 Zr 为参照元素),热液蚀变造成千枚岩总体质量损 失为21.96%~30.86%,即主元素迁出而导致的



(C)1994-2021 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnk 图 3 银山矿床蚀变围岩以原岩标准化的微量元素分布曲线

|                           |                           |         |         |         |         | Table 1 | Elemer  | nt compo | sitions (   | of ores,    | phyllite  | and inti  | usion ir | ı Yinshe | ın deposit |        |         |         |         |          |        |
|---------------------------|---------------------------|---------|---------|---------|---------|---------|---------|----------|-------------|-------------|-----------|-----------|----------|----------|------------|--------|---------|---------|---------|----------|--------|
|                           | (C)<br>(C)                | Y7      | Y6      | Y5      | Y4      | Y3      | Y2      | к        | 蚀变<br>岩体(3) | 新鲜<br>岩体(3) | Y101-4    | Y101-3    | Y101-2   | Y101-1   | Y101-k     | X10-k  | Y10-1   | Y10-2   | Y10-3   | Y10-4    | 石英(3)  |
| ę                         | <b>34</b><br>199          | 40, 44  | 39, 56  | 34.04   | 32.44   | 33, 72  | 28, 33  | 28, 23   | 58. 04      | 33, 15      | 45, 51    | 36, 59    | 33.69    | 30.48    | 7.70       | 0.80   | 19.22   | 32.40   | 34.18   | 42, 88   | 0.34   |
| చి                        | <b>63 83</b>              | 98. 31  | 86.95   | 73.79   | 71.08   | 69.43   | 62.00   | 58.35    | 109, 52     | 62.64       | 99, 96    | 83, 47    | 74, 64   | 66.92    | 17.21      | 1.34   | 42, 77  | 58.79   | 71.42   | 88. 29   | 0. 63  |
| Pr                        | 67.7<br>202               | 12, 61  | 10, 64  | 8, 59   | 8, 00   | 7.89    | 6, 84   | 6, 72    | 11.31       | 5, 86       | 11. 13    | 9.24      | 8.36     | 7.28     | 1.79       | 0.06   | 4, 86   | 6. 02   | 7.89    | 9, 98    | 0. 07  |
| PZ                        | <b>30, 42</b>             | 50, 15  | 41.90   | 35. 67  | 30, 82  | 32, 21  | 26, 56  | 27.12    | 43, 04      | 23. 34      | 43, 63    | 37.51     | 33. 42   | 27, 81   | 6.62       | 0, 25  | 20. 11  | 21.44   | 31, 38  | 39. 23   | 0, 14  |
| Б                         | <b>9</b><br>9<br>Ch       | 9.10    | 8.04    | 7.07    | 6. 29   | 7.16    | 5.47    | 5.56     | 7, 65       | 3, 76       | 8.45      | 7.96      | 7, 02    | 5, 59    | 1.43       | 0.08   | 3.91    | 3.67    | 6.24    | 7.50     | 0. 05  |
| Eu                        | ۲2<br>ina                 | 1.86    | 1. 79   | 1, 65   | 1.49    | 1.48    | 1.45    | 1.85     | 2, 73       | 1. 29       | 2, 34     | 1.51      | 1.88     | 1.52     | 0.67       | 0.07   | 1. 18   | 1, 38   | 1. 55   | 1. 70    | 0. 03  |
| Gd                        | 5. <b>49</b>              | 8. 12   | 7.61    | 6.48    | 5, 68   | 5.94    | 5. 33   | 5, 53    | 7.70        | 2.68        | 7, 16     | 7.98      | 6.53     | 5.45     | 1.54       | 0, 07  | 4.15    | 3, 09   | 5.62    | 5. 31    | 0.04   |
| Tb                        | <b>82 '0</b><br>cad       | 1, 15   | 1, 19   | 0.92    | 0.79    | 0, 76   | 0.83    | 0, 88    | 1, 33       | 0.42        | 1, 05     | 1. 25     | 1.01     | 0.89     | 0.24       | 0.02   | 0.64    | 0.35    | 0.84    | 0, 71    | 0.01   |
| Ŋ                         | 3. 28<br>9.               | 6, 82   | 7.38    | 5, 38   | 4.32    | 3.69    | 4.96    | 5, 08    | 7.86        | 1.44        | 5, 92     | 7.63      | 6.04     | 5.53     | 1.46       | 0. 11  | 4.02    | 1, 87   | 4, 70   | 3. 82    | 0, 07  |
| Нo                        | 17.<br>0. 71              | 1. 36   | 1. 51   | 1. 03   | 0.81    | 0, 69   | 1.04    | 0.98     | 1.45        | 0.34        | 1, 23     | 1. 45     | 1. 25    | 1.20     | 0, 34      | 0, 01  | 0.83    | 0, 34   | 1.00    | 0, 83    | 0.01   |
| 臣                         | 21 <b>%</b><br>701        | 4, 00   | 4.51    | 2.91    | 2.55    | 2, 23   | 3. 26   | 3, 23    | 3, 79       | 0. 89       | 3. 96     | 4. 19     | 3.66     | 3, 84    | 0, 97      | 0, 04  | 2.63    | 0, 99   | 3. 23   | 2.40     | 0, 06  |
| Тя                        | 0-33                      | 0.58    | 0.66    | 0, 45   | 0, 37   | 0.39    | 0.49    | 0.47     | 0.54        | 0. 23       | 0, 59     | 0.60      | 0.56     | 0.57     | 0.15       | 0.01   | 0.40    | 0, 15   | 0. 53   | 0. 39    | 0.01   |
| Yb                        | <b>5.</b> 44<br>al I      | 4. 37   | 4.96    | 3, 10   | 2, 95   | 2.96    | 3, 34   | 3.42     | 3.42        | 1. 24       | 4. 24     | 4.86      | 4, 22    | 4, 21    | 1.02       | 0. 05  | 3.17    | 1, 08   | 4, 17   | 3, 16    | 0.07   |
| Lu                        | 0.37<br>Ele               | 0. 61   | 0.67    | 0.43    | 0.46    | 0, 47   | 0, 49   | 0, 49    | 0.44        | 0.26        | 0.64      | 0.66      | 0, 59    | 0, 59    | 0, 14      | I      | 0.43    | 0.14    | 0.66    | 0.46     | 0, 01  |
| Rb                        | 154. 75 ctr               | 155, 91 | 174.44  | 147.42  | 172.68  | 181.93  | 161. 75 | 156, 16  | 258,82      | 137, 51     | 219.32    | 223, 66   | 189.94   | 170. 98  | 42.59      | 1.25   | 144.07  | 116, 39 | 200, 33 | 179. 39  | 55.00  |
| ъ,                        | 12 <b>6. 77</b><br>iuc    | 148. 57 | 132. 91 | 113, 36 | 177, 89 | 171, 93 | 64, 10  | 168.70   | 123. 63     | 326. 35     | 155, 93   | 16, 71    | 132, 73  | 92, 21   | 22. 65     | 3. 24  | 55.43   | 91.42   | 72.04   | 121.59 1 | 30, 54 |
| Y                         | с Р<br>2 <b>3</b> .62     | 35, 36  | 39, 16  | 26, 95  | 21.45   | 18.19   | 27.04   | 26, 76   | 36, 79      | 8.01        | 31.58     | 36. 67    | 32.86    | 31.91    | 8.32       | 0. 56  | 21, 17  | 9. 255  | 27.29   | 20.62    | 3.20   |
| Zr                        | qn <mark>.</mark> 168, 56 | 243. 78 | 239. 11 | 218, 21 | 219, 52 | 228, 23 | 219.58  | 215.98   | 208, 32     | 186, 15     | 239, 78   | 246.65 2  | 223. 61  | 255.84   | 56.77      | 2, 11  | 179.89  | 146.11  | 354.09  | 280, 56  | 83, 33 |
| $\mathbf{B}_{\mathbf{a}}$ | 3 <b>04. 2</b> 4          | 695, 49 | 635.47  | 815.36  | 698. 34 | 589, 19 | 758.55  | 810, 47  | 513.38 (    | 687.44      | 632.21    | 552.92    | 120.81   | 642, 35  | 142.04     |        | 515. 50 | 173.30  | 622.54  | 176.94 2 | 47.98  |
| Η                         | 37<br>2 <sup>.</sup> 37   | 8, 06   | 8, 85   | 6, 05   | 6, 96   | 7. 56   | 7. 08   | 6, 61    | 8, 76       | 5.70        | 10.50     | 8.50      | 8, 58    | 8, 39    | 1.99       | 0, 06  | 5, 45   | 4.65    | 10, 95  | 8.94     | 3.50   |
| Ц                         | <b>2. 28</b><br>g H       | 12.88   | 12.91   | 8, 64   | 11.46   | 12, 59  | 9.80    | 9.53     | 12.62       | 15, 28      | 16, 55    | 14.85     | 14.19    | 12.55    | 2.95       | 0, 11  | 5. 19   | 9, 41   | 11.74   | 12, 99   | 6, 11  |
| n                         | 1 <sup>.</sup> 28<br>10]  | 2, 50   | 2, 62   | 1.94    | 2.73    | 4.04    | 2, 46   | 3, 67    | 9.94        | 11.43       | 3, 59     | 3, 29     | 2, 96    | 2.67     | 0. 55      | 0.03   | 1.55    | 3. 63   | 3. 43   | 2. 71    | 4.57   |
| S                         | 31.82<br>se.              | 17.98   | 22.60   | 13, 42  | 17.37   | 18, 32  | 16.68   | 16. 27   | 9, 85       | 11. 13      | 24.17     | 23.99     | 20, 38   | 21.29    | 4.75       | 2, 90  | .08.34  | 132, 71 | 173, 42 | 206. 64  | /      |
| ٨                         | 82.23<br>Al               | 113. 14 | 136.82  | 62.79   | 122.96  | 139, 97 | 108, 40 | 87.81    | 95.54       | 109.23      | 194, 03   | 164.41    | 157.30   | 131. 61  | 36.74      | 1, 08  | 1. 02   | 0, 93   | 0.99    | 0.97     | /      |
| ڻ                         | 10. 54<br>1 li            | 96.04   | 121.30  | 114. 63 | 111.76  | 134.20  | 75.41   | 95, 52   | 128.05      | 125.31      | 150, 67   | 123, 21   | 15.05    | 121.56   | 50.44      | 2.71   | 0, 90   | 2, 12   | 0, 794  | 0. 79    | /      |
| ථ                         | 16.47<br>dh               | 16.92   | 22, 74  | 10.81   | 12, 73  | 13. 12  | 13, 13  | 11. 73   | 5.01        | 9.45        | 10.45     | 24.40     | 22. 18   | 18.06    | 16, 95     | 5, 83  | 2, 99   | 5.37    | 3, 33   | 3.48     | 1      |
| ż                         | 23° 61<br>15 r            | 35.81   | 39.60   | 10.97   | 26.49   | 19.46   | 24.46   | 18.02    | 5. 12       | 9.88        | 14.49     | 34.99     | 22, 84   | 37.19    | 17.56      | 9.83   | 3, 51   | 17. 33  | 4.75    | 7.87     | /      |
| Cu                        | 46.82                     | 91.61   | 74.49   | 223.44  | 179.42  | 407.78  | 326.57  | 690, 97  | 161.97      | 489.44      | 82.25     | 82.03     | 49, 17   | 23, 76   | 2 131, 91  | 6.38   | 3. 03   | 12, 18  | 3.84    | 6, 28    | /      |
| Ag                        | 0. 14                     | 0, 57   | 1.60    | 15, 58  | 1.82    | 2. 93   | 26.46   | 3, 13    | 1, 99       | 5, 88       | 8.89      | 9, 18     | 3. 27    | 5.03     | 80.67      | 33. 32 | 33. 03  | 31.46   | 32. 34  | 31, 39   | /      |
| $\mathbf{P}\mathbf{b}$    | .pe<br>17.46              | 50.41   | 152.29  | 786, 23 | 116.75  | 43.41   | 734.46  | 161.54   | 142, 55     | 27, 11      | 964.63    | 998.74 7  | 81.60    | 998, 98  | /          | 1      | 0, 33   | 0.39    | 0.29    | 0.21     | /      |
| Zn                        | 98.66                     | 136.40  | 467.26  | 845. 33 | 129.68  | 47.06   | 654. 67 | 320.93   | 09, 86      | 162.27      | 850, 44 8 | 379, 22 6 | 50.67 (  | 540, 50  | /          | ~      | 25.42   | 27.54   | 27, 29  | 24.84    | /      |
| As                        | 21. 13<br>nttp            | 15.53   | 48, 76  | 560, 00 | 422, 69 | 679.61  | 702, 33 | 730, 87  | 794.84      | 775.84      | 192.74    | 371.94    | 93, 37   | 261.99   | 9 982.06 9 | 764.82 | 47.26   | 825.40  | 110.97  | 19, 25   | /      |
| ጽ                         | 2 <b>.13</b>              | 4. 79   | 1.23    | 7. 15   | 6. 75   | 7.20    | 3. 34   | 4, 65    | 35, 45      | 5,87        | 5, 86     | 4, 39     | 1, 913   | 2.41     | 5.09       | 3, 80  | 4.41    | 1, 39   | 3, 50   | 0.87     | /      |
| Nb                        | 7. 61                     | 11.99   | 16. 71  | 8.90    | 11. 21  | 11.60   | 12.38   | 9.63     | 15.13       | 14.77       | 16.69     | 22. 24    | 16.14    | 13.60    | 3.40       | 0.06   | 9.49    | 9, 19   | 17.28   | 14.49    | /      |
|                           | w.cnl                     |         |         |         |         |         |         |          |             |             |           |           |          |          |            |        |         |         |         |          |        |

表1 银山矿床岩体、矿石及围岩的元素组成及部分计算参数值

| Matrix         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y </th <th>Model         Model         <th< th=""><th>(C)1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Model         Model <th< th=""><th>(C)1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                               | (C)1             |                |        |         |         |         |           |         |             |             |          |        |         |                |               |         |        |               |        |        |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------|---------|---------|---------|-----------|---------|-------------|-------------|----------|--------|---------|----------------|---------------|---------|--------|---------------|--------|--------|-------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01         0.36         0.77         0.26         0.75         0.06         0.76         1.06         0.56         0.75         1.06         0.76         1.05         0.21         0.26         0.25         0.25         0.26         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25         0.25 <t< th=""><th>字<br/>道<br/>2011~</th><th>(3) Y7</th><th>Y6</th><th>Y5</th><th>¥4</th><th>БХ</th><th>Y2</th><th>Ķ</th><th>盘演<br/>站体(3)</th><th>新鮮<br/>岩体(3)</th><th>Y101-4</th><th>Y101-3</th><th>Y101-2</th><th>Y101-1</th><th>Y101-k</th><th>Y10-k</th><th>Y10-1</th><th>Y10-2</th><th>Y10-3</th><th>Y10-4</th><th>石英(3)</th></t<>                                                                                   | 字<br>道<br>2011~  | (3) Y7         | Y6     | Y5      | ¥4      | БХ      | Y2        | Ķ       | 盘演<br>站体(3) | 新鮮<br>岩体(3) | Y101-4   | Y101-3 | Y101-2  | Y101-1         | Y101-k        | Y10-k   | Y10-1  | Y10-2         | Y10-3  | Y10-4  | 石英(3) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0         0 0 0                                                                                                                                                                                                                                                                                                                                              | 0                | 1 0.95         | 0.72   | 2.54    | 1.06    | 0.54    | 0.50      | 0.75    | 1.06        | 1. 13       | 0.58     | 6, 75  | 0, 98   | 0.40           | 0.67          | 0. 21   | 0.87   | 1.30          | 0.96   | 0.65   | /     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3:3:0         1:5:3         1:5:3         1:5:3         1:5:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:5:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3         1:1:3 <th< th=""><th>0</th><th>8 0.33</th><th>0.96</th><th>59, 52</th><th>1.47</th><th>0.47</th><th>44, 95</th><th>0. 61</th><th>0.50</th><th>2, 28</th><th>5, 67</th><th>15, 59</th><th>4.79</th><th>7, 33</th><th>608, 20</th><th>427, 88</th><th>1, 70</th><th>3, 02</th><th>4, 24</th><th>19, 79</th><th>1</th></th<>                                                              | 0                | 8 0.33         | 0.96   | 59, 52  | 1.47    | 0.47    | 44, 95    | 0. 61   | 0.50        | 2, 28       | 5, 67    | 15, 59 | 4.79    | 7, 33          | 608, 20       | 427, 88 | 1, 70  | 3, 02         | 4, 24  | 19, 79 | 1     |
| 0.57         0.87         1.12         0.60         0.78         0.80         0.81         0.86         1.34         7.102         5.0.81         1.41         1.26         1.08         0.97         0.24         0.002         0.58         1.41         5.70         8           15.4.75         2394.48         17.102         50.43         15.91         15.71         15.81         15.62         1.487         1.141         5.70         8         2.31         1.34         1.41         1.25         1.487         1.411         5.70         8.3         134         1.41         1.25         1.487         1.481         1.652         1.437         1.411         5.70         8.3         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33 <th>0.22         0.88         1.12         0.80         0.89         0.61         0.89         0.14         1.25         0.80         0.75         1.25         1.20         0.75         1.25         1.20         1.25         1.20         1.25         1.20         1.25         1.25         1.20         1.25         1.20         1.25         1.20         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         <t< th=""><th>3<br/>7<br/>01</th><th>8 7.79</th><th>9.71</th><th>15, 11</th><th>49, 12</th><th>15.98</th><th>19, 72</th><th>15. 53</th><th>16, 33</th><th>21.79</th><th>14.91</th><th>34.64</th><th>10, 89</th><th>49, 41</th><th>25.45</th><th>100.93</th><th>8, 18</th><th>33, 10</th><th>11. 25</th><th>9.41</th><th>/</th></t<></th>                                                                                                                                                                                                                                                                                                                        | 0.22         0.88         1.12         0.80         0.89         0.61         0.89         0.14         1.25         0.80         0.75         1.25         1.20         0.75         1.25         1.20         1.25         1.20         1.25         1.20         1.25         1.25         1.20         1.25         1.20         1.25         1.20         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25 <t< th=""><th>3<br/>7<br/>01</th><th>8 7.79</th><th>9.71</th><th>15, 11</th><th>49, 12</th><th>15.98</th><th>19, 72</th><th>15. 53</th><th>16, 33</th><th>21.79</th><th>14.91</th><th>34.64</th><th>10, 89</th><th>49, 41</th><th>25.45</th><th>100.93</th><th>8, 18</th><th>33, 10</th><th>11. 25</th><th>9.41</th><th>/</th></t<>                                                                                  | 3<br>7<br>01     | 8 7.79         | 9.71   | 15, 11  | 49, 12  | 15.98   | 19, 72    | 15. 53  | 16, 33      | 21.79       | 14.91    | 34.64  | 10, 89  | 49, 41         | 25.45         | 100.93  | 8, 18  | 33, 10        | 11. 25 | 9.41   | /     |
| 2         7         1.5         5.6         14,0         14,6         2.87         12.30         6.24         4.87         1.41         5.70         8           154,75         239.46         217.37         181.51         168.05         16.902         15.88         137.54         253.58         123.54         15.82         17.1         121.33         16.16         14.61         2.487         14.61         5.70         8         1.23         16.16         1.28         2.911108.32         131.1         50         1.41         5.70         8         1.31         1.46         2.487         1.41         5.70         8         1.11         1.62         1.91         1.10         1.02         1.98         1.10         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41         1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.73       1.56       1.46       7.102       50.45       15.47       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       147       15.56       15.56       147       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.57       15.56       15.56       15.56       15.57       15.56       15.56       15.57       15.56       15.57       15.56       15.56       15.57       15.56       15.57       15.56       15.56       15.56       15.57       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56       15.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | °.               | 2 0.82         | 1.12   | 0.60    | 0, 78   | 0, 80   | 0. 89     | 0.61    | 0.95        | 0, 90       | 1. 14    | 1, 26  | 1, 08   | 0, 97          | 0.24          | 0.002   | 0. 58  | 0.75          | 1. 25  | 1. 30  | /     |
| $ \begin{bmatrix} 154, 75 \\ 154, 75 \\ 239, 48 \\ 21, 37 \\ 161, 65 \\ 21, 08 \\ 165, 8 \\ 22, 07 \\ 24, 89 \\ 21, 08 \\ 165, 8 \\ 22, 09 \\ 102 \\ 102 \\ 102 \\ 102 \\ 104 \\ 102 \\ 102 \\ 104 \\ 102 \\ 102 \\ 104 \\ 102 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 102 \\ 104 \\ 104 \\ 102 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.1       2.1       18.1       16.6       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0       16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7              | 9 1.50         | 3, 68  | 13, 46  | 71. 02  | 50.43   | 15, 94    | 24, 73  | 15, 68 1    | 40, 00      | 14.64    | 2.87   | 12. 30  | 6. 24          | 4.87          | 1. 41   | 5, 70  | 8. 80         | 16, 95 | 8, 14  | /     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2         2         2         3         6         1         3         1         6         1         3         1         6         1         3         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 154.7            | 5 239.48       | 217.37 | 181. 51 | 168, 05 | 169, 02 | 150, 39 1 | 47.91 2 | 58.82 1     | 37.54 2     | 35, 81 2 | 04 90  | 182, 87 | 161, 88        | 41.28         | 2.9111  | 08, 32 | 131, 71       | 173.41 | 206.66 | 1.54  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.100 1.200 1.220 0.390 0.091 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24. £            | 9 21.08        | 16.58  | 22, 07  | 22.49   | 23.68   | 16. 32    | 15.82   | 27, 10      | 47, 71      | 21. 23   | 16, 18 | 16.62   | 14, 39         | 14.61         | 24.26   | 13. 11 | 50.28         | 16.86  | 28, 14 | 7.87  |
| 0.86         0.65         0.70         0.74         0.75         0.68         0.82         1.02         1.02         1.19         0.90         0.58         0.84         0.84         1.33         2.82         0.90         1           6.97         5.36         4.62         6.37         6.60         4.91         4.78         3.31         5.79         2.47         2.51         2.82         2.84         3.95         5.31         17         3.55         0.52         4.63         4.19         4.37         9.27         3.51         17           6.90         5.19         5.104         5.93         5.41         5.41         3.83         7.19         11.34         5.22         3.85         0.13         0.27         3.57         0         3.7         3.23         12         1.4         3.83         11.34         5.70         57.00         5.40         5.70         5.50         0.7         17.95         16.0         1.4         1.4         1.4         4.8         5.50         0.01         0.40         0.02         0.32         0.23         0.72         0.65         0.47         17.95         16.7         1.4         5.8         5.60         3.7         0.61 <td< td=""><td>0.05         0.70         0.74         0.75         0.66         0.82         0.84         0.84         0.84         0.84         0.84         0.84         0.84         0.72         2.77         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         <t< td=""><td>-C<br/>T</td><td>0 1.02</td><td>0.98</td><td>0.99</td><td>1, 01</td><td>0, 97</td><td>1. 02</td><td>0, 97</td><td>0, 95</td><td>0, 99</td><td>1. 02</td><td>1.04</td><td>1.02</td><td>1. 03</td><td>1. 06</td><td>1. 08</td><td>1, 02</td><td>0.93</td><td>0, 99</td><td>0, 97</td><td>0, 92</td></t<></td></td<>                                                                                                                                                                                                                                                                                                                                                     | 0.05         0.70         0.74         0.75         0.66         0.82         0.84         0.84         0.84         0.84         0.84         0.84         0.84         0.72         2.77         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97         2.97 <t< td=""><td>-C<br/>T</td><td>0 1.02</td><td>0.98</td><td>0.99</td><td>1, 01</td><td>0, 97</td><td>1. 02</td><td>0, 97</td><td>0, 95</td><td>0, 99</td><td>1. 02</td><td>1.04</td><td>1.02</td><td>1. 03</td><td>1. 06</td><td>1. 08</td><td>1, 02</td><td>0.93</td><td>0, 99</td><td>0, 97</td><td>0, 92</td></t<>                                                                                                 | -C<br>T          | 0 1.02         | 0.98   | 0.99    | 1, 01   | 0, 97   | 1. 02     | 0, 97   | 0, 95       | 0, 99       | 1. 02    | 1.04   | 1.02    | 1. 03          | 1. 06         | 1. 08   | 1, 02  | 0.93          | 0, 99  | 0, 97  | 0, 92 |
| 2.27       2.55       2.46       2.66       2.29       2.47       3.37       3.93       2.77       2.51       2.82       2.84       3.95       2.53       3         6.97       5.36       4.62       6.37       6.60       4.91       4.78       9.83       15.49       6.23       3.93       5.34       5.41       5.26       4.17       3.83       7.19       11.34       5.29       3.85       3.97       3.57       3.79       6.01       3.03       12         63.90       51.96       53.0       6.01       5.06       6.397       6.73       6.64       11.34       5.29       3.85       3.97       3.57       3.79       5.01       3.03       12       1.01       0.01       0.01       0.01       0.01       0.01       0.40       0.02       0.32       0.29       0.90       0.85       0.18       9.27       0.16       0       3.03       17.1       9.27       0.01       0.01       0.41       1.45       5.80       3.66       0.72       0.62       0.65       0.67       0.28       0.65       0.67       0.29       0.87       0.45       0.87       0.46       3.03       5.70       5.70       5.70       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2         2         2         2         6         2         6         2         6         4         1         3         3         7         3         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         2         7         3         3         7         3         3         7         3         3         7         3         3         7         3         3         7         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o<br>Ioi         | 6 0.65         | 0, 70  | 0, 74   | 0, 75   | 0, 68   | 0, 82     | 1, 02   | 1, 09       | 1. 19       | 0.90     | 0.58   | 0.84    | 0.84           | 1. 39         | 2, 82   | 0.90   | 1. 23         | 0.79   | 0, 79  | 2, 00 |
| 6.97         5.36         4.62         6.37         6.60         4.91         4.78         9.83         15.49         6.22         4.35         4.19         4.37         9.27         3.51         17           5.16         5.05         3.93         5.34         5.41         5.26         4.17         3.83         7.19         11.34         5.29         3.85         3.97         3.77         3.67         3.79         6.01         3.03         12           63.90         51.96         51.04         59.86         65.41         69.18         46.83         57.03         57.00         58.50         18.92         5.40         5.50         60           0.82         0.37         0.57         0.001         0.01         0.40         0.022         0.32         0.29         0.86         1.45         5.80         3.60         4.7         7.09         0.47         17.95         18           0.182         0.37         0.57         0.001         0.40         0.02         0.22         1.41         5.30         3.66         0.22         0.47         17.95         18           1.54         4.33         7.23         1.46         5.66         1.10         5.30 </td <td>6         6         4         9         4         7         8         8         15         4         5         6         4         7         8         7         3         1         7.38         4.75         7.86         2.81           5         5         5         5         5         5         5         5         3         5         4         7         8         7.36         2.84         6.73         5.70         3.84         6.73         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84&lt;</td> <td>2, 2</td> <td>7 2.55</td> <td>2, 55</td> <td>2.46</td> <td>2.66</td> <td>2. 29</td> <td>2.67</td> <td>2.47</td> <td>3. 37</td> <td>3. 93</td> <td>2.79</td> <td>2.47</td> <td>2, 51</td> <td>2, 82</td> <td>2.84</td> <td>3, 95</td> <td>2.58</td> <td>3, 77</td> <td>2.70</td> <td>2.77</td> <td>2.97</td>                                                                                                                                                                                                                                                                                                                                                                                                                         | 6         6         4         9         4         7         8         8         15         4         5         6         4         7         8         7         3         1         7.38         4.75         7.86         2.81           5         5         5         5         5         5         5         5         3         5         4         7         8         7.36         2.84         6.73         5.70         3.84         6.73         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84         6.77         3.84<                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2, 2             | 7 2.55         | 2, 55  | 2.46    | 2.66    | 2. 29   | 2.67      | 2.47    | 3. 37       | 3. 93       | 2.79     | 2.47   | 2, 51   | 2, 82          | 2.84          | 3, 95   | 2.58   | 3, 77         | 2.70   | 2.77   | 2.97  |
| 6.87 $5.05$ $3.93$ $5.34$ $5.41$ $5.26$ $4.17$ $3.83$ $7.19$ $11.34$ $5.29$ $3.85$ $3.97$ $3.57$ $3.79$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.70$ $5.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5         5         5         3         5         4         5         4         5         4         5         4         5         4         5         4         6         7         3         3         5         3         5         3         5         3         3         7         3         3         5         3         3         5         3         3         5         3         3         5         3         3         5         3         3         5         3         3         5         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ം<br>പ           | 17 5.36        | 4. 62  | 6.36    | 6.37    | 6, 60   | 4.91      | 4, 78   | 9, 83       | 15, 49      | 6, 22    | 4.36   | 4, 63   | 4.19           | 4.37          | 9, 27   | 3. 51  | 17.38         | 4.75   | 7.86   | 2, 81 |
| 63.90 $51.96$ $51.04$ $59.8$ $60.58$ $62.48$ $63.97$ $67.36$ $65.41$ $69.18$ $46.83$ $57.00$ $58.50$ $18.92$ $5.40$ $5.50$ $60$ $58.50$ $18.92$ $5.40$ $5.50$ $60$ $58.50$ $18.92$ $5.40$ $5.50$ $60.77$ $17.95$ $18.61$ $20.22$ $0.201$ $0.001$ $0.001$ $0.001$ $0.001$ $0.002$ $0.32$ $0.29$ $0.90$ $0.82$ $0.65$ $0.72$ $0.22$ $0.27$ $1.65$ $0.72$ $0.65$ $0.72$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ $0.67$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63.90         51.04         53.88         60.58         67.36         67.36         57.00         58.50         18.92         5.40         5.50         60.04         57.03         57.00         5.50         60.04         57.03         57.00         5.50         60.04         57.03         57.00         5.50         60.04         57.03         57.00         5.50         60.04         57.03         57.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00         5.00                                                                                                                                                                                                                                                                                                                                                                                                           | 5.6<br>2.6       | 17 5.05        | 3, 93  | 5.34    | 5.41    | 5, 26   | 4.17      | 3, 83   | 7, 19       | 11.34       | 5. 29    | 3.85   | 3.97    | 3.57           | 3.79          | 6, 01   | 3, 03  | 12, 21        | 3, 84  | 6, 27  | 2, 02 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.82         0.37         0.37         0.001         0.40         0.40         0.40         0.40         0.40         0.41         17.95         16.67         0.82         0.87         0.72         0.65         0.57         0.65         0.87         0.87         0.80         0.80         0.80         0.81         14.51         23.51         19.31         20.20         0.67         17.95         16.77         17.95         16.77         17.95         16.67         17.95         16.67         17.95         16.67         17.95         16.67         17.95         16.67         17.95         16.67         17.95         16.67         17.95         16.67         17.95         16.77         12.92         2.56         1.6         7.71         2.54         3.60         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56         3.56                                                                                                                                                                                                                                                                                                                                                                                                      | 03° 2            | 0 51.96        | 51.04  | 59, 88  | 60.58   | 62.48   | 63.97     | 67.36   | 65.41       | 69. 18      | 46.83    | 57. 03 | 57, 00  | 58.50          | 18.92         | 5.40    | 5, 50  | 60.04         | 57, 03 | 52.00  | 2.02  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.42         20.31         22.86         15.99         27.20         16.77         17.95         16.60         13.81         14.51         23.51         19.31         20.20         23.74         7.09         0.47         17.95         18.60         19.31         20.20           1.54         4.33         4.74         4.48         5.63         7.26         1.10         5.39         6.87         1.45         5.80         3.60         4.20         2.50         1.61         7.71         2.54         3.60         3.56           5.77         6.57         4.66         5.02         1.01         0.01         0.11         0.12         0.22         1.17         0.98         1.08         0.47         17.95         18.60         1.96           0.10         1.49         1.26         0.40         0.61         0.12         0.22         1.90         1.90         0.26         0.81         1.96           1.98         2.90         0.60         0.32         0.40         0.10         0.12         0.20         0.20         0.20         0.20         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8              | 2 0.30         | 0.37   | 0.57    | 0, 001  | 0.001   | 0.40      | 0, 002  | 0, 32       | 0, 29       | 0.90     | 0.82   | 0.65    | 0.72           | 0.62          | 0. 25   | 0.16   | 0.57          | 0.82   | 0, 80  |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.54       4.33       4.74       4.48       5.63       7.26       1.10       5.39       6.87       1.45       5.80       3.60       4.20       2.50       10.85       1.61       7.71       2.54       3.60       3.56       3.56       3.56       3.56       3.56       3.56       5.64       3.56       5.64       1.70       1.90       1.90       1.90       1.90       1.96       1.90       1.96       1.90       1.50       0.56       0.89       7.36       3.66       5.69       0.89       7.36       3.66       5.69       1.96       1.90       1.96       1.90       1.96       1.90       1.96       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90       1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.4             | 2 20.31        | 22.86  | 15, 99  | 22, 20  | 16.77   | 17, 95    | 16, 06  | 13, 81      | 14.51       | 23.51    | 19.31  | 20. 20  | 23.74          | 7, 09         | 0.47    | 17.95  | 18, 60        | 19. 31 | 20, 20 |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.77         6.57         4.66         5.02         1.07         0.84         4.10         0.81         0.55         2.58         4.10         3.20         3.10         2.20         5.35         5.69         0.89         7.36         3.20         6.64           0.10         1.49         1.26         0.45         0.03         0.02         0.01         0.12         0.22         1.17         0.96         1.00         0.15         3.68         0.25         0.30         1.70         1.90         1.60           1.98         2.90         2.10         1.05         0.60         0.40         0.50         0.30         0.70         0.70         0.70         0.70           0.50         0.90         0.60         0.32         0.40         0.50         0.30         0.40         0.50         0.70         0.70         0.70           0.64         0.30         0.20         0.40         0.51         0.41         3.33         4.29         1.60         0.73         0.72         0.12         0.10         0.17         0.13         0.12         0.12         0.10         0.70         0.70         0.70         0.73         0.70         0.73         0.73         0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11               | 4 4.33         | 4, 74  | 4.48    | 5. 63   | 7, 26   | 1, 10     | 5. 39   | 6. 87       | 1.45        | 5, 80    | 3, 60  | 4.20    | 2, 50          | 10, 85        | 1. 61   | 7. 71  | 2, 54         | 3, 60  | 3. 56  |       |
| 0.10         1.49         1.26         0.45         0.03         0.02         0.01         0.12         0.22         1.17         0.98         1.08         0.04         0.15         3.68         0.02         0           1.98         2.90         2.10         1.05         0.60         0.40         0.60         0.30         0.48         0.25         1.90         1.90         1.20         1.00         0.50         0.30         1           0.50         0.90         0.60         0.32         0.50         0.30         0.48         0.25         1.90         1.90         1.20         1.00         0.50         0.30         1         0         1.90         1.20         1.00         0.50         0.30         1.90         1.90         1.20         1.00         0.50         0.30         1.90         1.90         1.20         1.00         0.30         0.30         1.90         1.20         0.10         0.30         0.30         0.20         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10         1.49         1.26         0.45         0.02         0.01         0.12         0.22         1.17         0.98         1.08         0.04         0.15         3.68         0.02         0.53         0.98         1.19           0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.70         1.70         1.90         1.60           0.50         0.90         0.60         0.40         0.50         0.20         0.50         0.50         0.50         0.70         1.70         1.90         1.60           0.50         0.90         0.60         0.32         0.40         0.51         0.10         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70 </td <td>5.3</td> <td>7 6.57</td> <td>4.66</td> <td>5. 02</td> <td>1. 07</td> <td>0, 84</td> <td>4.10</td> <td>0.81</td> <td>0, 55</td> <td>2, 58</td> <td>4.10</td> <td>3. 20</td> <td>3. 10</td> <td>2.20</td> <td>5. 35</td> <td>5. 69</td> <td>0.89</td> <td>7.36</td> <td>3. 20</td> <td>6.64</td> <td></td>                                                                                                                        | 5.3              | 7 6.57         | 4.66   | 5. 02   | 1. 07   | 0, 84   | 4.10      | 0.81    | 0, 55       | 2, 58       | 4.10     | 3. 20  | 3. 10   | 2.20           | 5. 35         | 5. 69   | 0.89   | 7.36          | 3. 20  | 6.64   |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.98       2.90       2.10       1.05       0.60       0.40       0.60       0.30       0.40       0.60       0.30       0.70       1.70       1.90       1.60         0.50       0.90       0.60       0.32       0.20       0.40       0.50       0.30       0.70       0.70       0.73         0.64       0.30       0.26       0.40       0.50       0.10       0.51       0.10       0.51       0.10       0.73       0.70       0.70       0.73         0.64       0.30       0.26       0.08       0.18       0.15       0.10       0.51       0.10       0.51       0.70       0.73         1.434       4.17       5.60       4.80       5.10       4.19       3.93       4.28       6.40       4.91       5.16       6.10       1.89       0.12       0.20       0.20       0.20       0.20       0.20       0.20       0.20       0.20       0.20       0.20       0.20       0.20       0.70       0.73       0.73         0.10       0.26       0.10       0.10       0.10       0.21       0.11       0.13       0.16       0.10       0.20       0.20       0.20       0.20       0.20       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1              | 0 1.49         | 1.26   | 0.45    | 0.03    | 0.02    | 0, 01     | 0, 01   | 0.12        | 0. 22       | 1. 17    | 0, 98  | 1, 08   | 0.04           | 0.15          | 3, 68   | 0, 02  | 0. 53         | 0, 98  | 1. 19  |       |
| 0.50       0.90       0.60       0.32       0.20       0.40       0.50       0.20       0.60       0.20       0.60       0         0.64       0.30       0.26       0.08       0.115       0.15       0.10       0.51       0.10       0.29       0.20       0.60       0         4.34       4.17       5.60       4.80       5.10       4.19       3.93       4.28       6.40       4.91       5.16       0.08       0.08       3.67       3         0.10       0.08       0.20       0.17       0.11       0.12       0.20       0.15       0.18       0.04       0.12       0         1.34       4.17       5.60       4.80       5.10       4.19       3.93       4.28       6.40       4.91       5.16       0.08       3.67       3.67       3         0.10       0.08       0.25       0.501       0.0202       0.17       0.13       0.03       0.02       0.11       0.03       0.02       0.10       0.36       0.001       0.02       0.03       0.02       0.10       0.02       0.01       0.02       0.001       0.002       0.002       0.002       0.001       0.002       0.001       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50 0.90 0.60 0.32 0.20 0.40 0.50 0.20 0.0 0.51 0.10 0.51 0.10 0.29 0.20 0.15 0.16 0.08 0.20 0.60 0.60 0.70 0.73 0.75 0.43 0.12 0.12 0.20 0.25 0.25 0.15 0.16 0.08 0.04 0.12 0.12 0.20 0.25 0.25 0.10 0.10 0.08 0.08 0.04 0.12 0.12 0.20 0.25 0.25 0.10 0.10 0.08 0.08 0.04 0.12 0.12 0.20 0.25 0.20 0.10 0.08 0.08 0.08 0.01 0.12 0.20 0.25 0.20 0.10 0.08 0.08 0.09 0.01 0.25 0.20 0.10 0.08 0.08 0.09 0.01 0.25 0.20 0.10 0.08 0.25 0.20 0.17 0.17 0.13 0.03 0.02 0.11 0.001 0.35 0.03 3.67 3.98 4.91 4.74 4.74 3.52 5.92 5.97 6.30 3.88 6.97 4.50 4.90 7.56 5.56 7.82 7.04 6.07 4.05 8.13 0.10 2.00 0.00 0.00 0.02 0.10 0.10 2.70 3.92 7.04 8.04 99.63 99.23 99.71 99.43 99.41 99.47 99.43 99.23 99.73 99.45 99.45 99.45 99.45 99.45 99.41 99.43 99.47 99.60 99.24 99.32 99.78 99.42 99.45 99.71 99.53 99.61 99.93 99.51 99.99 99.71 99.85 4.44 101-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>-1          | <b>18 2.90</b> | Z. 10  | 1. 05   | 0, 60   | 0.40    | 0.60      | 0.30    | 0.48        | 0. 25       | 1.90     | 1.90   | 1.20    | 1.00           | 0.50          | 0, 50   | 0, 30  | 1.70          | 1.90   | 1. 60  |       |
| 0.64     0.30     0.26     0.08     0.18     0.15     0.10     0.51     0.10     0.29     0.20     0.15     0.16     0.08     0.04     0.12     0       1     4.34     4.17     5.60     4.80     5.10     4.31     5.90     4.19     3.93     4.28     6.40     4.91     5.16     6.10     1.89     0.08     3.67     3       1     0.10     0.08     0.25     0.501     0.002     0.12     0.01     0.13     0.03     0.02     0.10     1.89     0.08     3.67     3       1     0.10     0.08     0.25     0.501     0.002     0.12     0.01     0.13     0.02     0.11     0.001     0.02     0.001     0.002     0       1     0.10     0.08     0.25     0.501     0.002     0.12     0.01     0.02     0.102     0.001     0.002     0       1     3.52     5.92     5.97     6.30     3.88     6.97     4.50     7.56     5.56     7.82     7.04     6.07     4.05     8.13     0.10     2.70     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.64 0.30 0.26 0.08 0.18 0.15 0.09 0.10 0.51 0.10 0.29 0.20 0.15 0.16 0.08 0.04 0.12 0.12 0.20 0.25<br>4.34 4.17 5.60 4.80 5.10 4.31 5.90 4.19 3.93 4.28 6.40 4.91 5.16 6.10 1.89 0.08 3.67 3.98 4.91 4.74<br>0.10 0.08 0.25 0.50 0.001 0.002 0.12 0.001 0.17 0.13 0.03 0.02 0.11 0.001 0.36 0.001 0.002 0.03 0.02 0.10<br>3.52 5.92 5.97 6.30 3.88 6.97 4.50 4.90 7.56 5.56 7.82 7.04 6.07 4.05 8.13 0.10 2.70 3.92 7.04 8.04<br>99.63 99.23 99.71 99.44 99.47 99.60 99.24 99.32 99.42 99.45 99.71 99.53 99.61 99.93 99.62 99.99 99.71 99.85<br>样品由中国科学院地球化学研究所亦木地球化学开放实验室分析,其中稀土及微量元素由漆亮分析,主量元素由李荪蓉分析;表中主量元素单位:約.約4.44 0.0-6,其中 Y101-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5              | 0 0.90         | 0, 60  | 0.32    | 0.20    | 0.40    | 0. 50     | 0, 20   | 0, 05       | 0.87        | 0.70     | 0.70   | 0.61    | 0, 60          | 0.30          | 0.20    | 0.60   | 0.60          | 0.70   | 0. 73  |       |
| 4.34       4.17       5.60       4.80       5.10       4.31       5.90       4.19       3.93       4.28       6.40       4.91       5.16       6.10       1.89       0.08       3.67       3         0.10       0.08       0.25       0.500       0.001       0.022       0.17       0.13       0.03       0.02       0.11       0.001       0.002       0.001       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002 <td><ul> <li>4.34</li> <li>4.17</li> <li>5.60</li> <li>4.80</li> <li>5.10</li> <li>4.31</li> <li>5.90</li> <li>4.91</li> <li>5.16</li> <li>6.10</li> <li>1.89</li> <li>0.08</li> <li>5.7</li> <li>3.98</li> <li>4.91</li> <li>4.74</li> <li>0.10</li> <li>0.08</li> <li>0.25</li> <li>0.50</li> <li>0.001</li> <li>0.02</li> <li>0.12</li> <li>0.10</li> <li>0.13</li> <li>0.08</li> <li>0.25</li> <li>0.50</li> <li>0.001</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.10</li> <li>0.11</li></ul></td> <td>0.6</td> <td>4 0.30</td> <td>0, 26</td> <td>0.08</td> <td>0. 18</td> <td>0, 15</td> <td>0, 09</td> <td>0.10</td> <td>0.51</td> <td>0, 10</td> <td>0. 29</td> <td>0. 20</td> <td>0.15</td> <td>0.16</td> <td>0, 08</td> <td>0.04</td> <td>0, 12</td> <td>0,12</td> <td>0.20</td> <td>0, 25</td> <td></td> | <ul> <li>4.34</li> <li>4.17</li> <li>5.60</li> <li>4.80</li> <li>5.10</li> <li>4.31</li> <li>5.90</li> <li>4.91</li> <li>5.16</li> <li>6.10</li> <li>1.89</li> <li>0.08</li> <li>5.7</li> <li>3.98</li> <li>4.91</li> <li>4.74</li> <li>0.10</li> <li>0.08</li> <li>0.25</li> <li>0.50</li> <li>0.001</li> <li>0.02</li> <li>0.12</li> <li>0.10</li> <li>0.13</li> <li>0.08</li> <li>0.25</li> <li>0.50</li> <li>0.001</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.02</li> <li>0.10</li> <li>0.11</li></ul> | 0.6              | 4 0.30         | 0, 26  | 0.08    | 0. 18   | 0, 15   | 0, 09     | 0.10    | 0.51        | 0, 10       | 0. 29    | 0. 20  | 0.15    | 0.16           | 0, 08         | 0.04    | 0, 12  | 0,12          | 0.20   | 0, 25  |       |
| 0.10 0.08 0.25 0.50 0.001 0.002 0.12 0.001 0.17 0.13 0.03 0.02 0.11 0.001 0.36 0.001 0.002 0<br>3.52 5.92 5.97 6.30 3.88 6.97 4.50 4.90 7.56 5.56 7.82 7.04 6.07 4.05 8.13 0.10 2.70 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10 0.08 0.25 0.50 0.001 0.002 0.12 0.001 0.17 0.13 0.03 0.02 0.11 0.001 0.36 0.001 0.002 0.03 0.02 0.10<br>3.52 5.92 5.97 6.30 3.88 6.97 4.50 4.90 7.56 5.56 7.82 7.04 6.07 4.05 8.13 0.10 2.70 3.92 7.04 8.04<br>99.63 99.23 99.71 99.44 99.47 99.60 99.24 99.32 99.78 99.42 99.45 99.71 99.53 99.61 99.93 99.33 99.62 99.99 99.71 99.85<br>样品由中国科学院地球化学研究所矿床地球化学开放实验室分析,其中稀土及徽量元素由漆亮分析,主量元素由李荪蓉分析,表中主量元素单位:%,稀土及微量元素单位:10 <sup>-6</sup> ,其中 Y101-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                | 14 4, 17       | 5, 60  | 4.80    | 5. 10   | 4.31    | 5.90      | 4.19    | 3, 93       | 4. 28       | 6.40     | 4.91   | 5.16    | 6. 10          | 1.89          | 0, 08   | 3, 67  | 3, 98         | 4.91   | 4, 74  |       |
| 2.52 5.92 5.97 6.30 3.88 6.97 4.50 4.90 7.56 5.56 7.82 7.04 6.07 4.05 8.13 0.10 2.70 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 3.52 5.92 5.97 6.30 3.88 6.97 4.50 4.90 7.56 5.56 7.82 7.04 6.07 4.05 8.13 0.10 2.70 3.92 7.04 8.04<br>99.63 99.23 99.71 99.44 99.47 99.60 99.24 99.32 99.48 99.42 99.45 99.71 99.53 99.61 99.93 99.33 99.62 99.99 99.71 99.85<br>样品由中国科学院地球化学研究所矿床地球化学开放实验室分析,其中稀土及徽量元素由漆亮分析,主量元素由李恭蓉分析;表中主量元素单位:%,稀土及徽量元素单位:10 <sup>-6</sup> ,其中 Y101-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 0 0.08         | 0, 25  | 0.50    | 0, 001  | 0.002   | 0.12      | 0, 001  | 0, 17       | 0. 13       | 0. 03    | 0.02   | 0. 11   | 0, 001         | 0.36          | 0, 001  | 0.002  | 0. 03         | 0. 02  | 0, 10  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.63 99.23 99.71 99.44 99.47 99.60 99.24 99.32 99.48 99.42 99.45 99.71 99.53 99.61 99.93 99.62 99.99 99.71 99.85 详细 由中国科学院地球化学研究所矿床地球化学开放实验室分析,其中稀土及徽量元素由漆元析,主量元素由李荪蓉分析;表中主量元素单位:%,稀土及徽量元素单位:10-6,其中 Y101-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | er<br>en         | 2 5.92         | 5.97   | 6.30    | 3, 88   | 6, 97   | 4.50      | 4.90    | 7.56        | 5.56        | 7.82     | 7.04   | 6.07    | 4.05           | 8. 13         | 0.10    | 2.70   | 3. 92         | 7.04   | 8.04   |       |
| 99.63 99.23 99.71 99.44 99.47 99.47 99.60 99.24 99.32 99.78 99.42 99.45 99.45 99.71 99.53 99.61 99.93 99.33 99.62 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 样品由中国科学院地球化学研究所矿床地球化学开放实验室分析;其中稀土及微量元素由漆亮分析;主量元素由李荪蓉分析;表中主量元素单位;%,稀土及微量元素单位;10-6,其中Y101-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99. <del>(</del> | 3 99.23        | 99, 71 | 99, 44  | 99.47   | 99.60   | 99.24     | 99, 32  | 99. 78      | 99.42       | 99.45    | 99.71  | 99, 53  | <b>9</b> 9. 61 | <b>99. 93</b> | 99.33   | 99. 62 | <b>99.9</b> 9 | 99.71  | 99.85  |       |
| ≪k为两矿体的矿石样,Pb、S、Zn的元素质量分数分别为;Y101-k;12.13%,16.46%,17.10%;Y10-k;44.26%,17.61%,19.44%;L/H为 Zw(LREE)/Zw(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.               |                |        |         |         |         |           |         |             |             |          |        |         |                |               |         |        |               |        |        |       |

「" 浅示保于检出限:括号内的数值为样品数. "」" http://www.cur





Fig. <sup>4</sup> Variation diagrams of SiO<sub>2</sub> and REE in altered sericite<sup>-</sup>phyllite around intrusion and ore bodies in Yinshan deposit

"浓缩"表观富集不超过 31%, 而 69% 以上的升高效 应由其他原因造成.

3.1.2 微量元素与参考元素的比值变化特征 热 液蚀变过程中微量元素的活化有两种可能的机 制<sup>[8]</sup>:一是热液与矿物之间的离子交换;二是含微 量元素的矿物的溶解.前者取决于元素在矿物中的 扩散速率,而元素的扩散速率极低,因而,离子交换 不可能是微量元素活化的主要机制,而应是后者.但 不论是哪一种机制,因不同元素具有不同的地球化 学性质,必然地表现出不同的活动性,结果将导致活 动的微量元素的比值在蚀变前和蚀变后是变化的.

我们计算了微量及稀土元素与Zr的比值.选择 Zr作为对比标准是因为:(1)可以确认Zr在本矿床 的热液蚀变过程中活动性最小;(2)Zr与REE之间 的地球化学性质差别大,可借以对比不同REE之间 的相对活动性.(3)已知所研究的岩石体系中Zr的 相对质量分数较高,检测精度较高.

计算显示, w(Rb)/w(Zr)比值变化很小(图 5a), 表明蚀变过程中 Rb 基本不活动, 可能是因为 Rb 主要赋存于含 K 矿物中, 而绢云母千枚岩中含 K 矿物主要是绢云母, 其主要发生热液重结晶作用 无化学成分大的改变, Rb 无明显的活化迁移. w(Sr)/w(Zr)比值在蚀变围岩中较原岩降低(图 5a), 表明有明显的迁出. 一般认为 Sr 主要以替代 Ca 形式出现于斜长石中, 但在银山矿床其赋存状态 未明. w(Ba)/w(Zr)比值明显增大(图 5a), 显示 Ba 有较大的带入, 这可能与本区出现重晶石化有 关, 在前人的研究中<sup>[6]</sup>偶见重晶石化, 可见, 本矿床 中大离子亲石元素(LIL)由于其主要寄主矿物相在 蚀变过程中的变化不同而显示了很不一致的行为特 征,这一点与很多实例中 Rb, Sr, Ba 同时表现为活 动性明显不同.

第26卷

Hf,Th,U,V,Cr,Co,Nb,Mo,Ta 与Zr 的比值 则变化甚微(图 5c),表明这些元素在本矿床的热液 蚀变中表现为活动性极小或不活动.w(Y)/w(Zr),w(Sc)/w(Zr)比值较原岩明显降低(图 5c),表明它们在热液蚀变过程中被活化迁出.

成矿元素 Cu, Pb, Zn, Ag 和 Sn 与 Zr 的比值较 原岩的相应比值显著地增大(图 5b),表明热液蚀 变带入了这些成矿元素,这与上文提到的引起围岩蚀 变的热液与成矿流体是同一流体体系的认识相一致.

稀土元素中除靠近接触带的样品外, 重稀土 (HREE:包括 Gd<sup>-L</sup>u)与Zr 的比值普遍有所升高 (图 <sup>5</sup>a), 而轻稀土(LREE, 此处不包括 Eu)与Zr 的 比值则较原岩普遍有所降低(图 <sup>5</sup>a). 造成这种现象 有两种可能的原因: 一是岩石的 REE 出现了轻稀土 的选择性活化迁移; 二是流体带入了 REE, 其 REE 特征导致了原岩 REE 特征的变化.



图 5 以原岩的 w(REE)/w(Zr)值标准化的蚀变围岩中 w(REE)/w(Zr)值的变化趋势

deposit

Fig. 5 Average original rocks normalized diagram of nic Publishing House. All rights reserved. http://www.crw(REE)/w(Zr) of altered wallrock in Yinshan

关于轻稀土选择性活化迁移的可能性,上文已 指出,离子交换不可能成为稀土元素活化的主要机 制,而本矿床的蚀变作用过程中矿物分解的规模极 小,因此,即便是因极少量矿物的分解而出现了轻稀 土的选择性活化迁移,它不可能是造成轻稀土与 Zr 比值普遍下降的主要因素,因而流体 REE 的加入应 是主要因素,下一节的讨论将证实流体的 REE 特征 可导致这种变化.

Eu 与 Zr 比值则一致地表现为所有蚀变围岩样 品均下降,并且 Eu 的负异常亦降低.导致这种现象 亦有两种可能的因素:一蚀变过程导致 Eu 的选择 性活化迁移;二是流体带入的 REE 具有更低的 Eu 负异常.

### 3.2 热液的稀土元素特征及其对蚀变岩的影响

石英具稳定的架状型晶体结构,稀土元素不可 能以类质同象混入形式进入石英晶格中<sup>[10]</sup>.因而, 石英中的稀土元素应主要赋存于其中的流体包裹体 内<sup>[11,12]</sup>.显然,石英的稀土元素特征可近似地反映石 英沉淀时流体的稀土元素特征.上文已指出,银山矿 床矿石中的石英与金属硫化物共生.因此,矿石中石 英的稀土元素特征应反映成矿流体的稀土元素特征.

表1显示矿石中石英的 REE 显示微弱的轻稀 土富集, w (LREE)/w (HREE)比值为 8.58; w (Ce)/w (Yb)比值为 2.18, 远远低于绢云母千枚 岩、岩体·并且, 显示 Eu 具强烈的正异常特征,  $\delta$ (Eu)值高达 2.0.

因此,参与蚀变作用的热液具有 w (LREE)/ w (HREE)比值低、强烈的 Eu 正异常的稀土特征. 流体 REE 的加入造成了蚀变围岩出现如上文所见 到的 w (LREE)/w (HREE)值较原岩降低的现象.

但是,流体 REE 的加入不可能引起蚀变围岩中 Eu 值的下降及其负异常的扩大.因此,蚀变围岩中 Eu 值的降低及负异常的扩大只能用岩石的选择性 活化来解释.根据前人的研究<sup>[13]</sup>,银山矿床的成矿 流体是一偏酸性( $pH=4\sim5.37$ ,均值为4.87)及还 原性(Eh=-1.12 V)流体.据 Bau<sup>[14]</sup>的理论研究, 类似这种条件下流体中有利于 Eu 以更具活动性的 Eu<sup>2+</sup>形式出现,Campbell等<sup>[8]</sup>的研究表明,Eu<sup>2+</sup>比 Eu<sup>3+</sup>具更大的迁移性,也比其他三价 REE 更易活 化迁移.Lipin等<sup>[15]</sup>综合前人的研究成果后指出, Eu<sup>2+</sup>的性质和行为与其他三价稀土元素有显著差 异,它的行为特征与 Sr 非常相似.据此,尽管银山矿 床在热液蚀变过程其他稀土元素出现选择性活化的 可能性不大,但 Eu 的选择性活化迁移则是可能的.因此,笔者认为,是热液蚀变作用造成了 Eu 活化迁出,从而导致如上所述的蚀变围岩的 Eu 质量分数的降低和 Eu 负异常扩大.

# 3.3 岩体及矿体接触带蚀变围岩 REE 质量分数低的原因

镜下观察显示,靠近矿体的蚀变围岩中有大量 微米级的石英细脉或石英+硫化物细脉分布.此外, 以分散状的石英更粗更多.远离矿体则石英细脉减 少且脉幅变细,分散状的石英也变得细且稀.因此, 岩体和矿体的接触带及其附近的蚀变围岩的 REE 偏低的现象实际上是石英、硫化物的"稀释"作用造 成的一种表观亏损现象.同时,由于多期次热液的强 烈淋滤蚀变,也不可避免地会造成稀土尤其是轻稀 土的部分流失,图 5 也显示了这一点.

### 3.4 热液成矿作用 REE 特征的找矿意义

如上所述,银山矿床显示出矿体规模愈大,靠近 矿体围岩的 REE 总量降低更为显著.Whitford 等<sup>[16]</sup>、Ganzeyev 等<sup>[17]</sup>和Arvanitidis 等<sup>[18]</sup>亦曾发现 类似的现象,因此,这种现象可能具有一定的代表 性.从表1的分析数据可以看出,成矿元素的变化大 且复杂,而 REE 的变化则显示相当稳定的规律性. 因此,蚀变围岩的 REE 特征可能是矿区外围找矿或 生产探矿的一种有用的找矿标志.诚然,REE 作为 一种找矿标志的现实意义如何,尚待进一步的研究 来验证.

### 4 结论

(1)银山矿床围岩热液蚀变导致  $\Sigma_w$  (REE)普 遍升高,其中  $\Sigma_w$  (REE)的总升幅中有 31%以下是 由岩石体系的质量迁移(主量元素淋失)造成的表观 浓缩现象,而其余 69%以上的增幅则是因流体带入 了 REE.岩体及矿体的接触带及其紧邻的蚀变围岩 的 REE 含量明显偏低,主要是含大量石英、硫化物 等矿物而被稀释,是一种表观亏损现象,同时可能因 多期次流体的淋滤而造成 REE,尤其是 LREE 的部 分流失.

(2)热液具有 w(LREE)/w(HREE)比值低、强 烈的 Eu 正异常的特征·流体 REE 的带入造成蚀变 围岩较原岩轻重稀土比值降低·围岩蚀变过程中, Eu 因被还原成更易活动的 Eu<sup>2+</sup>而被选择性地活化 迁出,导致蚀变岩的 Eu 负异常扩大· (<sup>3</sup>)Rb, Sr, Ba 等表现出不一致的地球化学行 为,是缘于其主要寄主矿物的变化特征不同;Hf, Th,U,V,Cr,Co,Nb,Mo,Ta 与Zr 表现为不活动或 弱活动性;成矿元素 Cu,Pb,Zn,Ag 和 Sn 等被大量 带入;Y,Sc 被活化迁出.

野外工作得到银山矿床地测科全体成员的大力 协助,在此致以诚挚的谢意!

### 参考文献:

- [1] 叶庆同·赣东北铅锌矿床成矿系列与成矿机理[M]·北 京:北京科学技术出版社,1987.1-114.
- [2] 郝正平·江西银山多金属矿床的矿化分带[J]·矿床地 质,1988,7(3):3-13.
- [3] 华仁民·江西银山铜铅锌矿化机制的讨论[J]. 矿床地 质,1987,6(2):90-96.
- [4] 张德会.银山矿床成矿作用时空特征及矿床成因讨论[J].矿床地质,1997,4:298-307.
- [5] 张理刚. 江西银山(铜)铅锌银矿床水一岩体系氢氧同位 素研究[J]. 地质学报, 1996, 1: 48-59.
- [6] 中国有色金属工业总公司江西地质勘察局《江西银山铜铅锌金银矿床》编写组.江西银山铜铅锌金银矿床[M]. 北京:地质出版社,1996.1-380.
- [7] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J]. Talanta, 2000, 51: 507-513.
- [8] Campbell I H, Lesher C M, Coad P, et al. Rare-earth element mobility in alteration pipes below massive Cu-Zn-sulfide deposits [J]. Chem Geol, 1984, 45: 181-202.
- [9] Ague J J. Evidence for major mass transfer and volume

strain during regional metamorphism of pelites [J]. Geology, 1991, 19: 855-858.

- [10] 刘英俊,曹励明,李兆麟,等,元素地球化学[M].北 京:科学出版社,1984.6-215.
- [11] Rossman G R, Wei's D, Wasserburg G J. Rb, Sr, Nd and Sm concentration in quartz [J]. Geochim Cosmochim Acta, 1987, 51, 2325-2329.
- [12] Norman D I, Kyle P R, Baron C. Analysis of trace elements including rare earth elements in fluid inclusion liquid [J]. Econ Geol, 1989, 84: 162-166.
- [13] 林德松,何国朝.江西银山矿床矿物包裹体研究[J]. 1993, 17(3): 50-58.
- [14] Bau M. Rare-earth elements mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium [J]. Chem Geol, 1990, 93, 219−230.
- [15] Lipin B R, Mckay G A. Geochemistry and mineralogy of rare earth elements [M]. Washington: Mineralogical Society of America, 1989. 201-225.
- [16] Whitford D J, Korsch M J, Porritt P M. Rare-earth element mobility around the volcanogenic polymetallic massive sulfide deposits at Que River, Tasmania, Australia [J]. Chem Geol, 1988, 68: 105-119.
- [17] Ganzeyev A A, Sotskav Y P, Lyapunov S M. Geochemical specialization of ore-bearing solutions in relation to rare-earth elements [J]. Geochem Int, 1984, 20: 160-164.
- [18] Arvanitidis N D, Richard D T. An evaluation of lanthanide geochemistry in ore petrology [J]. Miner Wealth, 1986, 46, 21-28.

### GEOCHEMISTRY OF TRACE ELEMENTS DURING ORE-FORMING PROCESSES IN YINSHAN DEPOSIT

Ling Qicong<sup>1,2</sup>, Liu Congqiang<sup>1</sup>

(1. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China)

Abstract: Detailed studies have been conducted of the trace elements in ores, wallrocks of intrusion and orebodies in the Yinshan deposit. It is shown that  $\Sigma$ REE increased in all samples but those close to the intrusion and orebodies decreased. Altered wallrocks are characterized by lower w(LREE)/w(HREE) ratios and de-

pleted in Eu compared with their fresh counterpart. It is suggested by calculation that less (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. htt

ed. http://www.cnk (下转 485 页) much. While E.D. Weinberg expanded the G. Bertrand law and further revealed that certain quantity of manganese may allow some bacteria to grow well but may not be suitable for them to produce bacteriophage. Biologic vital double threshold element content and its physiological effect can be expanded to different hydrogeochemistry zones in hydrogeologic unit. In elements lioxiviated (leached), transferred strongly hydrogeochemistry zone, biologic physiological effect and element content show negative correlativity. In elements enrichment, lioxiviated, concentration by evaporation hydrogeochemistry zone and environment polluted by some elements superfluous, biologic physiological negative effect and element content show positive correlativity, between them which above is the element content fitting zone. Take the Lishi-Liulin hydrogeologic unit of Shanxi Province as an instance: The lack of selenium, iodine and fluorine in the hydrochemistry zone with element leaching and loss causes KBD, IDD, and tooth decay, which is in a negative correlativity with element content, respectively. While in the element lioxiviation and enrichment zone, fluorine is superfluous. As a result, endemic fluorosis occurs and its sick rate shows positive correlativity with content.

Key words: optimum nutrition law; hydrogeochemistry zone; physiological negative effect; double threshold element.

### (上接 480 页)

than 31% of the increment of REE is caused by mass transfer and the other is responsible for the addition of REE into the rock from hydrothermal fluid that caused rock alteration. The acting hydrothermal fluid was characterized by low w(LREE)/w(HREE) ratio with strong positive anomaly. The reductive state of the hydrothermal fluid resulted in the loss of Eu by returning Eu<sup>3+</sup> into more mobile Eu<sup>2+</sup>. In other trace elements, Hf, Th, U, V, Cr, Co, Nb, Mo, Ta, Zr and Rb showed immobility, Y, Sc and Sr were carried off while Cu, Pb, Zn, Ag, Sn and Ba were introduced into altered wallrocks by hydrothermal fluid during hydrothermal alteration.

Key words: trace elements; geochemistry; hydrothermal alteration; metamorphic phyllite; Shuangqiaoshan Group; Yinshan deposit.