大别—苏鲁超高压变质带榴辉岩部分熔融的证据

贾望鲁,高山,王林森,胡圣虹

(中国地质大学地球科学学院,湖北武汉 430074)

摘要: 俯冲玄武质洋壳的部分熔融作用是一种重要的大陆生长作用,但是陆壳物质在俯冲过 程中能否发生部分熔融缺少直接的证据. 笔者利用已有的微量元素分配系数,讨论了岛弧玄 武岩在脱水和部分熔融 2 种过程中微量元素行为和铅同位素演化的差异. Pb 在 2 种过程中 都属于不相容元素,但在脱水过程中其不相容性明显高于 Rb、Ba、Th、U,而在熔融过程中则 低于上述元素,在 $w(\text{Rb})/w(\text{Pb}) \sim w(\text{Rb}),w(\text{Pb}) \sim w(\text{Ba}),w(\text{Th})/w(\text{Pb}) \sim w(\text{Th}),w(\text{D})/w(\text{Pb}) \sim w(\text{Rb}),w(\text{Ba})/w(\text{Pb}) \sim w(\text{Th})/w(\text{Pb}) \sim w(\text{Th}),w(\text{U})/w(\text{Pb}) \sim w(\text{U})$ 相容性的差异也使得石榴石和绿辉石的单矿物铅同位素在 2 种过程中明显不同. 在此基础 上,结合大别—苏鲁榴辉岩的实测数据,认为大别—苏鲁榴辉岩可能部分是岛弧玄武岩部分 熔融后的残余体,部分为单纯脱水的产物. 大陆玄武质岩石在俯冲过程中也可能发生部分熔 融作用. 关键词: 脱水作用;部分熔融;微量元素;铅同位素;榴辉岩.

中图分类号: P618 文献标识码: A

文章编号:1000-2383(2003)02-0121-08

作者简介:贾望鲁(1976一),男,2000 年毕业于中国地质大学(武汉),获硕士学位,从事石油 地球化学和岩石圈地球化学研究. E-mal: wljia@gig. ac. cn

玄武质洋壳在俯冲过程中要经历由角闪岩相→ 麻粒岩相→榴辉岩相的脱水变质过程.到榴辉岩相、 角闪石等含水矿物完全分解,残余体主要由石榴石 和单斜辉石等不含水矿物组成.玄武质洋壳脱水变 质释放出的含水流体可交代上覆地幔楔,这种交代 作用可解释岛弧玄武岩的地球化学特征^[1].在合适 的温度和压力条件下,俯冲的玄武质洋壳能够部分 熔融产生 TTG(英云闪长岩一奥长花岗岩一花岗闪 长岩)型的熔体,残余体仍然是榴辉岩^[2].TTG 岩石 是太古宙地壳和后太古宙岛弧区深部的重要组成物 质,俯冲玄武质洋壳的部分熔融作用是一种重要的 大陆生长作用^[3].因此,玄武质洋壳的脱水变质和部 分熔融 2 种作用对壳幔演化有着重要意义.

大陆地壳物质在板块碰撞过程中也可被俯冲到 地幔深度^[4~7].在大别—苏鲁超高压变质带中主要 出露 TTG 片麻岩和花岗质片麻岩,大量的榴辉岩

收稿日期: 2002-06-08

以透镜体等形式产出于这些片麻岩中[6].大别—苏 鲁榴辉岩的同位素和微量元素组成指示其原岩为大 陆壳物质[8],在榴辉岩中发现了柯石英和金刚石,这 些证据表明大别—苏鲁榴辉岩是由大陆壳物质在俯 冲过程中历经超高压变质作用形成[4+5]. 大别—苏 鲁榴辉岩的原岩多数为玄武质岩石,在俯冲过程中 也要经历脱水变质作用,但能否象玄武质洋壳一样 发生部分熔融以及与本区广泛出露的 TTG 岩石有 无成因联系值得深思.大陆碰撞带的温度、压力研究 表明,除非在水饱和的条件下,碰撞造山带的温压条 件不足以使俯冲的地壳岩石熔融^[9].但这一结论对 大别—苏鲁变质带是否适用有待研究. 实验研究表 明,微量元素在熔融和脱水2种过程中的行为并不 一致^[10],如 Pb 在脱水过程中的活动性明显高于其 他强不相容元素(Rb,Ba,Sr,Th,U)^[11].本文对岛 弧玄武岩在脱水和部分熔融2种过程中微量元素和 铅同位素的变化进行了模拟计算,结合榴辉岩的实 测微量元素和铅同位素结果,认为大别—苏鲁榴辉 岩多数可能是岛弧玄武岩部分熔融的残余体.

基金项目:国家杰出青年科学基金(No. 49625305);国家自然 科学基金重大项目(No. 49794043).

1 样品来源和分析

样品来自湖北、安徽、江苏、河南以及山东5省 内典型的榴辉岩出露地点,样品分布见图1.通过认 真的手标本和岩石薄片观察,挑选出新鲜、有代表性 的榴辉岩、辉石岩和石榴二辉橄榄岩样品32件进行 微量元素分析,从中挑选出14件进行Pb同位素测 试.对其中2个榴辉岩样品还挑选了石榴石和绿辉 石单矿物用于Pb同位素测试,挑选出的石榴石和 绿辉石单矿物纯净、无风化,纯度在98%以上.

微量元素测试在国土资源部壳幔体系组成、物 质交换及动力学开放研究实验室 POEMS III 型等离 子体光质谱仪上完成,铅同位素测试在同一实验室 MAT 261 型质谱仪上完成. 微量元素标样测定结果 与推荐值的偏差总体小于 10%,6 个重复样品测定 结果的相对偏差总体低于 5%;铅同位素分析全流程 本底为 $1\times10^{-10} \sim 4\times10^{-10}$ g,仪器标样 NBS 981 的 测定结果为: $w(^{206}$ Pb)/ $w(^{204}$ Pb)=16.993, $w(^{207}$ Pb)/ $w(^{204}$ Pb)=15.482, $w(^{208}$ Pb)/ $w(^{204}$ Pb)=36.761,4 个重复样品测定结果的相对偏差总体低于 $5\times$ 10^{-3} .

2 榴辉岩的铅同位素组成及演化

本文采用 Jahn^[8]的方案将榴辉岩分为 3 类:产

Fig. 1 Regional map of the Dabie-Sulu ultrahigh-pressure metamorphic belt ★榴辉岩采样点

于片麻岩中的榴辉岩(Ⅱ型),与大理岩等变沉积岩 共生的榴辉岩(Ⅲ型)及与超镁铁岩呈互层状产出的 榴辉岩(Ⅲ型).

榴辉岩的铅同位素组成见表 1. 大部分榴辉岩 集中在Geochron(地球等时线)两侧附近. 青龙山榴

表1 榴辉岩及相关变质岩的铅同位素组成

Table 1 Pb isotopic composition of eclogites and related metamorphic rocks

样号	岩性	位置	类型	$w(^{206}\mathrm{Pb})/w(^{204}\mathrm{Pb})$	$\pm 2\sigma$	$w(^{207}\mathrm{Pb})/w(^{204}\mathrm{Pb})$	$\pm 2\sigma$	$w(^{208}\mathrm{Pb})/w(^{204}\mathrm{Pb})$	$\pm 2\sigma$
D95-38	榴辉岩	五庙	Ι	17.587	0.001	15.450	0.001	38.010	0.003
SH02	榴辉岩	双河	Ι	17.308	0.001	15.393	0.001	37.808	0.004
HY98-13	石榴辉长岩	海洋所	Ι	20.850	0.003	15.887	0.002	40.464	0.007
YK98-11	榴辉岩	仰口	Ι	17.225	0.001	15.371	0.001	37.869	0.003
MB98-04	榴辉岩	毛北	Ι	17.381	0.002	15.392	0.002	37.723	0.004
QL98-02	榴辉岩	青龙山	Ι	16.509	0.002	15.335	0.002	36.708	0.005
XD98 - 1	榴辉岩	新店	П	17.234	0.001	15.376	0.001	37.590	0.003
D97-17	榴辉岩	石马	Π	17.761	0.001	15.452	0.001	38.020	0.003
D95 - 24	榴辉岩	碧溪岭	Ш	17.830	0.003	15.532	0.003	38.015	0.007
MW98-1	榴辉岩	毛屋	Ш	18.046	0.001	15.572	0.001	38.274	0.003
M1 - 2	辉石岩	毛屋	Ш	17.741	0.003	15.517	0.003	37.771	0.008
XG98-16	榴辉岩	许沟	Ш	17.193	0.001	15.400	0.001	37.590	0.002
D95 - 27	二辉橄榄岩	碧溪岭		17.563	0.003	15.496	0.002	37.871	0.007
SL98-12	二辉橄榄岩	梭椤树		17.369	0.004	15.514	0.004	37.851	0.010
D95-24Omp	绿辉石	碧溪岭		17.654	0.002	15.449	0.002	37.858	0.004
D95-24Grt	石榴石	碧溪岭		17.977	0.002	15.512	0.002	38.104	0.004
SH02Omp	绿辉石	双河		16.922	0.003	15.319	0.003	37.501	0.008
SH02Grt	石榴石	双河		17.525	0.002	15.434	0.002	37.727	0.004

图 2 大别—苏鲁榴辉岩铅同位素组成和分配

Fig. 2 Pb isotopic composition of eclogites and distribution from Dabie-Sulu ultrahigh-pressure metamorphic belt 虚线代表 Geochron; C. 单斜辉石; G. 石榴石; W. 全岩; 88T35和 GE2为 Australpine 地区榴辉岩的结果^[9];小图为榴辉岩 D95-24 单矿物 铅同位素的模拟计算结果

辉岩 QL98-02 相对贫放射性成因铅同位素,海洋 所石榴辉长岩 HY98-13 显著富放射性成因铅同位 素.2 个橄榄岩与Ⅲ型榴辉岩类似.与 Australpine 地区榴辉岩^[12]相比,大别—苏鲁榴辉岩(海洋所石榴 辉长岩除外)的铅同位素比值明显偏低(图 2a,2b).

大别山 2 类榴辉岩都以石榴石富放射性成因铅 而绿辉石贫放射性成因铅为特征,石榴石、绿辉石是 铅同位素的主要赋存矿物(图 2c,2d).而 Australpine 地区榴辉岩以石榴石贫放射性成因铅而辉石富 放射性成因铅为特征,石榴石、辉石的 $w(^{206}$ Pb)/ $w(^{204}$ Pb)明显低于全岩,这 2 种矿物不能代表全岩的 铅同位素组成. U 元素有 2 个衰变系列(²³⁸ U→²⁰⁶ Pb 和²³⁵ U→²⁰⁷ Pb),可用来研究岩石的多阶段演化历 史. 榴辉岩铅同位素的演化过程至少可划分为 3 个 阶段(图 3):地球形成(T = 4.57 Ga)→原岩形成 ($t_1 = 0.8$ Ga)→超高压变质作用(t = 0.22 Ga)→现 在. 原岩形成年龄采用锆石 U-Pb 法上交点的年龄 (871 Ma),李曙光等^[13]将其作为晋宁期岩浆作用的

图 3 榴辉岩铅同位素演化三阶段模式示意

证据. 变质年龄为榴辉岩的全岩、石榴石、绿辉石构 成的 Sm-Nd 等时线年龄,李曙光等^[14]综合研究了 数十个该类型年龄结果,将超高压变质年龄定为 221~231 Ma^[14,15].为计算上的方便,这里将原岩年 龄和变质年龄分别取为 0.8 Ga 和 0.22 Ga.

根据上述三阶段的划分,现在测得的榴辉岩铅 同位素比值可分别表示如下:

$$[w(^{206} Pb)/w(^{204} Pb)]_{s} = A_{0} + \mu_{1} \times (e^{\lambda_{1} \cdot t} - e^{\lambda_{1} \cdot t_{1}}) + \mu_{2} \times (e^{\lambda_{1} \cdot t_{1}} - e^{\lambda_{1} \cdot t}) + \mu_{3} \times (e^{\lambda_{1} \cdot t} - 1);$$

$$(1)$$

表 2 榴辉岩铅同位素的三阶段演化计算结果

Table 2Calculated results of Pb isotope of eclogite in three-
stage evolution model

样号	类型	μ_1	μ_2	μ_3	β_3	$\mu_1{}'$	${\mu_2}'$
D95-38	Ι	7.97	8.92	6.85	27.60	7.96	8.28
SH02	Ι	7.91	7.12	5.59	6.54	7.92	7.66
HY98-13	Ι	8.34	35.71	16.14	25.66	8.03	17.07
YK98-11	Ι	7.88	7.41	3.19	17.81	7.88	7.73
MB98-04	Ι	7.89	9.00	2.80	10.04	7.88	8.24
QL98-02	Ι	7.90	0.68	0.85	2.10	7.98	5.60
XD98-1	П	7.88	8.37	0.66	2.20	7.87	8.03
D97-17	П	7.96	10.17	8.78	31.61	7.93	8.66
D95-24	Ш	8.08	12.54	0.98	6.02	8.03	9.50
MW98-1	Ш	8.12	14.59	0.35	0.68	8.05	10.18
M1 - 2	Ш	8.06	11.37	2.04	7.74	8.03	9.12
XG98-16	Ш	7.93	7.50	0.67	1.16	7.93	7.79

 $[w(^{207} Pb)/w(^{204} Pb)]_{s} = B_{0} + [\mu_{1} \times (e^{\lambda_{2} \cdot T} - e^{\lambda_{2} \cdot t_{1}}) + \mu_{2} \times (e^{\lambda_{2} \cdot t_{1}} - e^{\lambda_{2} \cdot t}) + \mu_{3} \times (e^{\lambda_{2} \cdot t} - 1)]/137.88;$ (2) $[w(^{208} Pb)/w(^{204} Pb)]_{s} = C_{0} + \beta_{1} \times (e^{\lambda_{3} \cdot T} - e^{\lambda_{3} \cdot t_{1}}) + \beta_{2} \times (e^{\lambda_{3} \cdot t_{1}} - e^{\lambda_{3} \cdot t}) + \beta_{3} \times (e^{\lambda_{3} \cdot t} - 1).$ (3) $\mathbf{I}(1) \sim (3) \mathbf{E} \mathbf{M} \mathbf{b} \mathbf{f} \mathbf{H} \mathbf{a} \mathbf{x} \mathbf{M} \mathbf{f} \mathbf{f} \mathbf{A} \mathbf{J} \mathbf{M} \mathbf{f} \mathbf{K} \mathbf{a}$

 $w(^{238}$ U)/ $w(^{204}$ Pb)和 $w(^{232}$ Th)/ $w(^{204}$ Pb); A_0 、 B_0 、 C_0 分别为地球 4. 57 Ga 时的铅同位素比值: $A_0 = 9.307$, $B_0 = 10.294$, $C_0 = 29.476$; λ_1 、 λ_2 、 λ_3 分别为 238 U、 235 U 和 232 Th 的衰变常数, $\lambda_1 = 0.155125 \times 10^{-9}$ a⁻¹, $\lambda_2 = 0.98485 \times 10^{-9}$ a⁻¹, $\lambda_3 = 0.049475 \times 10^{-9}$ a⁻¹.

 μ_3 和 β_3 可利用实测同位素比值和 U、Th、Pb 的 含量(表 2)计算得出:

$$w(\mu_{3}) = [w(U)/w(Pb)] \times [n(Pb)/n(U)] \times [w(^{206}Pb)/w(^{204}Pb) + w(^{207}Pb)/w(^{204}Pb) + w(^{208}Pb)/w(^{204}Pb) + 1]/(1+1/137.88); (4) w(\beta_{3}) = [w(Th)/w(Pb)] \times [w(Pb)/w(Th)] \times [w(^{206}Pb)/w(^{204}Pb) + w(^{207}Pb)/w(^{204}Pb) + w(^{207}Pb)/w(^{204}Pb) + w(^{208}Pb)/w(^{204}Pb) + 1]. (5)$$

计算出 μ_3 后, μ_1 和 μ_2 就可利用方程(1),(2)算 出.

为了考察原岩形成年龄对结果的影响,同时给出 了假定原岩形成于 2.0 Ga 时的计算结果,分别列于 μ_1', μ_2' 两列中(如表 2).

由表 2 可见,所有榴辉岩在 4.57~0.8 Ga 间的 μ 值变化不大,范围在 7.88~8.12 间,只有 HY98—13 偏高(8.34).0.8~0.22 Ga 间榴辉岩 μ 值差别很大, μ_2 在 7.12~35.71 之间变化. 值得注意的是,多数榴辉岩在 0.22 Ga 时 μ 值 ($\mu_2 \rightarrow \mu_3$,表 2)显著减小,表明超高压变质过程中 U 的 活动性超过了 Pb,使得榴辉岩的 w(U)/w(Pb)比值 降低.

若原岩形成年龄为 2.0 Ga,4.57~2.0 Ga 间的 μ_1 变化更小,为 7.87~8.05. 海洋所石榴辉长岩 HY98 -13 的 μ_2 明显减小,其余榴辉岩变化不大. 榴辉岩的 μ 值在 0.22 Ga 时变化规律和原岩年龄为 0.8 Ga 时的 结果类似,原岩形成年龄的变化对铅同位素演化影响 不明显.

3 榴辉岩微量元素和铅同位素的模拟 计算过程

大别—苏鲁超高压变质带是在陆一陆碰撞过程 中由扬子板块向北俯冲到华北板块下形成的^[5,14];榴 辉岩原岩为岛弧型拉斑玄武岩^[16,17];榴辉岩原岩多形 成于 8 亿 a 左右^[13,18].为了更接近实际情况,计算采 用扬子北缘晋宁期岛弧玄武岩平均成分(来自西乡地 区,未发表资料)作为榴辉岩的原岩组成(表 3),同时 选取世界平均岛弧玄武岩^[19](IAB)作一对比.

对脱水和熔融的模拟计算可从以下 3 个方面来 进行:

(1)超高压变质过程中微量元素的变化. Ayers 在 研究岛弧玄武岩成因时^[1],利用瑞利分馏模型模拟了 玄武质洋壳脱水及流体一地幔橄榄岩相互作用的微 量元素变化,这里脱水过程也采用瑞利分馏模型. 熔 融过程采用批式平衡部分熔融模型,具体的计算公式 如下:

熔融作用:
$$C_{\rm R} = C_0 / (1 - F + F/D);$$
 (6)

脱水作用:
$$C_{\rm R} = C_0 \times (1-f)^{(1/D-1)}$$
. (7)

(6),(7)式中: C_{R} 为残余体某元素含量; C_{0} 为原岩的 元素含量;F为熔融程度;f为脱水量(含水流体占整 个体系的重量百分含量);D为元素的矿物/熔体或矿 物/流体分配系数,元素分配系数详见表 3.

(2)超高压变质过程中μ值的相对变化. 若给定 一组初始的铅同位素比值(220 Ma 时),可由原岩、熔 融残余体和脱水残余体的 U、Pb 含量分别计算出各 自的μ值(式(4)),进而得出超高压变质前后μ值的 相对变化. 初始铅同位素比值仅做为一个计算参数, 它的选取不会影响计算结果. 这里初始铅同位素比值 采用五庙榴辉岩D95-38在220 Ma时的铅同位素比

表 3 模拟计算所用的微量元素分配系数和初始物质的微量元素质量分数

Table 3 Distribution coefficients of trace elements and composition of elements of the starting material used in analog calculation

LAR ^[19] /10 ⁻⁶ 扬子岛弧			元素的矿物/熔体分配系数					元素的矿物/流体分配系数				
	IAD 10 0	玄武岩/10 ⁻⁶	石榴石	单斜辉石	金红石	斜方辉石	钛铁矿	石榴石	单斜辉石	金红石	斜方辉石	钛铁矿
Rb	10.70	30.50	0.0085	0.017		0.0100		0.162	0.077	0.016	0.03	0.0022
Ba	200.00	408.00	0.00006	0.024		0.1000		0.037	0.139			
Th	0.80	2.60	0.0032	0.038		0.0100	7.50	0.050	2.000	0.1	0.007	0.100
U	0.34	0.69	0.0179	0.019		0.0230	3.20	0.700	0.200	89.0	0.008	1.000
Nb	1.50	10.50	0.0300	0.029	52.600	0.2700	89.10	0.316	0.127	3 400	4.23	186.000
Ce	15.10	34.60	0.0200	0.578	0.730	0.0069	7.80	0.501	4.720	3.12	0.05	0.124
Pb	3.80	14.00	0.0007	0.126		0.2900	0.98	0.0014	0.040	0.014	0.001	0.005
Sr	370.00	277.50	0.0013	0.250	0.518	0.0074	1.07	0.013	1.570	0.014	0.02	0.005
Sm	2.74	4.35	0.9000	1.380		0.0890	6.90	273.00	106.00	0.557	0.245	0.339
Zr	52.00	150.50	0.7300	0.382	4.760	0.0400	1.38	58.7	2.10	399.000	0.533	33.700
Y	19.00	17.50	7.1000	1.120		0.5400	5.09	1 560	94.00	0.379	1.33	2.890

Ba的元素的矿物/流体分配系数值来自文献[20],其余元素的矿物/流体分配系数值来自文献[1];所有元素的矿物/熔体值都转引自 GERM(geochemical earth reference model)及 Internet 上 GERM的主页(Http://www-ep. sl. llnl. gov/germ).

值,因为它的铅同位素组成位于榴辉岩样品分布范围 的中间位置,相当于榴辉岩的平均值.

(3)残余体中石榴石和单斜辉石的单矿物铅同位 素演化. 以现在的榴辉岩为熔融或脱水后的残余体, 可以利用元素的全岩分配系数直接计算出与榴辉岩 平衡的熔体或流体的 U、Th、Pb 含量,进而利用元素 的单矿物/熔体(流体)分配系数计算出熔融或脱水形 成的单矿物的 U、Th、Pb 含量. 具体计算公式如下:

$$C_{\rm m} = (C_{\rm R}/D_{\rm R}) \times D_{\rm m}.$$
(8)

其中: C_m 为元素在某种单矿物中的含量; C_R 为榴辉 岩的实测结果; D_R 为元素的全岩/熔体或全岩/流体 分配系数; D_m 为元素的单矿物/熔体或单矿物/流体 分配系数.计算出 U、Th、Pb 含量后,就可计算出单矿 物的 μ 值(式(4)),进而得到单矿物现在的同位素比 值. 计算时初始同位素比值仍采用五庙榴辉岩 D95— 38 在 220 Ma 时的初始值.

4 模拟结果与讨论

由图 4 可见,对于 4 种不同残余体,11 种微量元 素的分配系数变化基本类似,特殊的只有 Nb. Nb 的 分配系数受金红石含量的影响很大,残余体中金红石 存在时,Nb 由不相容元素变为相容元素. Pb 在 2 种 过程中都属于不相容元素,但在脱水过程中其不相容 性明显高于 Rb、Ba、Th、U,而在熔融过程中则低于上 述元素,利用这一点可区分脱水和部分熔融 2 种过 程.

微量元素质量的模拟计算结果表明,强不相容元

图 4 微量元素的全岩/熔体(流体)分配系数

a. 30%石榴石+70%单斜辉石;b. 30%石榴石+69%单斜辉石+ 1%金红石;c. 30%石榴石+69%单斜辉石+1%钛铁矿;d. 30% 石榴石+50%单斜辉石+20%斜方辉石

素(Rb、Ba、Th、U、Nb)在熔融残余体中的含量随熔融 程度的增大迅速减小,Pb、Sr 的变化略小于上述元 素. Ce、Zr 含量随熔融程度增大略有减小,Sm 的含量 基本不变.Y 的含量随熔融程度增大明显增大.脱水 过程中,残余体的 Ce、Sr、Sm、Th、U、Nb、Zr、Y 含量变 化很小,与原岩相比差别不大.Rb、Ba、Pb 随脱水量的 增大迅速减小,其中 Pb 的变化最大.

大别—苏鲁榴辉岩的实测结果表明(图 5),榴辉 岩的 w(Rb)/w(Pb),w(Ba)/w(Pb),w(Th)/w(Pb),w(U)/w(Pb)分别和 Rb、Ba、Th、U 呈明显的正相关. 模拟计算的结果显示,熔融残余体的上述比值与原岩

图5 大别—苏鲁超高压变质带榴辉岩的 w(Th)/w(Pb)-w(Th),w(U)/w(Pb)-w(U),w(Rb)/w(Pb)-w(Rb),w(Ba)/ w(Pb)-w(Ba)图解

- Fig. 5 Plot of w(Th)/w(Pb) vs. w(Th), w(U)/w(Pb) vs. w(U), w(Rb)/w(Pb) vs. w(Rb) and w(Ba)/w(Pb) vs. w(Ba) of eclogites from Dabie-Sulu ultrahigh-pressure metamorphic belt
 - ★. 扬子岛弧玄武岩; I. 世界平均岛弧玄武岩(IAB), 熔融和脱水曲线根据残余体组成为 30%石榴石+70%单斜辉石的模拟结果作出

表4 全岩 μ 值变化模拟结果

Table 4 Results of μ from analog calculation of whole rock

;	熔融过程 F/	/ %	脱水过程 f/%				
1	10	50	1	2	50		
2.22	1.00	0.69	4.25	5.90	16.1		

220 Ma 前的 µ=3.07

相比明显减小,随熔融程度的增大而减小.脱水残余体的上述比值与原岩相比明显增大,随脱水量增大迅速增大.大别—苏鲁榴辉岩与熔融残余体的变化方向一致,和脱水残余体变化差别明显.相对世界平均岛弧玄武岩(IAB),扬子岛弧玄武岩熔融残余体的模拟结果与大别—苏鲁榴辉岩的实测结果吻合的更好.

石马榴辉岩 SM-2 和海洋所石榴辉长岩 HY98 -17 两个样品的 w(Rb)/w(Pb), w(Ba)/w(Pb), w(Th)/w(Pb), w(U)/w(Pb)比 IAB 及扬子岛弧玄 武岩显著偏高,明显脱离熔融过程的变化趋势,朝着 脱水方向演化.这表明脱水作用在上述2个样品形成 过程中起主导作用.

模拟计算得到的μ值与原岩的μ值对比表明(表 4),熔融残余体的μ值比原岩显著减小,这与前述铅 同位素三阶段模式计算出的变化规律一致.但脱水残 余体的μ值比原岩明显变大,脱水量等于 2%时,μ值 增大约1倍,这与大别—苏鲁榴辉岩μ值普遍较低不 相符.

由图 3 可见,在 $w(^{204} Pb)/w(^{204} Pb) - w(^{207} Pb)/w(^{204} Pb)$ 图上,脱水和熔融作用下 2 种单矿物的相对 变化规律一致,石榴石相对绿辉石富放射性成因铅, 与大别山榴辉岩实测结果类似.在 $w(^{206} Pb)/w(^{204} Pb)$ 图上,熔融作用使石榴 石的 $w(^{208} Pb)/w(^{204} Pb)$ 比单斜辉石明显增大,而脱 水过程对 2 种矿物的 $w(^{208} Pb)/w(^{204} Pb)$ 改变不大, 石榴石比单斜辉石略小,熔融过程造成的矿物铅同位 素的相对变化和实测结果较一致. 这是由于熔融过程 中,Th 相对 Pb 更易富集在石榴石中而不易富集在绿 辉石中.

5 **结论**

多数大别—苏鲁榴辉岩的微量元素变化趋势和 扬子北缘晋宁期岛弧玄武岩熔融残余体的模拟计算 结果一致,部分与脱水残余体的结果类似;大别—苏 鲁榴辉岩在俯冲过程中 µ 值的一致减小可由部分熔 融来解释;大别山榴辉岩单矿物铅同位素组成的相对 变化与熔融过程的模拟结果较吻合.因此,大别—苏 鲁榴辉岩的地球化学组成指示它们多数可能是岛弧 玄武岩熔融后的残余体.这表明,大陆玄武质岩石在 俯冲过程中也可能发生部分熔融作用.但仅根据地球 化学证据还不能判断熔融作用是发生在向下的俯冲 过程还是折返过程中,熔融作用产生的熔体还有待进 一步研究来确定.

金振民教授在成文过程中给予大力指导,金淑燕 教授在采样过程中给予大力帮助,在此表示衷心感 谢.

参考文献:

- [1] Ayers J C. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zone [J]. Contribution to Mineralogy and Petrology, 1998, 132: 390-404.
- [2] Rapp R P, Waston E B. Dehydration melting of metabasalt at 8 – 32 kbar: implications for continental growth and crust-mantle recycling [J]. Journal of Petrology, 1995, 36: 891–931.
- [3] Drummond M J, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons [J]. Journal of Geophysical Research, 1990, 95(B13): 21503-21521.
- [4] 从柏林,王清晨. 大别山一苏鲁超高压变质带研究的最新 进展[J]. 科学通报,1999,44:1127-1137.
 CONG B L, WANG Q C. The Dabie-Sulu UHP rocks belt: review and prospect [J]. Chinese Science Bulletin, 1999, 44:1127-1137.
- [5] 索书田,钟增球,张宏飞,等. 桐柏高压变质带及其区域构 造型式[J]. 地球科学——中国地质大学学报,2001,26

(6): 551-558.

SUO S T, ZHONG Z Q, ZHANG H F, et al. High-pressure metamorphic belt and tectonic pattern in Tongbai mountins, central China [J]. Earth Science — Journal of China University of Geosciences, 2001, 26(6): 551-558.

[6] 钟增球,索书田,张宏飞,等. 桐柏—大别碰撞造山带的基本组成与结构[J]. 地球科学——中国地质大学学报, 2001,26(6):560-567.

ZHONG Z Q, SUO S T, ZHNAG H F, et al. Major constituents and texture of the Tongbai-Dabie collisional orogenic belt [J]. Earth Science — Journal of China University of Geosciences, 2001, 26(6): 560—567.

[7] 金振民,章军锋,Green H W,等. 大别山超高压榴辉岩流 变强度——来自高温高压实验的证据[J]. 地球科学—— 中国地质大学学报,2001, 26(6): 574-580.
JIN Z M, ZHANG J F, Green H W, et al. Rheological strength of UHP eclogite from Dabie Shan: evidences from high p-T experiments [J]. Earth Science — Journal of China University of Geosciences, 2001, 26(6): 574-580.

- [8] Jahn B M. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of Dabie orogen: implications for continental subductions and collisional tectonics [A]. In: Hacker B R, Liou J Q, eds. When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks [C]. Netherlands: Kluwer Academic Publishers, 1998. 203-239.
- [9] Patino Douce A E, McCarthy T C. Melting of crustal rocks during continental collision and subduction [A]. In: Hacker B R, Liou J Q, eds, When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks [C]. Netherlands: Kluwer Academic Publishers, 1998. 27–55.
- [10] Brenan J M, Shaw H F, Ryerson F J, et al. Mineralaqueous fluid partitioning of trace element chemistry of mantle and deep crustal fluids [J]. Geochimica et Cosmochimica Acta, 1995, 59: 3331-3350.
- [11] Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. experiments and implications for the origin of ocean island basalts [J]. Earth and Planetary Science Letters, 1997, 148: 193-205.
- [12] Thoni M, Jagoutz E. Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr and Pb-Pb isotopic results from the Austroalpine Saualpe and Koralpe typelocality [J]. Geochimica et Cosmochimica Acta, 1992, 56: 347-368.
- [13] 李曙光,陈移之,葛宁洁,等.青岛榴辉岩及胶南群片麻 岩的锆石 U-Pb 年龄[J].科学通报,1993,38:1773-

127

1777.

LI S G, CHEN Y Z, GE N J, et al. U-Pb zircon ages of eclogite and gneiss from Jiaoan Group in Qingdao area [J]. Chinese Science Bulletin, 1993, 38: 1773-1777.

[14] 李曙光, Jagoutz E, 肖益林. 大别山一苏鲁地体超高压变 质年代学—— I. Sm— Nd 同位素体系[J]. 中国科学(D 辑), 1996, 26: 249-257.

LI S G, Jagoutz E, XIAO Y L. Chronology of ultrahighpressure metamorphism in the Dabie mountains and Su-Lu terrane: J. Sm-Nd isotope system [J]. Science in China (Series D), 1996, 26: 249-257.

[15] 高山,Yumin Qiu,凌文黎,等. 大别山英山和熊店榴辉岩
 单颗粒锆石 SHRIMP U-Pb 年代学研究[J]. 地球科学
 一中国地质大学学报,2002,27(5):558-564.
 GAO S, Qiu Y M, LING W L, et al. SHRIMP single zir-

con U-Pb geochronology of eclogites from Yingshan and Xiongdian [J]. Earth Science — Journal of China University of Geosciences, 2002, 27(5): 558—564.

 [16] 徐佩芬,孙若昧,刘福田,等. 扬子板块俯冲、断离的地震 层析成像证据[J]. 科学通报,1999,44:1658-1661.
 XUPF, SUNRM, LIUFT, et al. Seismic tomography showing subduction and slab breakoff of the Yangtze block beneath the Dabie-Sulu orogenic belt [J]. Chinese Science Bulletin, 1999, 44: 1658-1661.

- [17] 游振东,韩郁箐,杨巍然,等. 东秦岭大别高压超高压变 质带[M]. 武汉:中国地质大学出版社,1998.
 YOU Z D, HAN Y Q, YANG W R, et al. East Qinling-Dabie high and ultrahigh-pressure metamorphism belt
 [M]. Wuhan: China University of Geosciences Press, 1998.
- [18] Jahn B M, Cornichet J, Cong B L, et al. Ultrahigh-_{€Nd}eclogites from an ultrahigh-pressure metamorphic terrane of China [J]. Chemical Geology, 1996, 127: 61−79.
- [19] McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism [J]. Earth and Planetary Science Letters, 1991, 102: 358-374.
- [20] Stalder R, Foley S F, Brey G P, et al. Mineral-aqueous fluid partitioning of trace elements at 900-1 200 °C and 3.0-5.0 GPa; new experimental data for garnet, clinopyroxene and rutile, and implications for mantle metasomatism [J]. Geochimica et Cosmochimica Acta, 1998, 62; 1781-1801.

Evidence of Partial Melting of Eclogites from Dabie-Sulu Ultrahigh-Pressure Metamorphic Belt: Trace Elements and Pb Isotope

JIA Wang-lu, GAO Shan, WANG Lin-sen, HU Sheng-hong

(Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China)

Abstract: Partial melting of subducted oceanic crust is one of the most important processes of continental growth. However, we see little direct evidence of partial melting of the continental during subduction. The difference in trace elements and Pb isotope between dehydration and partial melting of island arc basalt (IAB) is discussed based on the distribution coefficients of trace elements published. Although Pb was incompatible in both dehydration and partial melting, the activity of Pb was higher significantly than other incompatible elements (Rb, Ba, Sr, Th and U) in dehydration, and lower in partial melting. As a result, the evolution pathlous of dehydration and partial melting shows a large difference in the w(Rb)/w(Pb)-w(Rb), w(Ba)/w(Pb)-w(Ba), w(Th)/w(Pb)-w(Th), w(U)/w(Pb)-w(U) figure. Furthermore, the difference of incompatibility among Pb, Th and U leads to a significant distinction of single mineral isotope of garnet and omphacite between dehydration and partial melting. Moreover, the composition of trace elements and Pb isotope of actual measurements and that of analog calculation was compared. Most eclogites from Dabie-Sulu ultrahigh pressure belt might be residual after partial melting of IAB, however, the others were products of dehydration of IAB. Therefore, continental basaltic rocks could also be partially melted during subduction like the oceanic crust.

Key words: dehydration; partial melting; trace element; Pb isotope; eclogite.