亏损上地幔中的富钾熔体和碳酸盐交代作用: 来自 CCSD 预先导孔橄榄岩的地球化学证据

李天福1.杨经绥1.张儒媛2

1. 国土资源部大陆动力学重点实验室,北京 100037 2. 美国斯坦福大学地质与环境科学系,加利福尼亚州 94305

摘要,中国大陆科学钻探工程预先导孔(CCSD PP1)打在苏鲁超高压变质带芝麻坊超镁铁岩体上,钻孔穿透超镁铁岩体 115 m. 超镁铁岩体由二辉橄榄岩、方辉橄榄岩和少量单辉橄榄岩和纯橄岩组成, 与上下围岩接触的橄榄岩被强烈蛇纹石 化.多数橄榄岩含有石榴石或其假象,普遍含有金云母和菱镁矿,少量样品中有钛斜硅镁石.在化学成分上,橄榄岩的 M g * 指数变化于 90.3~92.6之间, MgO 含量(36.61%~49.15%, 平均 45.17%) 与 Na₂O(0.01%~0.25%)、Al₂O₃(0.07%~ 3.71%, 多数< 2.0%, 平均 1.46%)和 CaO(0.12%~2.53%, 一个高达 3.30%, 平均 1.00%) 呈负相关关系, 与主量易熔元 素相对亏损的特点相反,橄榄岩中显示了稀土元素富集、分馏和配分曲线显示近于平行和相似的特点(La/Lu)、比值为 3.18~33.05;此外,多数样品具有高 Ba(最高比原始地幔高 100 多倍)含量,在蛛网图上显示 Rb、Nb、Ta、Zr、Hf 和 Sr 的负 异常, Ti/Eu 比值均低于 1300. 岩相学特征和难熔主量元素与不相容元素之间的无相关性表明橄榄岩至少受到了形成金云 母和菱镁矿的 2 次交代作用,富含金云母的橄榄岩(例如 C25 143 61, C32 149 71) 具有富钾趋势,并目显示 K₂O 与 Rb、Ba 和 Th 等大离子亲石元素的正相关关系, 未见 K₂O 和稀土 元素、Sr 和 Ca 之间的 相关关系. 这些特 征表明橄 榄岩被含水、硅 铝质碱性熔体交代, 之后又被高 Ba 低 Rb 和高场强元素的镁质(菱镁矿)碳酸岩熔体交代, 并且强烈地改变了 Ba 的丰度和 显示了特定地幔碳酸盐的稀土元素配分型式.全岩具有不均一的高放射性Sr(⁸⁷Sr[%]Sr=0.7084~0.7201)和低放射性 Nd(exd(t) = -1.14~-8.55) 组成,结合已有的氧同位素研究资料,表明预先导孔 PP1 中的橄榄岩所代表的地幔可能在早期 就遭受了来自深部的介质的交代作用.

关键词: 石榴石橄榄岩: 微量元素: 地幔亏损: 交代作用: 中国大陆科学钻探工程. 中图分类号: P588.12 文章编号: 1000 - 2383(2006)04 - 0457 - 18 收稿日期: 2006-06-02

K Rich and Carbonatic Melt Metasomatism in Depleted Upper Mantle: Geochemical Evidences from Peridotites in Pre Pilot Hole of **Chinese Continental Scientific Drilling Project**

LI Tian fu¹, YANG Jing sui¹, ZHANG Ru yuan²

1. Key Laboratory for Continental Dynamics of the Ministry of Land and Resources of China, Beijing 100037, China

2. Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA

Abstract The Chinese pre pilot hole (PP1) is located at Zhimafang Village. Donghai County in the Sulu UHP terrane, east China. Ultrahigh pressure peridotites of 115 m thick within gneiss recovered from the PP1 are composed of abundant lherzo lite, harzburgite, and minor wehrlite and dunite. Peridotite near to the contacts with gneiss is strongly serpentinized. More than 90 vol% peridotites contain garnet and phlogopite; some contain magnesite and Ti clinohumite. All peridotites contain lower "fertile elements" compared with primitive mantle, their Mg # numbers range from 90.3 to 92.6, and MgO content (36.61% - 49.15%, averagely 45.17%) has negative correlation with Na₂O(0.01% - 0.25%), Al₂O₃(0.07% - 3.71%, most < 2.0%, averagely 1.46%) and CaO(0.12% - 2.53%, one up to 3.30%, averagely 1.00%) contents. In contrast to

,男,研究员,主要从事岩石学和地球化学研究.E.mail.litianfu@s 作者简介,李天福(1962

基金项目:国家重点基础研究:"973"专项项目(No.2003CB7106500);国家自然科学基金重大项目(No.40399140).

na. com Il rights reserved. http://www.cnki.net

major element depletion feature, the PP1 peridotites show light rare earth element enriched and slight to moderately fraction ated REE pattern of nearly parallel curves and roughly identical pattern with $(La/Lu)_N$ ratios of 3.18–33.05. Most of the peridotites contain high Ba (higher than 92 times of primitive mantle) and LREE and low HFSE, and are characterized by negative Rb. Nb. Ta, Zr, Hf and Sr anomalies (e.g., C39 157 81) in spidergrams. Ti/Eu ratios are lower than ca. 1300. The lack of correlation between refractory degree and enrichment of incompatible elements documents effect by metasoma tism after mantle melting. Petrographic characteristics show multiple metasomatism of phlogopite and magnesite. Phl rich peridotites (such as samples C25 143 61, C32 149 71) have the K₂O enrichment trend and good correlations between K₂O and some LILE such as Rb, Ba and Th. No positive correlations between K₂O and REE and between Sr and Ca are seen. These signatures show that peridotites were metasomatism of magnesite melt containing high Ba and low Rb and HFSE which modified Ba content drastically and endued REE patterns of mantle carbonatite melt. Whole rock has heterogeneously high radiogenic Sr(87 Sr 98 Sr ${=}$ 0.7084 – 0.720 1) and low radiogenic Nd($\varepsilon_{Nd}(t) = -1.14$ to -8.55), which indicates the peridotites from PP1 hole was probably derived from long term enriched mantle by agents from depth. especially combined with oxygen isotope compositions of anhydrous and hydrous minerals reported by previous studies.

Key words, garnet peridotite; trace element; mantle depletion; metasomatism; Chinese Continental Scientific Drilling Project.

0 引言

陆下地幔的物质成分资料的获取对于建立大范 围地幔地球化学和构造演化模式是必要的(Griffin et al., 1999).对于地幔物质成分的了解曾经主要 来自于金伯利岩中的包体、捕虏晶和幔源火山岩.形 成于不同时代的数 m 至数千 m 大小的阿尔卑斯型 橄榄岩为认识上地幔提供了进一步的证据.与地幔 包体相比,造山带橄榄岩因其规模大、成因、构造和 演化历史的复杂性而更加能够提供有关地幔地球化 学和动力学的信息.

阿尔卑斯型橄榄岩杂岩以成分上的成层性为特 征,组成岩石类型有二辉橄榄岩、方辉橄榄岩、单辉 橄榄岩和纯橄岩,有的橄榄岩体内还产出有辉石岩 和榴辉岩(Menzies and Dupuy, 1991). 阿尔卑斯型 橄榄岩的成层构造的原因认为是原本均一的地幔源 区经历了不同程度的部分熔融作用提取熔体之后的 残留体(Frey et al., 1985; McDonough and Sun, 1995). 但是, 轻稀土元素与 CaO、Al2O3 和 MgO 之 间无相关关系、不同范围内(厘米到千米)变化很大 的 Sr、Nd、Pb 同位素组成却不能简单地用单一的熔 体提取来得到解释,它还需要轻稀土富集的介质对 原本轻稀土亏损的地幔岩体的叠加作用(Jahn et al., 2003). 在地幔包体中, 已经观察到了引人注 目的隐交代或显交代作用(Menzies and Hawkes worth, 1987; Ionov et al., 1993; Yaxley et al., 1998; Kogarko et al., 2001),并且橄榄岩中的含水 Zanetti *et al*., 1999);然而,相对来说,在造山带橄 榄岩块体中,这种交代作用还不是很普遍(Bodinier *et al*., 1988; Zanetti *et al*., 1996).据报道,虽然后 来的岩脉交代富集作用产生了角闪石和金云母并且 对 Lherz 橄榄岩块体物质成分有影响,但是这仅仅 局限于紧靠脉体的局部位置(Bodinier *et al*., 1988).

中国大陆科学钻探工程所在的东海地区出露有 许多石榴石橄榄岩体.其中一些岩体,如许沟和芝麻 坊已经进行过许多研究(Yang et al., 1993; Zhang et al., 1994, 2000; Yang and Jahn, 2000; Yang, 2003; Zhang et al., 2003).过去的研究主要集中在 变质作用和某些特殊矿物相(如 Cr dissakisite)方 面,并且由于露头不佳,所能获得的样品有限,地球 化学的研究也比较有限(Yang and Jahn, 2000; Zhang et al., 2000, 2003).岩石化学研究已经表 明,许沟和芝麻坊橄榄岩均直接来源于地幔,并且卷 入到了与超高压变质作用有关的俯冲过程.

中国大陆科学钻探工程的预先导孔 PP1 在芝 麻坊橄榄岩体获得了大约 115 m 的新鲜岩心样品. 这些样品含有丰富的含水矿物相和碳酸盐矿物相. 这对于橄榄岩体中透入性交代作用的认识是一个有 利和重要的研究对象. 根据从钻孔获得的大量全岩 主量元素、稀土元素和微量元素以及一些同位素 (Nd和 Sr)资料,主要探究:(1)造成芝麻坊橄榄岩 全岩成分变化的地幔过程;(2)芝麻坊橄榄岩体可能 的地质背景.

矿物相通常都归因于交代作用(Peacock, 1990; Publishing House, All rights reserved. http://www.cnki.net

1 地质概况

苏鲁地体是中朝和扬子克拉通之间秦岭 - 大别 碰撞带的东延部分,被左行的郯庐断裂将其与后者 之间错断并向北北东位移约 530 km, 该地体的西北 部以烟台 - 青岛 - 五莲断裂为界,南部以嘉山 - 响 水断裂为界.内部可划分为断裂围限的超高压和高 压两大变质带,两带均具有相似的上地壳原岩,并且 被造山后中生代花岗岩侵入. 超高压带的岩石组成 为角闪岩相长英质片麻岩、角闪岩、蓝晶石石英岩和 大理岩,石榴石橄榄岩则呈米到千米级大小的透镜 体和块体产出于角闪岩相长英质片麻岩中,也见于 东海地区勘探浅井和中国大陆科学钻探工程的预先 导孔和主孔中. 苏鲁地区大多数石榴石橄榄岩都经 历过俯冲带所谓"禁区"条件下(<5 ℃/km)的超高 压变质作用(Yang et al., 1993; Zhang et al., 1994, 2000, 2003; Zhang and Liou, 1998; Liou et al., 2000; Yang and Jahn, 2000). 含柯石英(或 柯石英假象)的榴辉岩则呈透镜体或层状体产出于 片麻岩、石榴石橄榄岩和大理岩中.pT估算和各种 片麻岩中锆石柯石英包裹体的普遍存在证明了这些 岩石经历了三叠纪的原位超高压变质作用(Zhang et al., 1995; Ye et al., 2000; Liu et al., 2002), 并且在随后的折返过程中叠加了麻粒岩 – 角闪岩相 退变质作用.

2 PP1 超镁铁岩岩相学简述

芝麻坊超镁铁岩体属苏鲁超高压带南部, 位于 东海县城以南9km(图1).该岩体的围岩为长英质 片麻岩,呈北北东向走向,岩体长970m,宽度为 70~170m.岩体的边部发生了强烈的蛇纹石化.预 先导孔PP1的钻进深度为432m,岩心样品有各种 片麻岩和橄榄岩,其中橄榄岩的厚度为115m(深度 为138.5~256.4m).橄榄岩的岩石类型有二辉橄 榄岩、方辉橄榄岩、单辉橄榄岩和少量的纯橄岩,其 中在238.5~242.3m深处夹有一层绿帘黑云斜长 片麻岩,而且在163.5m和251m深处的局部被石 榴金云角闪岩脉穿切.橄榄岩体与围岩片麻岩之间 的接触界线为突变接触关系.在上下接触界限附近 的橄榄岩被强烈蛇纹石化.某些蛇纹岩中所含的残 余橄榄石不足3%~5%,一般蛇纹石化的橄榄岩所

图 1 PP1 钻孔周围地质略图

Fig. 1 Schematic geological map around PP1 drill site ηγȝ.花岗岩; Cz.新生界; K. 白垩系; Pt₃.上元古界; Pt₂.中元古界; Pt₁.下元古界

含的残留矿物含量变化于 10%~70%之间,残留矿 物有橄榄石、石榴石、斜方辉石、单斜辉石和金云母. 根据矿物含量和蛇纹石化的程度, PP1橄榄岩段以方 辉橄榄岩和二辉橄榄岩为主,石榴石和不含石榴石橄 榄岩交互产出.几乎所有的 PP1橄榄岩都含有金云母 (含量从微量到 15%以上),并且有些层位含有金云 母、碳酸盐矿物(图 2a-2c)和钛斜硅镁石.

石榴石二辉橄榄岩通常具有变斑状结构,部分 发生面理化.2~10 mm 大小的浑圆状粗粒石榴石 产于由细粒(<2 mm)橄榄石、斜方辉石、透辉石和 石榴石构成的基质中.较新鲜橄榄岩中的粗粒和细 粒石榴石边部均被含金云母或不含金云母的角闪 石+铬铁矿组构所环绕.但是有的石榴石完全被绿 泥石 ±细小方解石或自形绿泥石叶片、金云母和不 透明沉淀状铬铁矿替代.退变质岩石中的透辉石被 透闪石和铬铁矿集合体所替代.顽辉石或者新鲜,或 者部分被滑石替代.非常少量的钛斜硅镁石呈细小 的包裹体(0.1~0.2 mm)产出于橄榄石或辉石中. 少量菱镁矿产出于基质中.细粒铬铁矿呈包裹体产 于石榴石或基质中.方辉橄榄岩、单辉橄榄岩和纯橄 岩在结构上与石榴石二辉橄榄岩相似,只是在矿物

图 2 PP1 钻孔中含金云母和菱镁矿橄榄岩的显微照片

Fig. 2 Photomicrographs of phlogopite and magnesite bearing peridotite from PP1 borehole a. 含菱镁矿金云母二辉橄榄岩. 菱镁矿产出于橄榄石(Olv)、金云母(Phl)粒间的菱镁矿(Mag), 还见金云母被菱镁矿消蚀; b. 含菱镁矿金 云母单辉橄榄岩, 显示了绿泥石化(Chl)和定向的富金云母集合体及其附近的菱镁矿; e. 含菱镁矿金云母单辉橄榄岩, 金云母定向分布, 菱镁矿消蚀了金云母. 照片 a-c 为正交偏光照相; d. 边部具有含水相钛斜硅镁石(Ti Chu)和金云母的细脉, 其中部为细粒滑石、绿泥石、 钛斜硅镁石和角闪石(照片左上角). 钛斜硅镁石边部部分分解橄榄石+钛铁矿(Olv+Ilm)(单偏光)

组成上不同. 方辉橄榄岩和单辉橄榄岩分别只含少 量(<5%)的单斜辉石和顽辉石. 纯橄岩主要由橄榄 石(>90%)组成. 大多数不含石榴石橄榄岩为纯橄 岩和少量的二辉橄榄岩, 但有含量不等的细粒铬铁 矿(大小为 0.2~0.3 mm). 这些岩石中的金云母在 不同样品间含量不同(3%~10%), 个别样品中可达 30%(图 2b). 某些样品中金云母的定向分布(图 2c) 表明其形成早于折返期间的变形作用. 菱镁矿主要 产出在单辉橄榄岩和方辉橄榄岩中, 要么呈 3~ 15 mm大小的粗粒拉长晶体, 要么呈相对细粒 (<1 mm)的晶体产出. 从许多薄片的观察似乎表明 菱镁矿形成于金云母之后(图 2a、2c). 含钛斜硅镁石 的单辉橄榄岩很少(如样品 C25 143 65 和 C49 166 92). 钛斜硅镁石或者呈粗粒晶体(约 4 mm)产于基质 中, 或者呈脉状与碳酸盐或金云母产出(图 2d).

上述岩相学描述综合表明, PP1 橄榄岩大概可 控制不同岩石的成分变化. 主量 元 以识别出3.202变质演化阶段. I. 」峰期变质作用阶。析进行的. 二价 五价铁和挥发分

段,粗大的顽辉石+透辉石+橄榄石+铬铁矿+金 云母 士石榴子石 士钛斜硅镁石 士菱镁矿;II. 退变质 阶段 1,透辉石被透闪石+铬铁矿后成合晶替代,顽 辉石被滑石替代,钛斜硅镁石被橄榄石+钛铁矿后 成合晶替代,石榴子石周围的角闪石次变边,可能还 包括金云母;III. 退变质(蚀变)阶段 2,近于岩石圈 浅部,温压下降,流体通量更加增多,橄榄石发生蛇 纹石化、石榴子石的绿泥石化,出现了强烈的蚀变 带,带内还有次生的金云母、钛斜硅镁石、扇状集合 体状角闪石、替代橄榄石的滑石和碳酸岩等.

3 地球化学

3.1 分析方法

化学分析样品是平均每隔2m系统采集的,以 控制不同岩石的成分变化.主量元素是用X荧光分 机析进行的。二价入三价铁和挥发分为湿化学方法的分ne

461

析结果. 微量和稀土元素是通过 ICP MS 方法进行. 全岩 Sr 和 Nd 同位素组成是将样品用色层柱分离 后用 MAT252 质谱仪测量. 以上所有测试工作均由 中国地质科学院测试研究所完成.

3.2 主量元素

如前所述,某些橄榄岩被强烈蛇纹石化,所以其 烧失量相当高.本文仅采用烧失量低于 5%的样品 成分(表1)进行讨论.

不同橄榄岩的成分变化范围见表 2,3. 从石榴 石二辉橄榄岩到纯橄岩,除了个别例外,随着 MgO 含量的增高, SiO₂ 含量稍有降低, 并且在不同岩石 之间,成分变化范围有所重叠.与原始地幔(McDon ough et al., 1995)相比, 橄榄岩总的来说易熔元素 含量相对较低(除 K₂O 外), 难熔元素如 MgO 等含 量较高.高 MgO 含量的纯橄岩中易熔元素最亏损. 其中 TiO2 含量通常低于 0.07 %,但是有些含钛斜 硅镁石的橄榄岩所含的 TiO2 可达0.30%, 而高于 大多数岩石.虽然橄榄岩相当亏损易熔元素,但是某 些样品的 Al2O3 含量还是比较高(可达3.73%,例 如金云石榴二辉橄榄岩样品 C25 141 60), 而且一 般从石榴二辉橄榄岩(平均1.87%)到纯橄岩 (0.18%)逐渐降低,这与其中含 AbO3 矿物相石榴 石、金云母的含量变化有关;但是一个例外是不含石 榴石二辉橄榄岩样品的 Al2O3 含量(3.47%) 也很高. 一般二辉橄榄岩具有较高的 CaO, 而方辉橄榄岩和纯 橄岩的 CaO 含量较低,某些不含石榴石二辉橄榄岩 中CaO 含量偏高的原因可能是单斜辉石或次生碳酸 盐矿物造成的. 大多数橄榄岩的 K₂O 含量都比原始 地幔的值高,并且与岩石中金云母的含量有正相关关 系.大约67%的橄榄岩样品的 K_2O 含量低于0.20%, 但是富金云母橄榄岩的 K₂O 含量可达 3.24%.

图 3 显示了 MgO 对主量元素和一些含量相对 较低的元素如 NiO 和 Cr2O₃ 之间的投点图. 总的来 说.除了个别例外,石榴石橄榄岩的易熔元素含量高 于不含石榴石橄榄岩. 纯橄岩是最亏损的,其 MgO 和 Mg[#](92.45)最高. 如果与原始地幔相比,大多数 橄榄岩都亏损 TiO₂、Al2O₃、CaO 和 Na2O,并且 Al2O₃、CaO 和 Na2O 与 MgO 呈良好的负相关关 系. 这种规律性的变化主要是由不同程度的部分熔 融和熔体的提取造成的,而且与岩石是地幔残留体 的亏损特点相一致(Frey *et al.*, 1985). 大多数样品 中难熔元素 NiO 的含量较高,并且与 MgO 含量呈 正相关关系,在, MgO Cr2O₃ 投点图上(图 3) 围绕原

始地幔值分布离散,未显示相关关系,从图3可见, 石榴石和不含石榴石橄榄岩全岩成分由于具有重叠 而不能很好地在图中区分开来,但是 Al2O₅ Cr/ (Cr+Al)投点图中(图4),石榴石和不含石榴石橄 榄岩清晰地划分为 2 组. 但我们注意到样品 C25 143 61 虽然为不含石榴石金云二辉橄榄岩,但具有 高的 Al2O3 (3. 47%), CaO (3. 30%) 和 K2O (3.24%)含量和最低的 MgO(36.38%)含量. 一个 可能的原因是,由于岩石中矿物分布的不均一性,会 出现薄片观察到的矿物组合与岩石化学分析不吻 合.根据电子探针分析结果,金云母的 K₂O 和 Al2O3 含量分别约为 9%和 12%, 石榴石的 Al2O3 含量约为 22 %, 而单斜辉石的 CaO 含量约为 22%. 所以全岩化学成分与薄片观察方面的不太一致可能 反映了岩石矿物成分金云母、石榴石和单斜辉石在 局部的变化.

3.3 稀土元素和微量元素

PP1 橄榄岩的稀土元素和微量元素见表 1. 微 量元素与岩石化学烧失量之间没有相关关系,因此 后期蛇纹石化对微量元素的丰度没有明显的影响. PP1 橄榄岩的 REE 总含量较低,变化范围为3.24× $10^{-6} \sim 50.06 \times 10^{-6}$,并且不同岩性的稀土总量没有 明显的不同(表4).但一个含钛斜硅镁石的二辉橄 榄岩例外,其稀土元素总量最高,达到了152.30× 10⁻⁶. 经过原始地幔(McDonough et al., 1995)标 准化的稀土元素配分型式(图 5)表明,所有橄榄岩 均显示轻稀土富集特点而中稀土和重稀土相对低, (La/Lu)_N 比值变化范围为 3. 20 ~ 33. 29. 同时, HREE 呈水平线或从 Er 到 Lu 略有升高. 更详细地 说,石榴石二辉橄榄岩的(La/Lu) № 值为 3.20~ 13.56, 石榴石方辉橄榄岩的(La/Lu) M值为 5.04~ 18.65, 而不含石榴石橄榄岩的(La/Lu) № 值则为 5.24~33.29. 在 MgO 含量与 Lan 或 Lun 值之间没 有相关关系.

大离子亲石元素的丰度在总体上高于岩石地幔 的丰度,大致显示与 MgO 含量的负相关关系.图 6 显示了原始地幔标准化的蛛网图.所有岩石的不相 容元素,大离子亲石元素如 Rb、Ba 和 Th 等多数高 于原始地幔的丰度,多数橄榄岩的 K、Sr、Hf 和 Ti 等元素均显示负异常低谷,Ba 显示正异常尖峰,最 高比原始地幔高 100 多倍.与其他岩石相比,方辉橄 榄岩(如 C36 153 77)和纯橄岩(C45 163 86)具有强 烈的Rb、Ta、Sr、Zr、Hf、Ti(HFSE)和Y负异常,相 表 1 PP1 钻孔橄榄岩的全岩主量元素(%)和微量元素(10⁻⁶)数据

Table 1	Whole roo	ek major (%)	and trace (10^{-6})	elements of	PP1 p	eridotites
---------	-----------	---------------	-----------------------	-------------	-------	------------

标号	C25 14 1 60	C25 143 61	C26 143 62	C 27 144 63	C27 144 64	C30 146 66	C30 146 67	C31 147 68	C31 148 69	C31 149 70	C32 149 71
岩石	Phl Grt Lherz	PhlTi ChuLherz	Harz	Grt Lherz	G rt Lherz	Grt Harz	Grt Lherz	Phl G rt Harz	Grt Harz	Phl Grt Lherz	Phl Lheız
<i>h</i> (m)	155.16	155.16	156.68	159.00	161.65	164.00	166.65	168.00	169.00	170.05	172.37
SiO_2	41.93	42.08	41.32	42.71	42.21	41.49	41.00	41.87	42.71	42.17	41.93
TiO_2	0.03	0.30	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.03
Al_2O_3	3.55	3.31	0.30	1.91	1.31	1.04	0.85	0.42	0.98	1.93	2.64
$\mathrm{Cr}_2\mathrm{O}_3$	0.42	0.39	0.51	0.40	0.47	0.26	0.26	0. 23	0.46	0.31	0.43
TFe_2O_3	8.12	7.40	8.10	7.44	8.14	7.82	8.09	7.65	7.57	7.74	7.13
FeO	6.11	5.37	6.27	6.32	7.26	6.16	6.43	6.40	6.43	6.05	5.61
MnO	0.12	0.10	0.12	0.11	0.12	0.11	0.11	0.10	0.11	0.10	0.11
Ni O	0.20	0.19	0.28	0.28	0.24	0.25	0.30	0. 28	0.25	0.24	0.20
MgO	38.17	34.91	47.02	43.92	45.00	43.25	45.74	47.08	44.23	40.47	39.69
CaO	2.41	3.15	0.11	1.02	0.73	0.90	0.62	0. 23	0.67	1.66	1.84
Na_2O	0.24	0.20	0.02	0.06	0.11	0.07	0.05	0.02	0.05	0.10	0.11
K_2O	0.46	3.09	0.18	0.23	0.06	0.01	0.03	0. 22	0.10	1.10	1.30
$\mathrm{P}_{2}\mathrm{O}_{5}$	< 0.10	0.83	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0. 10	< 0.10	< 0.10	< 0.10
LOI	4.58	3.98	2.74	2.70	1.90	4.33	2.94	1.51	3.00	3.96	4.74
Total	100.23	100.05	100.70	100.78	100.30	99.54	100.00	99.61	100.13	99.79	100.15
Mg $^{\#}$	90.30	90.33	91.99	92.12	91.63	91.63	91.80	92.41	92.04	91.19	91.68
La	2.96	34.90	7.01	1.61	10.60	1.68	8.51	0.50	2.88	5.58	3.33
Ce	7.20	67.60	12.80	3.01	17.40	4.43	15.70	1. 19	6.27	10.60	7.70
P r	0.59	7.20	1.62	0.32	2.08	0.34	2.05	0.13	0.55	1.24	0.80
Nd	2.23	27.80	6.21	1.11	7.53	1.20	7.51	0.54	2.03	4.69	3.13
Sm	0.51	5.13	1.16	0.20	1.52	0.25	1.43	0.15	0.46	0.88	0.62
Eu	0.18	1.37	0.34	0.08	0.37	0.11	0.36	0.07	0.14	0.49	0.19
Gd	0.61	3.89	1.13	0.21	0.74	0.31	1.42	0. 20	0.51	0.83	0.55
Tb	0.13	0.46	0.22	0.03	0.24	0.06	0.25	0.06	0.08	0.15	0.08
Dy	0.86	1.91	1.04	0.18	1.22	0.33	1.19	0.16	0.42	0.62	0.44
Нo	0.24	0.41	0.24	0.05	0.29	0.08	0.31	0.04	0.10	0.13	0.11
Εr	0.46	0.73	0.43	0.09	0.53	0.16	0.54	0.06	0.16	0.24	0.22
Τm	0.09	0.11	0.08	0.02	0.09	0.03	0.09	0.01	0.03	0.05	0.04
Yb	0.60	0.68	0.52	0.12	0.60	0.21	0.71	0.12	0.19	0.34	0.26
Lu	0.10	0.11	0.07	0.02	0.09	0.04	0.11	0.01	0.03	0.05	0.04
Rb	18.30	79.30	5.34	5.76	2.08	0.90	0.83	5.72	1.84	27.80	23.20
Ba	337.00		130.00	289.00	109.00	109.00	78.00	85.90	94.10	473.00	611.00
Th	10.60	10.30	0.64	1.02	0.58	0.16	0.09	0. 20	1.24	4. 79	5.13
U	0.71	1.96	0.19	0.16	0.06	0.03	0.05	0. 09	0.12	0.61	0.48
Nb	0.41	6.86	0.30	0.18	0.37	0.33	0.09	0.40	0.80	0.73	2.49
Та	0.21	0.57	0.00	0.01	0.14	0.16	0.00	0.00	0.16	0.03	0.33
Sr	62.20	441.00	18.20	51.10	25.30	116.00	19.00	15.70	24.70	77.50	63.40
Zr	3.01	49.60	9.20	7.00	0.86	0.64	4.80	20.10	1.25	16.40	41.50
Ηf	0.20	3.65	0.02	0.00	0.04	0.03	0.01	0.00	0.08	0.05	1.17
Y	4.71	9.40	4.78	1.02	6.70	1.66	6.30	0.83	2.24	2.89	2.66
Sc	19.70	19.10	4.00	6.70	11.10	8.30	5.30	8. 50	10.10	14.70	17.90
V	30.90	60.00	21.30	28.70	27.10	15.20	23.20	17.10	20.00	39.40	29.20
Cr	2 873.61	2 668. 36	3 489. 39	2 702. 57	3 215. 71	1 7/8.90	1 778.90	1 573.65	3 147. 29	2 121.00	2 942. 03
Co	88.10	87.80	57.50	54.30	110.00	97.60	59.30	62.00	94.40	53.10	83.10
IN i	1 571.56	1 492.98	2 200. 19	2 200. 19	1 885. 87	1 964. 45	2 357.34	2 200, 19	1 964. 45	1 846. 59	1 571.56

续表1

标号	C33 150 72	C34 150 73	C34 151 74	C35 152 75	C35 153 76	C36 153 77	C38 156 79	C 38 157 80	C39 157 81	C40 158 82
岩石	Phl Grt H arz	PhlGrt Lheız	PhlGrt Lherz	Grt Lherz	G rt H arz	Phl Grt Harz	Phl Lh erz	Phl Grt Lherz	Phl Grt Lherz	Phl Grt Lherz
<i>h</i> (m)	174.30	178.00	182.27	183.00	185.30	187.30	199.00	199.60	200.60	203.60
SiO_2	41.83	43.09	42.03	41.31	41.48	41.05	42.39	42.44	41.98	42.04
${\rm Ti}{\rm O}_2$	0.01	0.00	0.02	0.01	0.00	0.01	0.02	0.00	0.01	0.01
Al_2O_3	0.55	1.12	1.41	1.80	0.72	0.17	0.84	1.32	1.36	1.40
$\mathrm{Cr}_2\mathrm{O}_3$	0.29	0.40	0.40	0.38	0.41	0.46	0.36	0.53	0.38	0.36
TFe_2O_3	8.21	7.67	8.37	7.99	8.21	8.29	8.18	7.32	8.48	7.83
FeO	6.68	6.64	6.59	6.11	6.74	6.79	6.48	5.80	6.77	6.33
MnO	0.10	0.11	0.11	0.12	0.12	0.12	0.11	0.11	0.12	0.11
Ni O	0.27	0.26	0.25	0.25	0.27	0. 29	0.26	0.24	0.24	0.25
MgO	46.06	44.42	44.28	42.25	45.63	47.44	43.65	43.92	43.44	43.64
CaO	0.37	0.56	1.10	1.57	0.41	0.12	1.01	0.89	0.61	0.61
Na_2O	0.03	0.07	0.07	0.09	0.03	0.02	0.07	0.07	0.06	0.08
K_2O	0.03	0.05	0.02	0.17	0.02	0.04	0.50	0.14	0.76	0.84
$\mathrm{P}_{2}\mathrm{O}_{5}$	< 0.10	< 0.10	< 0. 10	< 0.10	< 0. 10	< 0.10	< 0. 10	< 0.10	< 0. 10	< 0.10
LOI	2.20	1.98	1.96	4.70	2.67	2.60	3.12	3.20	2.95	3.10
Total	99.94	99.73	100.02	100.64	99. 98	100.60	100. 52	100.18	100.39	100.26
Mg $^{\#}$	91.74	91.98	91.28	91.28	91.67	91.89	91.35	92.23	91.02	91.69
La	6.13	2.11	2.20	3.83	3.01	2.19	7.43	3.80	12.00	1.76
Ce	11.30	4.91	5.03	8.60	6.27	5.10	13.90	10.80	22.00	3.81
Ρr	1.44	0.57	0.58	1.32	0.57	0.49	1.77	0.86	3.10	0.48
Nd	5.31	2.17	2.32	3.06	2.02	1.96	5.46	3.42	8.48	1.94
Sm	1.09	0.43	0.49	0.54	0.37	0.42	1.01	0.72	1.84	0.43
Eu	0.31	0.17	0.16	0.19	0.13	0.17	0.28	0. 23	0.48	0.30
Gd	1.13	0.35	0.43	0.54	0.38	0.35	0.68	0.59	1.97	0.41
Tb	0.21	0.09	0.11	0.09	0.06	0.05	0.11	0.09	0.31	0.09
Dy	1.01	0.24	0.40	0.51	0.32	0.25	0.45	0.42	1.64	0.28
Нo	0.23	0.06	0.09	0.13	0.08	0.06	0.10	0.10	0.39	0.07
Εr	0.40	0.11	0.18	0. 27	0.14	0.11	0.18	0.19	0.69	0.11
Τm	0.07	0.02	0.03	0.05	0.03	0.02	0.03	0.03	0.12	0.02
Yb	0.50	0.15	0.24	0.33	0.18	0.13	0.19	0.23	0.74	0.17
Lu	0.08	0.02	0.04	0.06	0.03	0.02	0.03	0.04	0.12	0.03
Rb	0.63	1.18	0.60	4.71	1.50	1.26	13.20	4.06	19.80	20.60
Ba	69.80	105.00	99.20	152.00	53.10	58.10	608.00	166.00	219.00	398.00
Th	0.05	0.08	0.04	0.84	0.42	0.84	3.26	1.82	0.82	1.91
U	0.03	0.04	0.05	0.13	0.16	0.14	0.45	0.15	0.34	0.32
Nb	0.56	0.78	1.44	1.46	1.66	4.00	1.62	1.06	1.26	0.95
Та	0.02	0.04	0.09	0.30	0.28	0.26	0.14	0.16	0.18	0.06
\mathbf{Sr}	24.90	35.00	69.10	52.50	16.70	5.30	184.00	54.90	32.70	91.10
Zr	11.60	18.40	9.30	1.16	1.03	0.58	11.70	0.95	1.62	10.10
Ηf	0.00	0.01	0.01	0.08	0.05	0.03	0.05	0.09	0.04	0.05
Y	4.59	1.14	1.77	3.18	1.74	1.33	2.21	2.19	8.90	1.41
Sc	5.00	12.80	11.90	15.60	10.30	10.80	12.90	16.80	10.60	10.30
V	23.70	29.30	37.30	32.10	16.40	9.10	21.90	23.20	17.80	25.40
Сr	1 984. 16	2 736. 78	2 736. 78	2 599.94	2 805. 20	3 147. 29	2 463. 10	3 626. 23	2 599. 94	2 428. 89
Co	56.20	53.50	55.10	107.00	103.00	103.00	91.30	95.10	98.40	57.40
Ni	2 121.61	2 011. 60	1 964.45	1 964. 45	2 121.61	2 278.77	2 043. 03	1 885.87	1 885.87	1 964. 45

续表1

标号	C41 159 83	C42 159 84	C 43 160 85	C45 163 86	C46 164 89	C47 16 5 90	C 48 166 91	C49 166 92	C51 167 94
岩石	Phl Grt Lherz	Grt Lh erz	Grt Lherz	duni te	Grt Lheız	PhlGrt Harz	Phl Grt Harz	TiChu GrtHarz	Harz
<i>h</i> (m)	205.00	207.75	209.35	215.64	216.94	224.86	226. 27	226.77	233.40
SiO ₂	42.16	42.41	43.45	40.92	43.77	41.64	42.78	41.47	41.58
TiO_2	0.01	0.01	0.01	0.00	0.07	0.01	0.01	0.01	0.00
Al_2O_3	2.18	1.82	2.00	0.17	3.00	0.62	1.53	1.12	0.07
$\mathrm{Cr}_2\mathrm{O}_3$	0.39	0.36	0.30	0.41	0.46	0.37	0.44	0.38	0.31
TFe_2O_3	7.34	7.84	7.42	7.69	7.27	8.09	7.59	8.35	7.41
FeO	5.89	6.64	5.98	6.02	6.32	6.43	6.54	6.75	6.05
MnO	0.11	0.12	0.10	0.10	0.09	0.11	0.11	0.12	0.10
Ni O	0. 22	0. 23	0.24	0.30	0.38	0.23	0.26	0.25	0.31
MgO	39.55	42.51	41.32	47.59	40.84	45.34	44.13	44.13	47.18
CaO	2.32	1.35	1.65	0.12	1.35	0.31	0.67	0.18	0.18
Na_2O	0.09	0.09	0.13	0.01	0.11	0.01	0.06	0.07	0.16
K ₂ O	0.37	0.12	0.13	0.09	0.12	0.10	0.18	0.15	0.02
$P_2 O_5$	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
LOI	5.72	3.72	3.78	2.50	2.88	3.62	2.72	3.16	2.96
Total	100.46	100.58	100. 52	99.90	100.34	100.43	100.48	99.39	100.33
Mg ♯	91.43	91.48	91.68	92.45	91.75	91.73	92.00	91.27	92.65
La	5.30	3.87	1.28	8.54	3.77	2.72	12.80	2.66	1.89
Ce	12.50	9.80	3.19	14.00	7.47	5.52	27.90	5.80	5.20
P r	1.10	0.82	0.36	1.83	0.66	0.68	2.24	0.67	0.40
Nd	3.99	3.00	1.13	6.43	2.40	2.29	7.78	2.69	1.53
Sm	0.78	0.58	0.19	1.24	0.46	0.47	1.51	0.55	0.33
Eu	0.25	0.18	0.11	0.36	0.15	0.18	0.47	0.16	0.16
Gd	0.70	0.49	0.25	1.19	0.42	0.48	0.85	0.49	0.33
Tb	0.10	0.07	0.07	0.17	0.07	0.12	0.21	0.07	0.06
Dy	0.49	0.36	0.21	0.80	0.36	0.35	1.04	0.32	0.26
Нo	0.12	0.09	0.06	0.18	0.10	0.09	0.24	0.07	0.06
Er	0.22	0.18	0.13	0.33	0.21	0.17	0.42	0.13	0.11
Tm	0.04	0.03	0.03	0.06	0.04	0.03	0.07	0.02	0.02
Yb	0.25	0. 22	0.18	0.36	0.29	0.22	0.46	0.14	0.14
Lu	0.04	0.04	0.03	0.06	0.05	0.04	0.07	0.02	0.03
Rb	7.23	3.80	3.51	2.23	3.36	3.06	5.77	5.71	3.64
Ba	229.00	171.00	141.00	64.30	168.00	131.00	267.00	104.00	119.00
Th	2.71	1.00	0.21	0.73	0.90	0.35	2.52	1.30	0.19
U	0.20	0.06	0.17	0.15	0.11	0.12	0.23	0.14	0.04
Nb	1.86	1.39	0.76	0.85	3.76	0.82	1.18	0.77	0.76
Та	0.33	1.04	0.04	0.08	0.55	0.05	0.41	0.16	0.07
\mathbf{Sr}	35.10	41.20	43.80	19.30	40.70	35.90	58.40	25.90	33.50
Zr	2.16	1.83	7.60	6.90	2.81	6.50	3.38	0.69	3.73
Hf	0.15	0.09	0.01	0.01	0.13	0.02	0.12	0.03	0.02
Y	2.48	2.17	1.20	0.40	2.31	1.73	5.30	1.61	1.37
Sc	13.40	16.90	6.20	4.40	18.50	4.70	9.13	8.80	6.70
V	28.00	26.50	32.20	16.50	96.80	28.80	19.20	13.90	20.50
Cr	2 668. 36	2 463. 10	2 032. 06	2 818.88	3 147. 29	2 531. 52	3 010. 45	2599.94	2 121.00
Co	85.60	94.30	53.10	64.30	119.00	63.50	91.00	96.70	171.00
Ni	1 728. 72	1 807.30	1 846. 59	2 357.34	2 985. 97	1 775. 87	2 043. 03	1964.45	2 435. 92

Phl. 金云母; Grt. 石榴石; Ti Chu. 钛斜硅镁石; Lherz. 二辉橄榄岩; Harz. 方辉橄榄岩; dunite. 纯橄榄岩.

表 2 PP1 钻孔橄榄岩不同岩石的主量元素变化范围、平均值和标准差(%)

Table 2 Major element variation ranges and averages standard deviation (%) of different rocks from PP1

	石榴石二辉橄榄岩	石榴石方辉橄榄岩	无石榴石二辉橄榄岩	无石榴石方辉橄榄岩	纯橄岩
SiO ₂	42.51~45.18 43.92±0.77	42. 16~44. 25 43. 37±0.68	43. 80 ~ 44. 19 44. 04±0. 21	42. 44 ~ 42. 98 42. 79±0. 30	42.26
${\rm TiO}_2$	$0 \sim 0.08$ 0.02 ± 0.02	0.01~0.01 0.01±0	0. 02 ~ 0. 31 0. 12±0. 17	0. 00 ~ 0. 01 0. 01±0. 00	0.00
Al_2O_3	0. 88 ~ 3. 73 1. 87±0. 75	0. 17~1. 58 0. 87±0. 43	0.87~3.47 2.37±1.35	0.07 ~0.43 0.27±0.18	0.18
$\operatorname{Cr}_2 \operatorname{O}_3$	0. 27 ~ 0. 55 0. 40±0. 07	0.27~0.48 0.40±0.08	0. 37 ~ 0. 45 0. 41±0. 04	0. 24 ~ 0. 52 0. 36±0. 15	0. 43
FeO *	6.76~7.89 7.30±0.36	7.04~7.87 7.49±0.30	6.77~7.61 7.12±0.44	6. 90 ~ 7. 49 7. 15±0. 31	7.15
MnO	0.09~0.13 0.11±0.01	0. 10~0. 13 0. 12±0. 01	0. 10 ~ 0. 12 0. 11±0. 01	0. 10 ~ 0. 12 0. 11±0. 01	0.10
Ni O	0. 21 ~ 0. 39 0. 26±0. 04	0. 23~0. 30 0. 27±0. 02	0. 20 ~ 0. 27 0. 23 ±0. 04	0. 29 ~ 0. 32 0. 30±0. 02	0.31
MgO	40. 15~47. 42 44. 24±1. 92	45. 43~48. 73 46. 70±1.12	36. 38 ~ 45. 10 41. 18±4. 28	48. 29 ~ 48. 77 48. 45±0. 28	49.15
CaO	0.58~2.53 1.28±0.64	0. 12~0. 95 0. 47±0. 28	1.04~3.30 2.10±1.14	0. 11 ~ 0. 24 0. 18±0. 06	0.12
Na ₂ O	0.05~0.25 0.10±0.05	0.01~0.08 0.04±0.28	0.08~0.21 0.13±0.07	0. 02 ~ 0. 17 0. 07±0. 06	0.01
K20	0.02~1.16 0.32±0.35	0.01~0.19 0.04±0.03	0.52~3.24 1.71±1.39	0. 02 ~ 0. 23 0. 07±0. 09	0.09
$Mg^{~\#}$	90.3~92.2 91.52±0.48	91.3~92.0 91.75±0.24	90.3~91.7 91.12±0.71	92.0~92.6 92.35±0.33	92.5
样品数	15	8	3	3	1

表 3 PP1 钻孔橄榄岩石榴石和无石榴石橄榄岩的主量元素变化范围、平均值和标准差(%)

Table 3 Major element variation ranges and averages standard deviation (%) of Grt and Grt free rocks from PP1

岩石	SiO ₂	TiO ₂	Al ₂ O ₃	$C r_2 O_3$	FeO *	MnO	MgO	CaO	Na ₂ O	K20	NiO	Mg [♯]
石榴石二	42. 16~ 45. 18	0~ 0.08	0. 17 ~ 3. 73	0. 27 ~ 0. 55	6. 76~ 7. 89	0. 09 ~ 0. 13	40. 15~ 48. 73	0. 12 ~ 2. 53	0. 01 ~ 0. 25	0. 01 ~ 1. 16	0. 21 ~ 0. 39	90. 3~ 92. 2
N=23	43.73± 0.77	$\begin{array}{c} 0.\ 01 \pm \\ 0.\ 01 \end{array}$	$\begin{array}{c} 1.52\pm\\ 0.81\end{array}$	$\begin{array}{c} 0.\ 40\pm \\ 0.\ 07 \end{array}$	$\begin{array}{c} \textbf{7.36} \pm \\ \textbf{0.34} \end{array}$	0.12 ± 0.01	${}^{45.09\pm}_{2.05}$	$1.00\pm$ 0.67	0.08 ± 0.05	0.24 ± 0.31	0.26 ± 0.04	91.6± 0.42
无石榴石	42. 26~ 44. 19	0~ 0.31	0. 07 ~ 3. 47	0. 24 ~ 0. 52	6. 77 ~ 7. 61	0. 10~ 0. 12	36. 61 ~ 49. 15	0. 11 ~ 3. 30	0. 01 ~ 0. 21	0. 02 ~ 3. 24	0. 20~ 0. 32	90. 3~ 92. 6
/++100100 岩 N= 7	43. 25± 0. 79	0.06± 0.11	$\begin{array}{c} 1.16\pm\\ 1.38\end{array}$	0.39± 0.09	7.14± 0.31	0.11 ± 0.01	45.43± 4.69	$\begin{array}{c} \textbf{0.99} \pm \\ \textbf{1.22} \end{array}$	0.09 ± 0.08	0.81 ± 1.17	0.27 ± 0.05	91.8± 0.81

样品 C25 143 61 具有最高的 K、P 和Zr 丰度.

反,含钛斜硅镁石富金云母单辉橄榄岩(C25 143 61)具有最高的不相容元素丰度,并且显示 K、Nb、 Zr和 Ti 负异常和 Ta 正异常,表明岩石被某种介质 强烈交代过(见讨论部分).

比较来看, 在稀土元素配分型式图上, 配分曲线 大致上呈平行分布, 而不相容元素蛛网图上则显得较 为杂乱. 另外一个特点是, 大多数样品具有 Sr 的负异 常. PP1 橄榄岩未显示 CaO 与 Sr 的正相关关系, 这可 能意味着橄榄岩中的碳酸盐矿物主要为菱镁矿. 对于相容元素, PP1 橄榄岩的 Ni 含量高于原始 地幔,而 Co和 Cr 与原始地幔相比,则有高有低. Ni 的丰度与 MgO 含量呈正相关关系,而 Co和 Cr 则 与 MgO 不呈现相关关系.

所有这些特点与主量元素的特点相结合,是难 以用单一的部分熔融过程得以解释的,另外需要有 一个交代作用过程(见讨论).

3.4 Sr 和 Nd 同位素

挑选了6个含水矿物(如金云母)最少的样品以

50

- 图 4 PP1 钻孔橄榄岩的 Al₂O₃ Cr/(Cr+Al) 投点图,显 示了从石榴石橄榄岩到无石榴石橄榄岩远离原始 地幔的难熔趋势
- Fig. 4 Pbt of Al₂O₃ vs. Cr/(Cr+Al) of peridotites in PP1 bore hole showing the evident refractory trend away from primi tive mantle via gamet peridotite to garnet free peridotite

做全岩的 $Sr_N d$ 同位素的分析(表 5). Sr 和 Nd 同 位素的分析结果见表 5.⁸⁷ Sr /⁸⁶ Sr 同位素比值变化 $\pm 0.7104 \sim 0.7227$ 之间,其中,比值最高的为方辉 橄榄岩. 如果扣除了普遍接受的苏鲁超高压峰期变 质年龄 220 Ma 以来的放射性同位素累计效应, 那 么⁸⁷Sr /⁸⁶Sr 比值变为 0. 708 4~0. 720 1,这个变化 范围相当大(Zhang et al., 2000). Nd 同位素的测

 (10^{-6}) and $(La/Lu)_N$ of different rocks from PP1

	石榴石二	石榴石方	无石榴石
	辉橄榄岩	辉橄榄岩	橄榄岩
$\Sigma_{\rm REE}$	7.04~53.88	9. 23 ~ 56. 06	3. 24~152. 30
	22.06±13.88	20. 05±15. 76	40. 51±50. 79
La/Lu) _N	3. 20~13. 56	5.04~18.65	5. 24 ~ 33. 29

C25 143 61 为含钛斜硅镁石二辉橄榄岩,具有最高的 TiO2、 \sum REE、 $(La/Lu)_N$ 和 P2O5含量,其原因是该样品含有钛斜硅镁石和 磷灰石构成的细脉.

0.511883;同样,扣除同位素累计效应之后,变化范 围为 0. 511 920~0. 512 300, 相应的 end = -1. 14~ - 8. 55. 这种高⁸⁷Sr /⁸⁶Sr 和低¹⁴³ Nd /¹⁴⁴ Nd 比值意味 着地幔深处有一个早期的交代富集事件.

4 讨论

4.1 橄榄岩的亏损特征

如前所述, PP1的石榴石橄榄岩和不含石榴石 橄榄岩呈交互产出. 总的来说, 全岩 MgO 含量的增 高与 $CaO_{Al_2O_3}$ 和 TiO_2 含量的降低相对应. 根据 这些相关关系,橄榄岩的成分分层被解释为代表了

据¹⁴³Nd / A 比值变化范围为0.511 466~Publishing House. All rights reserved. http://www.cnki.net

图 5 PP1 钻孔橄榄岩的原始地幔标准化的 REE 配分型式

图 6 PP1 钻孔橄榄岩的原始地幔标准化的 微量元素分布型式

Fig. 6 Primitive mantle normalized trace element patterns of peridotites in PP1 borehole

表 5	PP1	钻孔橄榄岩	吉的 Sr、Nd	同位素组成
-----	-----	-------	----------	-------

样品标号	岩石类型	$^{147}{\rm Sm/^{144}Nd}$	$^{143}\rm Nd$ /144 $\rm Nd$	$\pm 2\sigma$	$\varepsilon_{\!\rm Nd}(220$ M a)	$^{87}{ m Rb}/{ m ^{86}}{ m Sr}$	$^{87}{ m Sr}$ /86 ${ m S}{ m r}$	$\pm 2\sigma$
C26 143 62	方辉橄榄岩	0. 113 0	0. 512 418	16	- 1.97	0.850	0. 722 726	5
C27 144 63	石榴石二辉橄榄岩	0. 109 0	0. 512 089	27	- 8.28	0.327	0.710399	16
C31 147 68	含金云母石榴石二辉橄榄岩	0. 168 0	0. 512 539	27	- 1.14	1.055	0.711613	13
C31 148 69	石榴石方辉橄榄岩	0. 137 1	0. 512 115	8	- 8.55	0.216	0.712710	29
С33 150 72	含金云母石榴石二辉橄榄岩	0. 124 2	0. 512 169	13	- 7.14	0.073	0.710328	14
C34 15 1 74	含金云母石榴石二辉橄榄岩	0. 127 7	0. 512 374	12	- 3.24	0.025	0.711 023	16

Table 5 Sr and Nd isotope analyses of peridotites from PP1

均匀地幔源区不同程度部分熔融、熔体分离后的残 留体(Frey *et al.*, 1985; McDonough and Sun, 1995).石榴石的稳定性强烈地依赖于全岩的 A1 含 量和 Cr/(Cr+A1)比值(O'Nell, 1981; Nickel, 1986; Webb and Wood, 1986; Robinson and Wood, 1998; Klemme and O'Neill, 2000), 深度大,

于 60~75 km(1.8~2.3 GPa)的地幔岩在 Al 较高 和 Cr /(Cr+Al)比值较低的化学组成基础上,石榴 石就会稳定产出,而较为亏损的岩石中则不会出现 石榴石.因此,较高压力就可以造成在矿物成分上不 均一的饱满石榴石橄榄岩与较不饱满的石榴石 – 尖 晶石和尖晶石橄榄岩的共生(Ionov, et.al., 2005),

- 图 7 PP1 钻孔橄榄岩的 Al₂O₃ K₂O 相关变异图, 显示了难 熔和富集趋势
- Fig. 7 $Al_2O_3 K_2O$ covariation plot showing refractory and enrichment trends of peridotites in PP1 borehole

这种特点在岩体中的出现的确说明了不同程度部分 熔融造成的不均一残留体的存在. PP1 橄榄岩的大 多数样品的全岩的 Al₂O₃ 含量低(但是有的样品由 于交代作用高于 3%),所以部分熔融而亏损的特点 是明显的.这些橄榄岩与世界克拉通地幔尖晶石橄 榄岩的成分可以类比(Downes *et al.*, 2004).

4.2 交代作用的地球化学证据

根据矿物组合和地球化学特征,认为有交代形 成的金云母和碳酸盐矿物的橄榄岩至少记录了 2 次 交代事件的证据. 第一次交代事件形成了金云母, 第 二次事件为碳酸岩熔体的渗透产生了菱镁矿. 虽然 在某些薄片中未能看到金云母和碳酸盐矿物,但是 在地球化学上仍然显示富稀土元素和 K₂O, 这是由 干岩石中矿物相(如金云母和菱镁矿等)分布的不均 一性造成的,这说明了交代作用是很不均匀的.2种 实际产出的交代矿物金云母和菱镁矿可能意味着起 码 2 种不同成分的介质两阶段的交代作用或者 2 种 成分的同一介质单阶段的交代作用,但是后一种推 测似乎不太可能,因为 PP1 橄榄岩的碳酸盐矿物相 为菱镁矿(其平均成分为 MgO: 43.85 %~43.95%、 FeO: 3. 85% ~ 5. 48%、CO2: 50. 2% ~ 52. 1%), 不 同于已经报道的世界上其他地方的碳酸盐交代作用 的产物(Hauri et al., 1993; Ionov et al., 1993; Rudnick et al., 1993; Zanetti et al., 1999; Gor

ring and Kay, 2000; Hoernle et al., 2002). 从上可 知, PP1 橄榄岩的主量元素成分是难熔的, Al2O3 含 量比原始地幔在总体上偏低,但是还有些样品的 Al_2O_3 和 K_2O 含量高干金伯利岩中包体所代表的 亏损的克拉通橄榄岩(Ionov et al., 2002). 这些样 品显然是受到了同时富 K₂O 和 Al₂O₃ 的介质的交 代作用的影响,从而造成了金云母的产生.与典型的 二辉橄榄岩变化范围 1.0~1.2 (Ionov et al., 2002)相比,几乎所有的样品显示了较低的 Ca/Al 物质的量比值(<1.0),这可能表明了交代介质的低 Ca 特点. Draper and Green (1997) 的实验表明,含 硅、铝和碱质的熔体相对于方辉橄榄岩是饱和的,并 且会结晶产生金云母.前述的 Al2O + K2O 投点已经 显示了全岩中 K_{20} 的富集趋势, 当考察富钾趋势中 11 个样品的薄片时,9 个样品是含有原生金云母的. 根据矿物组合和其化学分析数据,K2O 主要赋存于 金云母中, Al₂O₃ 主要赋存于石榴石和金云母中, 因 此。高 K₂O 趋势是由含水、硅、铝和碱质的熔体交代 造成的.

虽然橄榄岩的全岩仍然保持了主量元素强烈亏 损的特点,但是其大离子亲石元素如 Ba、La、Ce、Th 和 K 等主要显示富集特点, 而 Rb 相对于 Ba 呈负异 常特点, Sr 相对于相邻的元素在大多数样品中呈负 异常特点.大多数样品的 Nb、Zr、Hf 和 Ti 呈现低 谷,但是 Ta 显示低谷和尖峰的变化不定特点(特别 是在不含石榴石橄榄岩中,图 6),并且相对于 N b 富 集(Nb/Ta=1~107,多数低于19).Zr/Hf比值的 变化范围为 11~2 333. 许多研究者(Hauri et al., 1993: Ionov et al., 1993: Zanetti et al., 1999: Gorring and Kay, 2000; Hoernle et al., 2002)运 用了不同的元素数量和排列顺序,类似于蛛网图的 配分型式图来探究碳酸盐的交代作用.使用 PP1 橄 榄岩的数据用这些方法做图时,元素所表现出的相 对关系均表现出与常用的微量元素蛛网图一致的特 点.相对于 REE 所表现出的强烈的 Zr、Hf 和 Ti 负 异常和 Nb 富集以及高 Zr /Hf 比值是许多喷出碳酸 岩的特征,实验研究表明,原始碳酸岩浆的 Ti 相对 于中稀土来说是亏损的(即负异常).因此,橄榄岩中 这些高场强元素的分馏型式可能反映了碳酸岩熔体 的交代特点(Rudnick et al., 1993). 稀土元素的配 分型式图显示了 LREE 的富集特点((La/Lu) = 3.18~33.05), 而且不同样品之间稀土元素配分曲 线之间呈平行的关系意味着在不相容元素的富集期

间,并不仅仅是发生了轻稀土元素的富集,而且其他 不相容元素也同步发生了富集. 稀土元素富集而无 相应的高场强元素(Ti、Zr、Hf、Nb 和 Ta)的富集特 点一般被认为是反映了地幔橄榄岩与碳酸岩熔体发 生化学反应的结果(Hauri et al., 1993);"碳酸盐交 代"的特征是亏损高场强元素、富大离子亲石元素和 轻稀土元素(Zanetti *et al.*, 1999). 当与洋岛的硅酸 盐岩石相比较,钙质碳酸岩则亏损 Rb、K、Zr、Hf 和 Ti, 而 Ba、Th、LREE、MREE 和 Sr 总体上富集 (Hoernle et al., 2002). 前面已经提到, PP1 橄榄岩 具有 Sr 的负异常特点,其原因或者是原生的碳酸盐 可能以菱镁矿为主而不同于其他橄榄岩中的碳酸盐 交代(Hauri et al., 1993; Ionov et al., 1993; Rudnick et al., 1993: Zanetti et al., 1999: Gorring and Kay, 2000), 或者是由于橄榄岩是地幔 岩与碳酸岩熔体反应后的产物(Coltori et al.,1999).因此,虽然橄榄岩不总是具有Sr的正异常, 但是这些橄榄岩的数据仍然表明受到了碳酸盐的交 代作用,已有的研究证明,熔融的碳酸盐具有很强的 活动性,因而是有效的交代介质 (lonov et al., 1993),这种介质可以轻易渗透富橄榄石的岩石.大 别-苏鲁超高压变质带中橄榄岩中的碳酸盐矿物相 被认为是原生菱镁矿(Yang et al., 1993; Zhang et al., 1995), 不同于所报道的次生碳酸盐相 (Ionov et al., 1996; Hoernle et al., 2002), 所以 交代介质为 Sr 含量是相对低的, 因为 Sr 赋存于 Ca 的位置(Hoernle et al., 2002). Sr 和 Ca 之间不存 在相关关系说明可能没有明显的富钙交代作用. PP1 某些样品的 Sr 正异常可能反映了折返后岩石 在浅部的钙质碳酸盐蚀变作用.

稀土元素富集是由镁质碳酸岩的交代作用造成的. 而且, PP1 橄榄岩中 Rb 的相对亏损或负异常与碳 酸岩的元素特征相一致, 而橄榄岩中的金云母则与 K、Ba 和 Rb 的含量高有关(Gorring and Kay, 2000). PP1 橄榄岩在蛛网图上 Rb 相对于 Ba 较低 可归咎于另外一种物质的参与, 即镁质碳酸岩熔体. 菱镁矿产出的部位是高 Mg 碳酸岩熔体导致的. 因 此可以推测, PP1 橄榄岩在富 K 介质交代之后又叠 加了镁质碳酸岩熔体的交代, 这使得交代作用过程 变得复杂化了.

如果不考虑大地构造背景,认为与碳酸岩熔体 反应过的地幔橄榄岩比碱性硅酸盐熔体交代过的橄 榄岩显示较高的 LREE 丰度和相对强烈的 Ti 和 Zr (较弱的 Sr)负异常.因而,Ti/Eu 和(La/Yb) N 一同可 以用来做为表示碳酸盐交代的判别参数(Rudnick *et al.*, 1993; Coltori *et al.*, 1999).对于碳酸盐交代 来说,Ti/Eu 一般<1500,而(La/Yb) N 通常>3~4.

PP1 橄榄岩的 Eu 丰度高于 0. 15×10^{-6} (有 1 个高达 1. 37×10^{-6}). Ti 丰度为 $12 \times 10^{-6} \sim 183 \times 10^{-6}$ (1 个高达 1 884×10^{-6}), 还由于 Yb 的丰度很高, 因此, Ti /Eu < 1 375, La /Yb < 35. PP1 橄榄岩的 全岩组成在这 2 个参数所做的图上全部落于表示碳酸盐交代的区域内(图 8), 这表明曾经受过富钾介质交代的橄榄岩被强烈的碳酸盐交代和叠加, 以致于掩盖了前一次交代的踪迹. 但是坦桑尼亚地幔的 Eu 丰度 < 0. 06 × 10⁻⁶ (其中 1 个仅仅为 0. 35 × 10⁻⁶). Ti 的丰度为 70 × 10⁻⁶ ~ 350 × 10⁻⁶, 因此

- PP1 钻孔橄榄岩的 Ti/Eu 比值对地幔标准化的(La/ Yb)_N 比值投点图,还标出了碳酸盐和硅酸盐交代趋势 (Rudnick et al., 1993; Coltori et al., 1999 修改)
- Ti/Eu versus normalized $(La/Yb)_N$ ratio for peridotites in PP1 borehole. Also shown are the carbonatic and sili cate metasomatic trends

「C)9994-2020 China Acaden たりanal 目惚れる Publishing House. All rights reserved. http://www.cnki.net

图 9 PP1 钻孔橄榄岩全岩的 ε_{Nd}对(Ce/Yb)_N 投点图,还标 出了富集趋势.五角星代表了现代 MORB 源区的地幔 成分(Yoshikawa and Nakamura, 2000)

Fig. 9 ε_{Nd} versus (Ce/Yb)_N for whole rocks from PP1 bore hole, showing consistency of enrichment trend. Star represents present day MORB source mantle

Ti/Eu 比值为 1 000~15 217, 而(La/Yb)[№] 因低 Yb 可达 100(Rudnick *et al.*, 1993). 根据 Ti/Eu (La/ Yb)[№] 图解(图 8), 相比之下, PP1 橄榄岩所遭受的 碳酸盐交代作用比坦桑尼亚地幔包体要强烈.

在理论上,较难熔的橄榄岩应该具有相对亏损 的 Sr、Nd 同位素组成, 因为在残留橄榄岩中具有较 高的 Sm /Nd 和较低的 Rb /Sr 比值. 但是芝麻坊橄 榄岩所具有的地球化学特征与理论推测不一致,岩 石中表示难熔程度的 MgO 含量与不相容元素丰度 和 Sr、Nd 同位素之间的不耦合关系, 钻孔的橄榄岩 具有高放射性 $Sr(^{87}Sr/^{86}Sr=0.7084 \sim 0.7201)$ 和 低放射性 $Nd(^{143}Nd/^{144}Nd=0.511920\sim0.512300,$ 对应的 ε_{Nd} 为 – 1.14 ~ – 8.55). 此外, 钻孔样品的 Sr,Nd 同位素组成变化较大,显然岩体内不是仅仅 由部分熔融作用造成的均一同位素组成(Yoshika wa and Nakamura, 2000). Nd 同位素组成和(Ce/ Yb) N 比值之间的变化关系见图 9, 全岩(Ce/Yb) N 和 ɛм之间的负相关关系表明了富集趋势. 同位素组 成的离散性显示了交代作用发生于部分熔融作用之 后,而且也表明同位素和不相容元素的富集作用是 一致的.

4.3 交代介质的来源

用橄榄岩单矿物的氧同位素数据可以对交代介质的来源进行限定.对橄榄岩中名义上无水的矿物进行单矿物氧同位素分析所得的数据表明.该岩体具有.特征.的.地幔氧同.位素组成(平均。卷0.=

+5.75%, Zhang et al., 2005), 这一特征说明地幔 橄榄岩是被地幔内部本身产生的介质所交代的,而 不是浅部流体的介入. 氧同位素的组成特征也摒除 了交代介质来源于交代板片脱水这一推测,另外,其 他研究者所作的芝麻坊岩体单矿物氧同位素测试数 据得出了同样的认识,特别是把4个金云母单矿物 样品的氧同位素组成平均为 $\delta^{s} 0 = +5.40 \%$ (Zheng et al., 2003)考虑在内时. 交代介质来源不 是俯冲板片脱水来源还可以由下面的地球化学特征 得到支持,因为虽然板片脱水形成的流体是富 LREE 和相对贫 HFSE 的,但是不会相对低 Rb (Gorring and Kay, 2000). 虽然对碳酸盐岩浆的形 成深度还有不同的认识,但是还是可以根据一些实 验研究对其交代作用的深度做大概的估计,实验研 究表明,在较低压力下,与地幔二辉橄榄岩平衡的碳 酸岩熔体是富钙的(Dalton et al., 1993a). 已经知 道, PP1 橄榄岩中的碳酸盐矿物相是富 Mg 贫 Ca 的 菱镁矿,这意味着导致产生菱镁矿的碳酸盐交代作 用所发生的深度至少在 800 [℃]时大干 2.0 GPa, 否 则平衡矿物相就会是白云石 (Dalton *et al.*, 1993b). 菱镁矿稳定的这个压力下限则大大低于苏 鲁超高压变质地体的峰期压力(Zhang et al., 2000),所以超高压变质期间菱镁矿是稳定的.

4.4 岩体的构造背景

长期以来,对世界上造山带的石榴石橄榄岩的 成因和变质演化已经经过了很多讨论(Carswell et al., 1983; Medaris and Carswell, 1990; Zhang et al., 1994, 1995, 1998, 2000, 2003; Brueckner, 1998: Medaris, 1999: Brueckner and Medaris, 2000; Van Roermund et al., 2001; Jahn et al., 2003: Brueckner et al., 2004). 根据 Western Gneiss Region 石榴石橄榄岩全岩和矿物化学成分, Carswell et al. (1983)将这些岩石划分为 Mg Cr 型 和 Fe Ti 型. Mg Cr 型石榴石橄榄岩与石榴石辉石 岩共生,是直接来自地幔的阿尔卑斯型橄榄岩体;而 Fe Ti 型石榴石橄榄岩(十石榴石辉石岩+榴辉岩) 则来源于层状侵入杂岩.近来 HP/UHP 橄榄岩的 研究将其划分为 3 类:(1) 与大陆俯冲相关的 橄榄 岩:(2)衍生自古老亏损地幔的高 P/T 残留橄榄岩: (3)可能与上涌软流圈地幔相关的低 P/T 橄榄岩 (Medaris, 1999). 此外,如 Ronda 橄榄岩这种源自 地幔的橄榄岩的折返认为是由与拆离有关的地幔底 辟引起的(Tubia et al., 2004). 认为大别 – 苏鲁超

高压地体石榴石橄榄岩与大陆俯冲和碰撞有关,地 壳岩石为围岩的镁铁-超镁铁质杂岩和源自地幔的 地幔碎块(Zhang et al., 1994, 2000).已有的研究 表明,HP/UHP橄榄岩的初始构造背景、演化历史 和侵位机制各不相同,这种不同不仅在不同的造山 带有所表现,而且在同一个地体内也有所表现 (Brueckner, 1998; Medaris, 1999; Brueckner and Medaris, 2000; Zhang et al., 2000; Brueckner et al., 2004).

迄今为止,对芝麻坊橄榄岩的成因提出了2种 认识:(1)根据石榴石中低压矿物包裹体的出现,认 为橄榄岩是从上地幔侵位到地壳某个部位,然后在 三叠纪中朝和扬子克拉通碰撞期间被俯冲板片带到 深部(Yang and Jahn, 2000; Yang, 2003); (2) 裹挟 到俯冲板片的地幔橄榄岩在三叠纪与俯冲板片一起 遭受了 UHP 变质作用 (Zhang et al., 2000, 2003). 如上所述, 长英质片麻岩中 PP1 石榴石橄榄 岩主要由二辉橄榄岩和方辉橄榄岩组成,而没有辉 石岩和榴辉岩的透镜体,钻孔内的橄榄岩显示高 MgO、低易熔元素(除了个别样品中交代造成的高 K2O和Al2O3外),随着MgO的增高,Al2O3、CaO、 TiO₂和Na₂O呈降低趋势.这些特征证明了橄榄岩 形成于亏损地幔源区,并经历了不同程度的部分熔 融. 没有证据表明该地幔橄榄岩体在扬子克拉通俯 冲之前有过地壳深度的经历,大量的岩心薄片的石 榴石中未见低压含水矿物相包裹体.

4.5 交代作用引起的橄榄岩成分变化

钻孔中几乎所有的橄榄岩都含有一定量的原生 金云母,有的含有菱镁矿,个别含有钛斜硅镁石,后 者是上地幔中一种重要的含挥发分(特别是 H2O) 矿物相(Aoki et al., 1976),含水相的出现通常都 归因干交代作用(Peacock 1990; Zanetti et al., 1999). 原则上, 亏损地幔岩应当具有 LREE 亏损的 配分型式,而所有的 PP1 橄榄岩均显示了富 LREE 的配分型式.此外, MgO 含量(该指标衡量橄榄岩的 难熔程度)与包括 LREE 的不相容元素和 Sr、Nd 同 位素之间没有相关关系和不耦合.这些特点难以仅 仅用部分熔融或交代作用来解释,而需要复杂的过 程来解释这些地球化学特征. 根据蛛网图上所显示 的微量元素特征,可能将含钛斜硅镁石富金云母的 单辉橄榄岩(C25 143 61)的形成归因于含水流体的 交代作用.而与碳酸盐有关的交代作用造成了独特 的地球化学特征、即全岩具有高 \sum LREE、La、Ce和 低 Hf、Zr 和 Ti 丰度(Laurora *et al.*, 2001). PP1 含 碳酸盐的橄榄岩具有高 Th、U、Ba 和 Σ LREE 丰度以 及 Ti 和 Hf 负异常则完全与碳酸盐有关的交代作用 相吻合,大多数岩石具有前述2 种交代作用的某些特 点,是活动性很高的硅质和/或碳酸盐流体叠加交代 作用造成的(Kogarko *et al.*, 2001).

总之, 芝麻坊橄榄岩在其最初的地幔楔里经历 了部分熔融和熔体分离, 这导致了其主量元素亏损 的特征, 然后遭受了交代作用. 岩石中的碳酸盐相是 菱镁矿, 交代作用没有改变橄榄岩矿物相的地幔特 征的氧同位素组成, 而且交代介质可能主要是地幔 来源的. 但是, 交代介质的来源——地幔还是俯冲板 片脱水, 仍然是值得进一步探讨的, 因为从含水相矿 物和菱镁矿所取得的同位素数据比较少.

5 结语

芝麻坊橄榄岩体内在垂向上显示了成层性特 点,但是没有显示韵律性变化.橄榄岩在主量元素方 面显示了比原始地幔难熔的特点,REE 和不相容微 量元素均表现出比原始地幔富集的特点,而且与岩 石主量元素的难熔程度无相关关系,这些意味着主 量元素和微量元素地球化学特征不仅仅是某个单一 的地质事件所造成的,而是橄榄岩在裹挟到俯冲过 程中之前,地幔部分熔融和熔体分离以及后来叠加 的含水、硅质、铝质和碱质熔体和 Ba 含量高、Rb、Sr 和 HFSE 含量相对低的菱镁矿成分的熔体的交代 所造成的.碳酸岩熔体显著地改变了 Ba 的丰度,并 使得橄榄岩具有了地幔镁质碳酸岩熔体的 REE 配 分型式.

全岩的 Sr 和 Nd 同位素组成表现了富集特征 和不均一性.因此,结合单矿物氧同位素组成,富不 相容微量元素的地幔交代介质在橄榄岩裹挟到俯冲 板片很久之前就对之进行了渗滤.

致谢:本项研究结果得到了国家自然科学基金 重大项目(No. 40399140)和"973"专项项目(No. 2003CB7106500)的联合资助.

References

Aoki, K., Fujino, K., Akaoki, M., 1976. Titanochondrodite and titanoclinohumite derived from the upper mantle in the Buell Park kimberlite. Arizona, USA. Contributions

的地球化学特征、即全岩具有高 Σ LREE La. Ce.和 to Mineralogy and Petrology, 56: 243–253.

- Bodinier, J. L., Dupuy, C., Dostal, J., 1988. Geochemistry and petrogenesis of eastern Pyrenean peridotites. *Geo chemica et Cosmochemica Acta*, 52: 2893 – 2907.
- Brueckner, H.K., 1998. Sinking intrusion model for the em placement of garnet bearing peridotites into continental collision orogens. *Geology*, 26: 631-634.
- Brueckner, H.K., Medaris, L.G., 2000. A general model for the intrusion and evolution of "mantle" garnet perido tites in high pressure and ultra high pressure metamor phic terranes. *Journal of Metamorphic Geology*, 18: 123-133.
- Brueckner, H. K., Van Roermund H. L. M., Pearson N. J., 2004. An Archean to Paleozoic evolution for a garnet peridotite lens with sub baltic shield affinity within the Seve Nappe complex of Jam tland, Sweden, Central Scan dinavian Caledonides. *Journal of Petrology*, 45: 415-437.
- Carswell D. A., Harvey, M. A., Al Samman A., 1983. The petrogenesis of contrasting Fe Ti and Mg Cr garnet peridotite types in the high grade gneiss complex of Western Norway. Bulletin of Mineralogy, 106: 727-750.
- Coltori, M., Bonadiman, C., Hinton R. W., et al., 1999. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40: 133 - 165.
- Dalton J. A., Wood B. J., 1993a. The compositions of pri mary carbonate melts and their evolution through wall rock reaction in the mantle. *Earth and Planetary Sci ence Letters*, 119: 511 – 525.
- Dalton J. A., Wood B. J., 1993b. The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions. *Contributions to Mineralogy and Petrology*, 114, 501 - 509.
- Downes, H., Macdonald R., Upton, B. J., et al., 2004. U4 tramafic xenoliths from the Bearpaw Mountains, Mon tana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. *Journal of Petrology*, 45: 1631-1662.
- Draper, D. S., Green, T. H., 1997. Pt phase relations of si licic, alkaline, aluminous mantle xenolith glasses under anhydrous and G O H fluid saturated conditions. *Jour nal of Petrology*, 38: 1187-1224.
- Frey, F. A., Suen C. J., Stockman, H. W., 1985. The Ronda high temperature peridotite: Geochemistry and petro (C)1994-2020 China Academic Journal Electronic F

2469 - 2491.

- Gorring, M. L., Kay, S. M., 2000. Carbonatite metasomatized peridotite xenoliths from southern Patagonia: Implica tions for lithospheric processes and Neogene plateau magmatism. *Contributions to Mineralogy and Petrolo* gy, 140: 55 - 72.
- Griffin, W. L., Fisher, N. I., Friedman, J., et al., 1999. Cr pyrope garnets in lithospheric mantle: I. Compositional systematics and relations to tectonic setting. *Journal of Petrology*, 40: 679 – 705.
- Hauri, E. H., Shimizu, N., Dieu, J. J., et al., 1993. Evidence for hotspot related carbonatite metasomatism in the oceanic upper mantle. *Nature*, 365: 221 - 227.
- Hoernle, K., Tilton, G., Le Bas, M. J., et al., 2002. Geo chemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. *Contributions to Mineralogy and Petrology*, 142: 520-542.
- Ionov, D. A., Ashchepkov, I., Jagoutz, E., 2005. The prove nance of fertile off craton lithospheric mantle: Sr Nd isotope and chemical composition of garnet and spinel peridotic xenoliths from Vitim, Siberia. *Chemical Geolo* gy, 217: 41 - 75.
- Ionov, D. A., Bodinier, J. L., Mukasa, S. B., et al., 2002. Mechanisms and sources of mantle metasomatism: M a jor and trace element compositions of peridotite xeno liths from Spitsbergen in the context of numerical mod eling. Journal of Petrology, 43: 2219 – 2259.
- Ionov, D. A., Dupuy, C., O Reilly, S. Y., et al., 1993. Car bonated peridotite xenoliths from Spitsbergen: Implica tions for trace element signature of mantle carbonate metasomatism. *Earth and Planetary Science Letters*, 119: 283-297.
- Ionov, D. A., O'Reilly, S. Y., Genshaft, Y. S., et al., 1996. Carbonate bearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions and trace element residence. *Contributions to Mineralo* gy and Petrology, 125: 375-392.
- Jahn, B. M., Fan, Q. C., Yang, J. J., et al., 2003. Petrogene sis of the Maowu pyroxenite eclogite body from the UHP metamorphic terrane of Dabieshan: Chemical and isotopic constraints. *Lithos*, 70: 243 – 267.
- Klemme S., O'Neill, H. S. C., 2000. The near solidus transi tion from garnet lherzolite to spinel lherzolite. *Contributions to Mineralogy and Petrology*, 138: 237 – 248.
- Kogarko, L. N., Kurat, G., Ntaflos, T., 2001. Carbonate metasomatism of the oceanic mantle beneath Fernando

de Noronha island, Brazil. Contributions to Mineralogy and Petrology, 140: 577 - 587.

- Laurora, A., Mazzucchelli, M., Rivalenti, G., et al., 2001. Metasomatism and melting in carbonated peridotite xen oliths from the mantle wedge: The Gobernador Grego res case (southern Patagonia). Journal of Petrology, 42:69-87.
- Liou, J. G., Hacker, B. R., Zhang, R. Y., 2000. Into the for bidden zone. *Science*, 287: 1215 - 1216.
- Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2002. Ultrahigh P mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. *European Journal of Mineralogy*, 14: 499-512.
- McDonough, W.F., Sun, S. S., 1995. The composition of the Earth. *Chemical Geology*, 120: 223 254.
- Medaris, L. G. Jr., 1999. Garnet peridotites in European high pressure and ultrahigh pressure terranes. A diver sity of origins and thermal histories. *International Geol* og y Review, 41: 799 - 815.
- Medaris, L. G. Jr., Carswell, D. A., 1990. The petrogenesis of Mg Cr garnet peridotites in European metamorphic belts. In: Carswell, D. A., ed., Eclogite facies rocks. Glasgow, Blacjie, 260-290.
- Menzies, M. A., Dupuy, C., 1991. Orogenic massif: Proto lith, process and provenance. *Journal of Petrology*, Special Lherzolites Issue: 1 - 16.
- Menzies, M. A., Hawkesworth, C. J., 1987. Upper mantle processes and composition. In: Nixon, P. H., ed., Man tle xenoliths. John Wiley, Chichester, 725 – 738.
- Nickel, K. G., 1986. Phase equilibria in the system SiO₂ MgO Al₂O₃ CaO Cr₂O₃ (SMACCR) and their bearing on spinel/garnet lherzolite relationships: Neues Jahrb. *Mineralogical Abh*, 155: 259-287.
- O Neill, H. S. C., 1981. The transition between spinel lherzo lite and garnet lherzolite, and its use as a geobarometer. *Contributions to Mineralogy and Petrology*, 77: 185-194.
- Peacock, S. M., 1990. Fluid processes in subduction zones. Science, 248: 329 – 337.
- Robinson, J. A. C., Wood, B. J., 1998. The depth of the spi nel to garnet transition at the peridotite solidus. *Earth* and Planetary Science Letters, 164: 277 – 284.
- Rudnick, R. L., McDonough, W. F., Chappell, B. W., 1993. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics.

- Tubia J. M., Cuevas J., Esteban J. J., 2004. Tectonic evi dence in the Ronda peridotites Spain, for mantle dia pirism related to delamination. *Geology*, 32: 941-944.
- Van Roermund, H. L. M., Drury, M. R., Barnhoom, A., et al., 2001. Relict majoritic garnet microstructures from ultra deep orogenic peridotites in western Norway. *Jor*nal of Metamorphic Geolog y, 42: 117 – 130.
- Verhulst, A., Balaganskaya, E., Kirnarsky, Y., et al., 2000. Petrological and geochemical (trace elements and Sr Nd isotopes) characteristics of the Paleozoic ultramafic, al kaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos, 51: 1-25.
- Webb S. A. C., Wood, B. J., 1986. Spinel pyroxene garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92: 471-480.
- Yang, J. J., 2003. Titanian clinohumite garnet pyroxene rock from the Su Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications. *Lithos*, 70: 359 - 379.
- Yang, J. J., Godard, G., Kienast, J. R., et al., 1993. Ultra high pressure (60 kbar) magnesite bearing garnet per ingdotites from northeastern Jiangsu, China. *Journal of Geology*, 101: 541 - 554.
- Yang J. J., Jahn B. M., 2000. Deep subduction of mantle derived garnet peridotites from the Su Lu UHP meta morphic terrane in China. *Journal of Metamorphic Ge* ology, 18: 167 – 180.
- Yaxley, G. M., Green, D. H., Kamenetsky, V., 1998. Car bonate metasomatism in the southeastern Australian lithosphere. *Journal of Petrology*, 39: 1917-1931.
- Ye K., Cong. B., Ye, D., 2000. The possible subduction of continental material to depths greater than 200 km. Na ture 407: 734 - 736.
- Yoshikawa M., Nakamura E., 2000. Geochemical evolution of the Horoman peridotite complex: Implications for melt extraction, metasomatism and compositional laye ring in the mantle. *Journal of Geophysical Research*, 105: 2879 – 2901.
- Zanetti, A., Mazzucchelli, M., Rivalenti, G., et al., 1999. The Finero phlogopite peridotite massif: An example of subduction related metasomatism. *Contributions to Min eralogy and Petrology*, 134: 107-122.
- Zanetti, A., Vannucci, R., Bottazzi, P., et al., 1996. Infiltra tion metasomatism at Lherz as monitored by systematic ion microprobe investigations close to a hornblendite vein. *Chemical Geology*, 134: 113-133.

473

Earth and Planetary Science Letters, 114, 463 – 475. Zhang, R.Y., Hirajima, T., Banno, S., et al., 1995. Petrolo. (C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

gy of ultrahigh pressure rocks from the southern Sulu region eastern China. Journal of Metamorphic Geolo gy, 13: 659 - 675.

- Zhang, R. Y., Liou, J. G., 1998. Ultrahigh pressure meta morphism of the Sulu terrane, eastern Chian: A prospee tive view. Continental Dynamics, 3: 32-53.
- Zhang, R. Y., Liou, J. G., Cong, B. L., 1994. Petrogenesis of garnet bearing ultramafic rocks and associated eclogites in the Sulu ultrahigh P metamorphic terrane, eastern China. Journal of Metamorphic Geology, 12: 169 - 186.
- Zhang, R. Y., Liou, J. G., Cong, B. L., 1995. Talc magnesite and Ticlinohumite bearing ultrahigh pressure meta maf ic and ultramafic complex in the Dabie Mountains, Chi na. Journal of Petrology, 36: 1011 - 1037.
- Zhang, R. Y., Liou, J. G., Yang, J. S., et al., 2000. Petro

¥

¥

chemical constraints for dual origin of garnet peridotites from the Dabie Sulu UHP terrane, eastern central Chi na. Journal of Metamorphic Geology, 18: 149 - 166.

- Zhang, R. Y., Liou, J. G., Yang, J. S., et al., 2003. Ultra high pressure metamorphism in the forbidden zone: The Xugou garnet peridotite. Sulu terrane, eastern China. Jornal of Metamorphic Geology, 21:1-12.
- Zhang, Z. M., Rumble, D., Liou, J. G., et al., 2005. Oxygen isotope geochemistry of rocks from the pre pilot hole of the Chinese Continental Scientific Drilling project (CCSD PPH 1). American Mineralogist, 90: 857 - 863.
- Zheng, Y.F., Yang, J. J., Gong, B., et al., 2003. Partial equi librium of radiogenic and stable isotope systems in gar net peridotite during ultrhigh pressure metamorphism. American Mineralogist, 88: 1633-1643.

* * * * × -¥-.X ×

¥ ¥ ¥-

《地球科学——中国地质大学学报》 2006 年 第 31 卷 第 5 期 要目预告

基于 GIS 的市政管理信息集成方案及关键技术	曾文	等
面向实体的空间数据模型	亚琴	等
三维城市地球物理数据管理与服务系统框架	郑坤	等
分布式异构多级空间数据中心的研究与设计 徐	世武	等
基于 GML 的地质图空间数据库交换体系	吴亮	等
基于 DBMS 的 M APGIS7.0 版本管理的设计与实现	万波	等
基于 MAPGIS 的中国电信网络资源管理系统地址库建设····································	罗津	等
MAPSUV 数字测图成果三维模拟系统的设计与实现 ····························· 樊	文有	等
基于 GIS 的城市规划空间辅助决策平台	扈震	等
空间位置服务平台的构架设计与服务接口实现	刘丹	等

474