青藏高原北羌塘地区古近纪火山岩中埃 达克岩的地球化学特征及其构造意义

赵振明',李荣社',计文化',伊海生2,林金辉2,朱同兴3

1.西安地质矿产研究所,陕西西安 710054

2. 成都理工大学沉积地质研究所,四川成都 610059

3. 成都地质矿产研究所,四川成都 610082

摘要:为了研究青藏高原北羌塘地区分布的新生代火山岩形成的时代、物质来源和构造环境.通过各种年代学和地球化学测试方法获得的资料进行综合研究.结果表明该地区的火山岩主要形成时代为古近纪,常量、微量和稀土元素特征显示该区发育一定比例的标准埃达克岩(adakite),代表地区的12件埃达克岩样品,其SiO2含量>56%(59.05%~67.80%),Al₂O₃>15%(15.43%~16.63%),MgO<3%(0.47%~2.98%,1件样品3.21%),Mg $\ddagger>$ 20(21.2~56.5),Na₂O/K₂O>1(1.03~1.76),Sr>400×10⁻⁶(609.6×10⁻⁶~3.008.0×10⁻⁶),Y≤18×10⁻⁶(4.53×10⁻⁶~13.76×10⁻⁶),Yb≤1.9×10⁻⁶(0.44×10⁻⁶~1.35×10⁻⁶),Sr/Y≥40(44.3~314.68),La/Yb≥20(20.11~69.26),卷r正异常(1.02~7.66.3件样品0.82.0.93.0.97), δ Eu 正异常或微弱的负异常(0.77~1.36),LREE 富集,HREE 亏损,高场强元素HFSEs(Nb,Ta,Ti)明显亏损,⁸⁷Sr/⁸⁶Sr>0.704(0.707101~0.707923),¹⁴³Nd/¹⁴⁴Nd<0.5126(0.512382~0.512448),⁴⁰K⁴⁰Ar,⁴⁰Ar³⁹Ar测定时代分别为28.2~32.2 Ma,38.1~46.8 Ma.上述特征除表明该套古近系埃达克岩岩浆源处于加厚的下地壳环境外,可能还代表了在高原演化过程中,北羌塘地区滞留在下地壳和上地幔的"洋壳残片"部分熔融并在地表喷发的构造过程. 关键词:青藏高原;北羌塘;古近系;埃达克岩.

中图分类号: P542 文章编号: 1000-2383(2007)05-0651-11 收稿日期: 2007-06-16

The Characteristics of Geochemical and Its Tectonic Significance from the Adakite of Palaeogene Volcanic Rocks in Northern Qiangtang Area, Qinghai Tibetan Plateau

ZHAO Zhen ming¹, LI Rong she¹, JI Wen hua¹, YI Hai sheng², LIN Jin hui², ZHU Tong xing³

1. Xi'an Institute of Geology and Mineral Resources, Xi'an 710054, China

2. Chengdu University of Technology, Institute of Sedimentary Geology, Chengdu 610059, China

3. Chengdu Institute of Geology and Mineral Resources, Chengdu 610082, China

Abstract Studies on the formation times resources and tectonic environment of the Cenozoic volcanic rocks in the northern Qiantang area. Qinghai Tibetan Plateau formed mostly in Plaeogene, show that these rocks have presented characteristics of typical adakite, according to major and trace elements data tested by many dating and geochemical methods. Of the 12 typical adakite samples in important area, $SiO_2 \ge 56\%(59, 05\% - 67, 80\%)$, $Al_2O_3 \ge 15\%(15, 43\% - 16, 63\%)$, M gO < 3% (0.47% - 2.98%, 1 sample is 3.21%), $Mg \ddagger 20(21.2-56.5)$, $Na_2O/K_2O > 1(1.03-1.76)$, $Si \ge 400\times 10^{-6}(609.6\times 10^{-6} - 3.008.0\times 10^{-6})$, $Y \le 18\times 10^{-6}(4.53\times 10^{-6} - 13.76\times 10^{-6})$, $Yb \le 1.9\times 10^{-6}(0.44\times 10^{-6} - 1.35\times 10^{-6})$, $Sr/Y \ge 40(44.3 - 314.68)$, $La/Yb \ge 20(20.11 - 69.26)$, &r positive anomaly(1.02 - 7.66, 3 samples are 0.82, 0.93, 0.97), δ Eu positive anomaly or weak anomaly(0.77 - 1.36), LREE enrichment, HREE depletion HFSEs(Nb, Ta, Ti) strong deple

作者简介: 赵振明 (1965 –), 男, 硕士, 从事构造和环境方面的工作. E mail: xazh enming @cgs. gov. cn ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net tion, 87 Sr/ 86 Si> 0.704(0.707101 - 0.707923), 143 Nd/ 144 Nd< 0.5126(0.512382 - 0.512448), 40 K 40 Ar, 40 Ar 39 Ar ages are 28.2 - 32.2 Ma, 38.1 - 46.8 Ma. The above geochemical features of adakite indicate a primitive magmatic generation process responsible for the partial melting of lower thickened crust of northern Qinghai Tibetan Plateau and perhaps also re present the process in which the remains in lower crust up mantle melted and erupted in surface after the subduction of ocean crust in the plateau evolvement during early period.

Keywords: Qinghai Tibetan plateau; northern Qiangtang area; Palaeogene; adakite.

0 引言

许多研究者已经对青藏高原北羌塘地区的新生 代火山岩开展了大量的研究工作.邓万明(1998)对 北羌塘巴毛穷宗地区的火山岩 K Ar 测年时代为 20.0、28.0、27.8、28.3、28.6 Ma,平均 26.5 Ma,认 为火山岩属于造山后的形成环境."羌塘"板内存在 一条初始"裂谷带",物质来源于"壳 – 幔过渡带",熊 熊等(2007)认为青藏高原中部和北部的新生代火山 岩分布于拉张应力区,应力场导致地壳破裂,发展为 岩浆物质通道.

赖绍聪和刘池阳(2001)对多格错仁西南地区的 半岛湖(多格错仁南,图1)火山岩讨论了其构造环 境:青藏高原北部具有加厚的陆壳:赖绍聪等(2001) 对石水河 - 浩波湖 - 多格错仁一带采集的 9 件高钾 钙碱火山岩样品(4件埃达克岩样品),认为形成的 构造背景为,陆壳加厚形成一个榴辉岩质的下地壳; 浩波湖 – 骆驼峰(黑虎岭东) – 合作湖的高钾钙碱火 山岩(赖绍聪等,2002)SiO₂含量为 41.36%~ 47.03%; 赖绍聪(2003)" 青藏高原新生代埃达克质 岩的厘定及其意义",在多格错仁西北地区采集的 23 个火山岩样品,其中 12 个样品符合埃达克岩标 准,研究认为该地区埃达克质岩是通过加厚陆壳底 部壳源岩石的局部熔融形成,时代以邓万明(1998) 测的时代为准,定为新近纪:赖绍聪(Lai et al., 2003; 赖绍聪等, 2006) 在祖尔肯乌拉山岩体的西部 采集的 35 件火山岩样品(非埃达克岩),时代以张以 弗和邓建康(1994)测定的时代 4.27~44.66 Ma为 准,详细讨论了上地幔物质进入下地壳,下地壳部分 物质熔融,按照"底侵"的运移方式在地表喷发形成 火山岩的过程.

谭富文等(2000) 对黑虎岭地区采集的火山岩 13
件样品,其KAr 全岩同位素年龄测定为
(32.6±0.8)~(44.1±1.0) Ma之间,认为羌塘腹地新生代火山岩为壳幔混熔或壳幔岩浆混合的产物,藏
北高原岩石圈地幔拆离,深部物质上涌使地壳发生均

匀抬升的起始时间可能是 40 Ma 左右; 李光明(2000) 提出了由北往南火山岩时代变新. 许继峰和王强 (2003)根据迟效国(1999)、谭富文等(2000)、李光明 (2000)、赖绍聪等(2001)的资料, 对青藏高原北羌塘 地区的埃达克火山岩及其成因进行了讨论, 李佑国等 (2005)对错尼地区的火车头山(巴毛穷宗) K Ar 测年 为(22.05±0.28)~(26.94±0.35) Ma 对错尼东的 小岩体 K Ar 测年为(37.50±0.61) Ma、(38.75± 0.61) Ma. 国土资源大调查开展之后,魏君奇等 (2005)在赤布张错地区(北纬 34°以南, 赤布张错北岩 体,图1)采集的7 件始新世(35~40 Ma)火山岩样品, 其中 4 件符合埃达克岩标准, 此外, 已经在赤布张错 南发现了金矿点(卜建军和段其发, 2006).

到目前为止,在多格错仁以东,赤布张错地区以 北(北纬34°以北,图1)这一北羌塘主要的火山岩分 布地区,还没有厘定出标准的埃达克岩,北羌塘地区 的新生代火山岩的形成时代是新近纪还是古近纪, 火山岩是单次喷发还是多次喷发,从东向西、从南向 北火山岩的形成具有什么规律,不同地段的同期喷 发、同一地段的不同时期的喷发具有什么特点,埃达 克岩与非埃达克岩(玄武岩到流纹岩都有)、高钾钙 碱性与非高钾钙碱性的关系如何,火山岩的分布是 否沿断裂带分布,断裂带以哪一种方向为主,火山岩 与该地区发现的矿点有无关系等,这些问题需要开 展大量的工作来研究.

2005 年底结束的国土资源大调查,为北羌塘地 区新生代火山岩的研究提供了大量的资料,仅新生 代火山岩就测试了 211 件样品,51 件埃达克岩,占 24.2%,其中乌兰乌拉湖地区 67 件(26 件埃达克 岩),赤布张错地区 26 件(4 件埃达克岩),多格错仁 地区 42 件(7 件埃达克岩),吐错地区 23 件(5 件埃 达克岩),黑虎岭地区 22 件(8 件埃达克岩),玛依岗 日地区 7 件(1 件埃达克岩),布若错地区 7 件(无埃 达克岩),查多岗日 2 件(无埃达克岩),托和平错地 区 8 件(无埃达克岩),黑石北湖地区 7 件(无埃达克 岩),还有大量的年代学测试结果,对这些火山岩的

Fig. 1 Map of Palaeogene volcanic rocks in the northern Qiangtang area of Qinghai Xizang plateau ① 乌兰乌拉湖地区氩 – 氩法测年 4 个样品由中国地震局地质研究所测试, 钾 – 氩法测年 1 个样品由成都地质矿产研究所测试; ② 多格 错仁地区氩 – 氩法测年 1 个样品由中国科学院广州地球化学研究所测试, 钾 – 氩法测年 5 个样品由国土资源部中南矿产资源检测中心 测试; ③ 黑虎岭地区钾 – 氩法测年 2 个样品由宜昌地质矿产研究所测试. 图中火山岩形状和断层线以潘桂棠和丁俊(2004) 为准

测试结果分析研究后,发现埃达克岩的时代主要在 30~40 Ma 时段,为了能够详细了解这些火山岩岩 石化学特征的变化规律,笔者选择了乌兰乌拉湖地 区、多格错仁地区、黑虎岭地区的12件样品,对其进 行研究,探讨其岩石地球化学特征和当时形成的构 造环境及喷发规律.

1 地质概况

1.1 乌兰乌拉湖地区

新生代火山岩出露面积约 2 500 km²,集中分布 于祖尔肯乌拉山、乌兰乌拉山、桌子山、枕头崖、雪莲 湖等地,呈面状展布,为陆相火山喷发产物.主要为 一套中性熔岩,不整合覆盖于侏罗系、白垩系和古近 系地层之上,其上为第四系不整合覆盖.其中熔岩被 是本区新生代火山岩最普遍的产出方式,直接覆盖 于高原夷平面上,在熔岩被上具有原生流动构造、原 生节理和气孔构造等,熔岩被倾向 NNW – NNE,熔 岩台地也是比较普遍的一种产状,一般高出高原面 数十米~百余米,又称熔岩高地、熔岩高原、平顶岩、 桌状山等,熔岩总厚度 10~425.58 m 不等,在桌子 山为 333.69 m,在乌兰乌拉山为 319.3 m,在祖尔肯 乌拉山为 425.58 m.火山岩相类型主要有爆发相 (底部)、喷溢相(中部、顶部)和次火山岩相、火山喷 发规律表现为由火山碎屑岩→熔岩变化和由安粗岩 →粗面岩变化两种.

1.2 多格错仁地区

新生代火山岩出露总面积约 $2 300 \text{ km}^2$; 主要分 布于强仁温杂日 - 跃进拉、多格错仁东南 - 东月湖 - 波涛湖、沙窝滩- 恒梁湖- 永波湖、多格错仁东-玉带山等地:多以大面积分布的熔岩被形式产出,部 分呈熔岩台地、熔岩残丘或平顶山、桌状山、锥状火 山等熔岩地貌,火山岩以喷溢相熔岩为主,喷发方式 主要为中心式溢流:喷发韵律,多呈渐变过渡、重复 出现的相变形式,单个韵律厚几米~十几米.火山岩 岩性总体为一套中酸性熔岩,基性组分及火山碎屑 岩极少,熔岩直接覆盖于高原夷平面之上,下伏地层 包括三叠系、侏罗系、侏罗系一白垩系、古近系等沉 积岩系. 古近纪鱼鳞山组火山岩出露面积约 1450 km², 占测区新生代火山岩的 3/4, 表现为熔岩 丘及熔岩台地,熔岩被,高低跌荡起伏,沟壑发育,厚 100~300 m. 熔岩台地多呈顶部较平坦的平顶山、桌 子山形状,四周陡立,高出围岩一百~几百米;熔岩 残丘呈孤立的中、低山丘,出露面积一般数平方公里 到数十平方公里,高数米到数百米;火山锥大小高低 不等,高数十米到数百米.

1.3 黑虎岭地区

羽),喷溢相(中部、顶部)和次火山岩相、火山喷bishing测区内古近纪火山岩产于鱼鳞山组中,鱼鳞山。

图 3 Na K Ca 图解(a) 和埃达克岩 Mg Ə SiO₂ 图解(b) Fig. 3 Na K Ca ternary diagram (a) and The adakites Mg Ə SiO₂ diagram (b)

组火山岩是区内规模最大的火山岩,火山活动以中 心式火山喷发为主,剖面上岩层厚 244.58 m.主要 岩性为喷溢相的辉石安山岩,顶部出现黑色玻基安 山岩.碱性系列火山岩局限于火车头山(巴毛穷宗) 一带,代表性剖面测于火车头山南坡.剖面上岩层厚 达 1 068.58 m(图 1).

2 岩石学和岩石化学特征

研究区埃达克岩化学成分分析结果(表 1), SiO₂ 含量 \geq 56%(59.05%~67.80%), Al₂O₃ \geq 15%(15.43%~16.63%), MgO<3%(0.47%~ 2.98%, 一件样品 3.21%), Mg \ddagger 20(21.2~ 56.5), Na₂O 含量在 4.49%~3.26%之间, K₂O 含 量在 4.19%~1.98%之间, Na₂O 含量总体大于 K₂O, Na₂O/K₂O>1(1.03~1.76). 全碱含量 Na₂O +K₂O, 5.47%~8.51%, 本区新生代火山岩属亚碱

图 4 埃达克岩 Sr / Y Y 图解(据 Defant and Drumm ond, 1990; Defant et al., 2002)

Fig. 4 Sr/Y Y diagrams for the adakites

性、高钾钙碱系列(图2),反映了原始岩浆主元素的 相似性及岩浆分异差别较小的特点.

+K₂Q₄45₂47%_{Ch}8a 51%,本区新生代火山岩属亚碱。在Nat K-Ca图解上(图3a),研究区的12件样

表1 青藏高原北羌塘地区古近系埃达克岩元素地球化学测试数据

Table 1 Major and trace element analyses of Palaeogene adakite from the northern Qiangtang area of Qinghai Xizang plateau

	乌兰乌拉湖地区					多格错仁地区					黑虎岭地区	
样号	3290	3297	3351	2214	2052	5132	5138	6409	7548	8556	2GS1	3087
岩石 名称	英安岩	粗面 英安岩	安山岩	粗面 英安岩	粗面岩	粗面岩	安山岩	粗安岩	辉石 安山岩	英安岩	英安岩	玻基 安山岩
SiO ₂	67.75	65.50	59.05	67.58	67.80	64.17	62.9	59.32	61.7	66.2	65.5	62.16
TiO ₂	0.48	0.50	1.14	0.46	0.37	0.69	0.84	1.08	0.76	0.6	0.6	0.67
Al_2O_3	15.43	15.96	16.25	16.07	15.84	16.03	15.89	16.63	15.79	15.89	15.96	16.02
Fe_2O_3	2.69	1.71	4.32	3.28	1.71	4.73	5.67	7.32	4.27	2.72	3.17	2.98
FeO	0.20	1.50	3.68	0.20	0.39				0.92	0.45	0.4	1.4
MnO	0.03	0.03	0.10	0.01	0.02	0.03	0.09	0.07	0.08	0.03	0.16	0.056
MgO	1.40	2.19	3.21	0.47	0.62	1.99	2.78	2.74	2.98	1.74	1.93	2.44
CaO	3.64	3.49	6.15	3.02	2.20	4.36	4.51	5.76	4.92	3.26	3.4	4.66
Na ₂ O	3.77	3.70	3.49	3.88	4.32	4.49	3.44	3.79	3.37	3.26	4.16	3.78
K ₂ O	3.34	3. 57	1.98	3.09	4.19	3.12	3.29	2.4	3.24	2.92	3.14	2.81
$P_2 O_5$	0.16	0.17	0.20	0.15	0.33	0.04	0.14	0.04	0.3	0.21	0.21	0.26
LOI	0.67	1.52	0.58	1.29	1.32	0.85	0.84	1.17	1.64	3.05	1.18	2.06
\sum	99.56	99.84	100.13	99.50	99.11	100.48	100.41	100.32	99.97	100.33	99.81	99.30
Mg ♯	49.0	56.50	43.30	21.20	36.70	45.70	49.50	42.80	53.0	51.90	51.60	51.80
Na_2O/K_2O	1.13	1.04	1.76	1.26	1.03	1.44	1.05	1.58	1.04	1.12	1.32	1.35
Cr	111.20	113.00	88.42	80.72	7.177	121.00	91.80	139.00	107.00	159.00	5.46	9.96
Ni	55.29	66.36	43.28	36.48	15.04	59.30	34.70	73.60	64.00	80.70	1.95	3.77
Co	23.98	14.54	25.54	20.87	10.36	11.50	18.80	17.60	18.60	11.70	6.06	5.47
Sc	10.29	8.276	5.745	6.091	5.193	10.20	7.97	14.30	12.50	10.10	2.57	4.06
V	68.11	56.07	105.00	48.45	35.23	79.70	82.50	67.00	91.20	83.30	56.70	67.30
Rb	116.60	141.70	24.30	122.10	124.30	98.50	119.00	44.30	109.00	102.00	240.00	235.00
Ba	1347.70	1464.40	1183.00	1129.90	2196.50	1 968	1 215	1 339	1 354	1 337	390	1 512
Sr	751.40	848	609.60	682.90	1 425. 20	959	793	1 259	945	861	1 698	3 008
Та	0.508	0.446	0.43	0.514	0.463	0.501	0.537	0.513	0.57	0.52	2.09	2.08
Nb	6.519	6.81	7.005	6.35	7.829	7.78	7.61	7.62	9.44	7.39	63.8	53.6
Hf	3.649	4.868	4.237	3.358	2.90	5.09	4.69	5.1	5.35	4.74	22.2	18.6
Zr	128.7	195.2	171.7	122	93.62	206	195	223	245	209	972	741
Y	12.91	10.57	13.76	8.662	4.529	8.466	10.26	9.344	13.6	11.9	9.25	12.9
U	4.81	5.238	2.317	3.435	7.825	3.13	4.53	1.79	3.15	2.93	17.4	4.13
Th	15.01	22.39	4.988	12.38	7.776	13.1	14.3	9.5	19.3	14.9	200	168
δr	1.19	0.93	1.02	1.40	7.66	2.17	1.27	2.18	0.82	0.97	1.82	3.29
Sr /Y	58.20	80.23	44.30	78.84	314.68	113.28	77.29	134.74	69.49	72.35	183.57	233.18
La	33.970	48.5	27.59	26.74	8.929	25.13	33.69	30.54	66.8	51.8	56.1	52.5
Ce	62.590	99.255	59.259	48.48	16.472	45.76	65.15	62.29	119	90.9	97.1	90.3
Pr	7.300	11.45	6.613	5.651	1.943	4.748	6.7	5.68	13.2	10.2	10.5	11.1
Nd	26.490	32.07	24.96	20.6	9.312	17.19	23.87	20.72	44.7	35.1	35.7	38.7
Sm	4.458	4.726	4.491	3.702	2.081	3.006	3.786	3.563	6.63	5.59	5.33	6.12
Eu	0.975	1.028	1.182	0.853	0.575	1.018	1.189	1.369	1.82	1.46	1.52	1.69
Gd	3.177	2.474	3.841	2.793	1.613	2.04	2.645	2.451	6.76	5.54	5.18	5.53
Tb	0.444	0.399	0.561	0.373	0.192	0.316	0.387	0.369	0.68	0.55	0.50	0.60
Dy	2.372	1.945	2.975	1.743	0.926	1.741	2.087	1.928	2.66	2.32	1.91	2.47
Нo	0.436	0.352	0. 568	0.312	0.172	0.338	0.384	0.345	0.47	0.41	0.33	0.43
Er	1.184	0.965	1.527	0.826	0.437	0.883	0.991	0.893	1.80	1.49	1.22	1.59
Tm	0.175	0.132	0.22	0.119	0.064	0.131	0.145	0.139	0.17	0.16	0.12	0.16
Yb	1.109	0.859	1.348	0.76	0.444	0.814	0.878	0.903	1.20	1.09	0.81	1.13
Lu	0.168	0.13	0.201	0.115	0.063	0.133	0.142	0.146	0.17	0.16	0.12	0.16
Σ ree	144.85	204. 29	135.34	113.07	43.22	103.25	142.04	131.34	266.06	206.77	216.44	212.48
δEu	0.77	0.84	0.86	0.79	0.94	1.21	1.11	1.36	0.84	0.81	0.89	0.89
La/Yb	30.63	56. 46	20.47	35.18	20.11	31.87	38.37	33.82	55.67	47.52	69.26	46.46

"注. 乌兰乌拉湖地区 6 件样品主量元素由成都地质矿产研究所测试(常规化学方法), 微量、稀土由中国科学院广州地球化学研究所测
 ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

试(ICP MS 法分析);多格错仁地区 5 132、5 138、6 409 三件样品由中国科学院广州地球化学研究所测试(常量元素采用湿法分析,微量、稀 土采用 ICP MS 法分析);7 548、8 556 两件样品主量元素由成都地质矿产研究所测试(常规化学方法),微量、稀土由中国地质科学院地质研 究所测试(ICP MS 法分析);黑虎岭地区 2 件样品主量元素由成都地质矿产研究所测试(常规化学方法),微量、稀土由中国地质科学院地质研究所测试(ICP MS 法分析);黑虎岭地区 2 件样品主量元素由成都地质矿产研究所测试(常规化学方法),微量、稀土由中国地质科学院地质研究所测试(ICP MS 法分析). Mg $\ddagger=100 \times Mg^{2+} / (Mg^{2+} + Fe^{2+}), Fe= FeO+0.9 \times Fe_2O_3, 表中空白处为未测试项目.$

品全部投影点位于典型的埃达克岩区域,在埃达克岩 MgO SiO₂ 图解中(图 3b),12件样品投影在 Defant *et al*.(2002)和赖绍聪(2003)圈定的范围内,一个样品 MgO 为 3.21%,大于 3.0%, Mg [‡]的数值,一个样品 为 21.2%,其余样品为 36.7%~56.5%.

3 微量、稀土元素特征

3.1 微量元素特征

研究区微量元素 Sr> $400 \times 10^{-6}(609.6 \times 10^{-6}$ ~3 008. 0×10^{-6}), Y $\leq 18 \times 10^{-6}(4.53 \times 10^{-6} ~$ 13. 76×10⁻⁶), Sr/Y $\geq 40(44.3 \sim 314.68)$, &r 正 异常(1.02~7.66,3件样品0.82、0.93、0.97), 在埃 达克岩 Sr/Y Y 图解(图 4)中, 12件样品全部投影 在埃达克岩的范围内. 高强场元素 HFSEs(Nb、Ta、 物하明显亏损,在微量元素蛛网图(图 5)中, Ti 亏损, 乌兰乌拉与多格错仁岩区的 10件样品的(图 5a) Nb、Ta 亏损非常明显, 黑虎岭岩区的 2件样品(图 5b)Nb、Ta 亏损较乌兰乌拉与多格错仁岩区的 10 件样品明显变弱, 这可能与黑虎岭岩区的时代较新 有关.

原始地幔标准化图为右倾型,上述特征说明岩 浆源区可能有较多的地壳物质加入,几种微量元素 比值与大陆地壳更接近,也说明了该区火山岩含有

Fig. 6 Roke normalized trace element distribution patter

一定比例的大陆地壳物质成分.

本区古近纪火山岩微量元素配分模式一致的特 点不仅反映了其形成背景具有相似的源区性质,其 富集不相容元素的特点更反映了岩浆物质及其演化 过程中有较多的地壳组分加入,且从部分微量元素 的比值与大陆地壳更接近也说明本区火山岩浆有一 定比例的大陆地壳成分(图6).

3.2 稀土元素特征

研究区稀土元素 Yb \leq 1.9 × 10⁻⁶ (0.44×10⁻⁶~1.35×10⁻⁶), &u 正异常或微弱的 负异常(0.77~1.36), 暗示岩浆源区部分熔融过程

Fig. 5 Spider diagrams of primitive mantle normalized trace element distribution patterns

a. 乌兰乌拉与多格错仁岩区; b. 黑虎岭岩区

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Fig. 7 Diagrams of chondrite normalized rare each element distribution patterns (a) and discriminating diagram of La/Sm La for the adakites (b)

			1			1				
样品号	岩石名称	⁸⁷ Sr / ⁸⁶ S r	2σ	$\epsilon(\;Sr)$	$^{143}\rm Nd~/^{144}\rm Nd$	2σ	$\epsilon(Nd)$	$^{206}\mathrm{Pb}/^{204}\mathrm{Pb}$	²⁰⁷ Pb / ²⁰⁴ Pb	$^{208}{\rm Pb}/^{204}{\rm Pb}$
3290	英安岩	0.707923	0.000014	127.8	0. 512 446	0.000010	- 3.8	18.772	15.659	38.981
3297	粗面英安岩	0.707 694	0.000014	124.5	0. 512 421	0.000010	-4.2	18.744	15.655	38.934
3351	安山岩	0.707316	0.000013	119.1	0. 512 448	0.000010	- 3.7	18.766	15.675	39.092
2214	粗面英安岩	0.707 875	0.000017	127. 1	0. 512 415	0.000012	-4.4	18.751	15.662	38.98
2052	粗面岩	0.707101	0.000020	116.0	0. 512 382	0.000012	- 5.0	18.727	15.691	39.046

表 2 新生代火山岩 Sr、Nd、Pb 同位素组成

Table 2	Compositions	of	Sr Nd	Pb	isotope	for	the	Cenozic	rocks
---------	--------------	----	-------	----	---------	-----	-----	---------	-------

注:由中国科学院地球化学研究所资源环境测试中心测试(已公开发表,见林金辉等, 2004)

中熔体与残余矿物(斜长石)的平衡关系. La/Yb \geq 20(20.11~69.26), Σ REE 介于 43.22×10⁻⁶~266.06×10⁻⁶之间, LREE 富集, HREE 亏损,稀土 分配曲线(图 7a)呈现明显的较为平滑的斜率相似的近于平行的一组曲线,均属强烈右倾负斜率轻稀 土富集型.

在岩浆结晶分异作用过程中,随 La 含量的增加, La /Sm 比值基本保持不变.而本区火山岩随 La 含量的增加, La /Sm 比值呈增加趋势(图 7b),说明新生代火山岩主要为源区部分熔融的产物,岩浆结晶分异作用较弱.

4 同位素地球化学特征

部分样品的 Sr、Nd 同位素地球化学特征为, ⁸⁷Sr/⁸⁶Sr> 0. 704 (0. 707 101 ~ 0. 707 923), ¹⁴³Nd/¹⁴⁴Nd< 0. 5126(0. 512 382 ~ 0. 512 448)(表 2).关于乌兰乌拉湖地区 Sr、Nd、Pb 同位素,林金辉 等(2004)已专门作了研究,认为火山岩源区物质组 成中地幔组分占 75%,而再循环进入地幔体系的地 壳组分约占₁25%,火山岩具有相同的物源及相似的 演化过程,高钾钙碱岩系火山岩不是直接来源于正 常地幔或地壳物质的重熔,而是具有"被大洋沉积物 和地壳物质所混合的富含大离子亲石元素和轻稀土 元素的不均一富集地幔源区",与 EM II型富集地幔 源特征一致.

5 火山岩的时代

研究区同位素时代测定为⁴⁰ K⁴⁰ Ar x⁴⁰ Ar ³⁹ Ar 测定时代为 28.2 ~ 32.2 Ma, 38.1 ~ 46.8 Ma(表 3), 北羌塘地区新生代火山岩的时代, 从东向西时代 逐渐变新, 火山岩的规模从东向西逐渐变小, 埃达克 岩的样品从东向西逐渐变少.

6 北羌塘地区古近系埃达克岩构造意义

关于埃达克岩(adakite)的岩石化学特征及其 形成的构造环境前人已经进行了大量的研究(De fant and Drummond., 1990, 1993; Prouteau *et al.*, 2001; Yogodzinski *et al.*, 2001; Defant *et al.*, 2002; Kay and Kay, 2002; 张旗等, 2003, 2004;

表 3 青藏高原北羌塘地区部分火山岩同位素年龄数据表

Table 3 The part of isotopic ages of volcanic rocks from the northern Qiangtang area of Qinghai Xizang Plateau

						0 0 00	0			
序号	位置	样品号	岩性	方法	年龄(Ma)	测试单位	备注			
		3290	英安岩		44.6±2.50					
		3297	粗面英安岩	40 4 20 4	40.9±4.5	中国地震局	已公开发表			
	ᅌᆇᅌᆇᄱᄥᅈ	3351	安山岩	40 Ar 59 Ar	43.2±2.2	地质研究所	(林金辉等,2003)			
Û	马三马拉湖地区	2214	英安岩		41.2±2.8					
		2052	粗面岩	40 т 40 т	37.5±0.8	成都地质矿产	未发表①~⑧			
		4118	安粗岩	⁴⁰ K ⁴⁰ A r	46.8±0.9	研究所				
			安粗岩		32.5±3.5					
,	土大水供地区		安粗岩	40 . 30 .	37.6±3.8	宜昌地质矿	已公开发表			
/	亦仰犹相地区		粗面岩	"Ar "Ar	31.5±3.8	产研究所	(魏君奇等,2004)			
			英安岩		40.1±4.0					
			粗安岩	⁴⁰ K ³⁹ Ar	43.0	中国科学院广州 地球化学研究所				
		9139	粗面岩		38.2					
2	多格错仁地区	9115	玄武岩		38.1	同人次还却中于				
		8556	英安岩	⁴⁰ K ⁴⁰ A r	32.6	国工资源部中用	未发表			
		7560	安山岩		38.1	矿产资源检测中心				
		7548	辉石岩		41.6					
			安山岩		35.9±1.0	今日 地 氏 72				
3	吐错地区		安山岩	$^{40}{ m K}^{40}{ m A}{ m r}$	36.1±1.0	且自地烦₩	未发表			
			安山岩		39.0 \pm 5.0	产研究所				
	网告办地区			40 17 40 4	32.2	宜昌地质矿	+ \(\) =			
4)	羔虎峖地区	3087	玻基安山岩	^{ro} K ^{ro} Ar	28.2	产研究所	木友衣			
ß	左 苯键 44 🗸		粗面岩	40 17 40 4	31.5	国土资源部同位素	土尖圭			
J	印石馆地区		粗面岩	^{ro} K ^{ro} Ar	39.3	地质重点实验室	木友衣			
6		0740	粗面岩		30.6±0.4	山田地氏科学院同				
	玛依岗日地区	1212	碱玄岩	⁴⁰ Ar ³⁹ Ar	29.8±0.3	中国地灰科子阮内	未发表			
		P23 3	碱玄质响岩		$30.0{\pm}0.2$	位系 地质头短至				
7	托和平错地区	P14TW	霞石响岩	⁴⁰ K ⁴⁰ A r	2.26	宜昌地质矿产研究所	未发表			
0			安粗岩	40 K 40 A	3.19	宜昌地质矿	土尖主			
8	羔白北湖地区	黑白北湖地区	黑白北湖地区	5例地區 安粗岩		K CAT	3.00	产研究所	不反衣	

Castillo, 2006). Kay and Kay(2002)把安第斯埃达 克岩总结为 3种模式:地壳加厚,弧前壳俯冲,年轻 洋壳俯冲. 张旗等(2003, 2004) 按照埃达克岩的 Na2O/K2O、SrNd同位素特征和产出位置分为 O 型(ocean,代表板片俯冲)和 C 型(continent,代表下 地壳熔融).

青藏高原北羌塘地区新生代火山岩的源区(关 于藏北 EM II 型地幔),目前多数学者的观点认为是 印度板块向欧亚大陆俯冲、碰撞的产物,印度地壳俯 冲进入班公湖一怒江缝合带以北的高原地幔及软流 圈,高原地壳和岩石圈不断加厚隆升的同时,高原北 部及其腹地深部的地幔受到大量洋壳沉积物及陆壳 物质广泛交代而在渐新世一中新世形成 EM II 地 幔.古近系埃达克岩的成因,赖绍聪(2003)在总结了 藏北石水河 – 浩波错 – 多格错仁的新生代火山岩地 球化学特征后,提出它是一套典型的壳源中酸性火 山岩系,源自高原加厚陆壳下部的一个榴辉岩质源 区的部分熔融.

但是北羌塘地区新生代火山岩除了上述的埃达 克岩外,还有大量的非埃达克岩,在岩浆喷发早期往

⑤ 陆济璞, 陆刚, 许华, 等. 1:25万布若错幅(I45C002002). 广西地调院, 2006年1月.

⑦ 魏荣珠,董挨管,魏云峰,等.1:250 000 托和平错幅(144C002004).山西省地质调查院 2005 年 12 月.

① 伊海生,林金辉,黄继军,等.1:25万乌拉乌拉湖幅(146C002001).成都理工大学地质调查院,2003年6月.

② 朱同兴, 于远山, 金灿海, 等.1 *25 万多格错仁幅(I45C002004). 成都地质矿产研究所, 2005 年 12 月.

③ 朱同兴,董瀚,石文礼,等.1:25万吐错幅(I45C003004).成都地质矿产研究所,2005年12月.

④ 朱同兴,林仕良,冯心涛,等.1:25 万黑虎岭幅(I45C002003).成都地质矿产研究所,2005 年 12 月.

⑥ 李才,程立人.1 · 250 000 玛依岗日幅(145C003002).吉林大学地质调查院,2006 年 4 月.

⑧ 张振福 蒙荣华 五秋等, 筹1 1 250 000 黑石北湖幅 (14C 001094), 西省地质调查院 2003 年 6月. 1994 - 2013 年 4. 古松等, 第1 1 250 000 黑石北湖幅 (14C 001094), 西省地质调查院 2003 年 6月.

往还有基性火山岩、晚期有碱性岩;同时埃达克岩主 要分布于东部地区,而在查多岗日(在托和平错东, 图 1)以西地区极少.这种分布上的不均一及其岩石 组合差异的存在,反映该区新生代火山岩可能并非 唯一源区,即具有"多源"性.

许志琴等(2006)认为青藏高原新特提斯洋发育 时间为 T₃ E₁,"新特提斯南大洋关闭时保留在缝合 带中的早期(T₃)初始洋壳残片是很正常的";莫宣 学等(2001、2005)指出岩浆活动具有"同步性和滞后 性",笔者认为,新生代北羌塘埃达克岩的存在,提示 该地区具有"残留洋壳物质"的信息.北羌塘新生代 火山岩的形成环境.既具板内火山岩的特征.又有 "残留洋壳物质"的特征.可能体现了陆一陆碰撞后 岩浆活动的"滞后性"效应.

笔者推测,北羌塘地区在三叠纪末,新特提斯北 大洋俯冲之后,"残留部分洋壳物质"进入下地壳和 上地幔,这些物质在古近纪特定的构造条件和应力 条件下,由地幔底侵作用提供了热源,加厚的下地壳 部分熔融,不同的熔融区由于原始物质差异形成不 同的"岩浆",并沿一定的通道喷发到地表,其中的 "洋壳残片"部分熔融、喷发至地表形成其他高钾钙碱性 岩石,而幔源岩浆喷发至地表形成基性岩.

这一观点从现今金沙江构造带西段的南侧,零 星见有少量的三叠纪岛弧火山岩残片可以证明(1) 乌兰乌拉湖地区赋存于上三叠统若拉岗日群(T3rl) 地层中被变形基质包裹大量火山岩岩块属外来岩 块,代表肢解了的洋壳残片的一部分;(2)多格错仁 地区,晚三叠世火山岩中,玄武岩样⁴⁰ Ar³⁹ Ar 法同 位素 坪年 龄 为 (201 ± 4) M a, 等 时 线 年 龄 为 (202 ±4) Ma, 具多洋脊型火山岩的特征; (3) 赤布 张错地区晚三叠世鄂尔陇巴组(T₃e)火山岩,形成于 岛弧构造环境:(4)查多岗日地区拉雄错北西的图北 湖组(T3t)的中晚三叠世大陆性钙碱性 – 高钾钙碱 性火山弧型中酸性火山岩,具有大陆边缘海盆性质 的构造环境,火山岛弧型玄武岩的存在,表明中晚三 叠世曾经存在的局限洋盆已转入俯冲消减 – 闭合的 萎缩阶段⁰⁰⁰⁵⁹.这种陆内碰撞挤压作用及新生代火 山岩的大量形成,促使高原不断隆升.

魏文博等(2006)对高原中、北部断裂的深部地 球物理资料研究认为,"缝合带之下都存在向上地幔

⑨姚华舟,段其发,牛志军,等.1:25万赤布张错幅(I46C003001).

延伸的壳内高导体,它们可能反映区内壳幔热交换 过程的痕迹."这一结论支持了本文北羌塘地区新生 代火山的"多源"性结论,同时,也支持陆壳、洋壳向 下俯冲的机制.

7 结论

青藏高原北羌塘新生代火山岩, 从东向西规模 逐渐减小、时代逐渐变新, 总体以古近系为主 30~ 40 Ma, 以埃达克岩的标准判断(SiO₂ \geq 56%, Al₂O₃ \geq 15%, MgO< 3%, Sr> 400×10⁻⁶, Y \leq 18× 10⁻⁶, Yb \leq 1.9×10⁻⁶, Sr/Y \geq 40, La/Yb \geq 20), 埃 达克岩占火山岩约 1/5, 以亚碱性、高钾钙碱性为 主, Mg \ddagger 20, Na₂O/K₂O> 1, LREE 富集, H REE 亏损, 高场强元素 HFSEs(Nb、Ta、Ti)明显亏损, &r、&u 正异常(或微弱的负异常), ⁸⁷ Sr/⁸⁶ Sr> 0.704, ¹⁴³Nd/¹⁴⁴Nd< 0.512 6. 上述特征除表明该套 古近系埃达克岩岩浆源处于加厚下地壳外, 可能代 表了滞留在下地壳和上地幔的"洋壳残片"部分熔融 的产物. 为下一步在该地区寻找 Au、Cu 矿床提供了 线索.

致谢:本文在成文过程中得到了西安地质矿产 研究所李行研究员、洛长义副研究员的悉心指导,李 向民研究员、马中平副研究员给予了一定的帮助,在 此一并表示感谢!此外,参加本文涉及的10幅区调 工作的各类技术人员和后勤人员多达100余人,他 们在极其艰苦的工作环境中付出了大量辛勤的工 作,本文作者向他们所做贡献表示最诚挚的谢意!

References

- Bu, J. J., Duan, Q. F., 2006. Geological characteristics of the Bangmai Sb Au occurrence in the southern part of Chibuzhang Co., northern Tibet, China, and its signifi cance. *Geological Bulletin of China*, 25(1-2): 273 – 276 (in Chine se with English abstract).
- Castillo, P. R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 258 – 268.
- Chi, X. G., Li, C., Jin, W., et al., 1999. Spatial temporal evo lution of cenozoic volcanism and uplifting in North Ti bet. *Geological Review*, 45 (Suppl.): 978-986 (in Chi ne se with English abstract).
- Defant, M. J., Drummond, M. S., 1990. Derivation of some

 寛昌地质矿产研究所, 2004 年 2 月. ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne osphere. Nature 347: 662-665.

- Defant M. J., Drummond M. S., 1993. Mount St. Helens: Potential example of the partial melting of the subdue ted lithosphere in a volcanic arc. Geology, 21: 541-550.
- Defant M. J., Xu, J. F., Kepezhinskas P., et al., 2002. Ada kites: Some variations on a theme. Acta Petrologica Sinica, 18(2): 129 - 142.
- Deng, W. M., 1998. Cenozoic intraplate volcanic rocks in the northern Qinghai Xizang plateau. Geological Publishing House Beijing, 1 – 168 (in Chinese).
- Kay, R. W., Kay, S. M., 2002. Andean adakites: Three ways to make them. Acta Petrologica Sinica, 18(3): 303 -311.
- Lai, S. C., 2003. Identification of the Cenozoic adakitic rock association from Tibetan plateau and its tectonic signifi cance. Earth Science Frontiers, 10(4): 407-415 (in Chinese with English abstract).
- Lai, S. C., Liu, C. Y., 2001. Enriched upper mantle and eclogitic lower crust in North Qiangtang, Qinghai Tibet plateau. Acta Petrologica Sinica, 17(3): 459 - 468 (in Chinese with English abstract).
- Lai, S. C., Liu, C. Y., O' Reilly, S. Y., 2001. Petrogenesis and its significance to continental dynamics of the Neogene high potassium cale alkaline volcanic rock association from north Qiangtang, Tibetan Plateau. Science in Chi na (Ser. D), 44(s1): 45-55.
- Lai, S. C., Liu, C. Y., Yi, H. S., 2003. Geochemistry and petrogenesis of cenozoic andesite dacite associations from the Hoh Xil region, Tibetan plateau. International Geolog y Review, 45(11): 998 - 1019.
- Lai, S. C., Yi, H. S., Lin, J. H., 2006. Granulite xenoliths in Cenozoic volcanic rocks of North Qiangtang, Tibetan plateau, and their geological significance. Acta Petrolog ica et Mineralogica, 25(5): 423 - 432 (in Chinese with English abstract).
- Lai, S. C., Yi, H. S., Liu, C. Y., et al., 2002. Trace element geochemistry and classification of amphiboles of the Ce nozoic high potassium cale alkaline volcanic rock series from North Qiangtang, Qinghai Tibetan plateau. Acta Petrologica Sinica, 18(1): 17 - 24 (in Chinese with English abstract).
- Li, G. M., 2000. Petrologic features and genesis of Cenozoic volcanic rocks, Qiangtang area, northern Tibetan plat eau. Geology Geochemistry, 28(2): 38 - 44 (in Chinese with English abstract).
- Li, Y.G., Mo, X.X., Yi, H.S., et al., 2005. Research on the Cenozoic volcanic rocks in the Cuoli area of Qiangtang.

J. Mineral Petrol, 25(2): 27 – 34 (in Chinese with Eng lish abstract).

- Lin, J. H., Yi, H. S., Shi, Z. Q., et al., 2004. Study on iso topic geochemistry of Cenozoic high K cal alkaline vol canic rocks in the Zuerkang Ula mountain area, northern Tibetan. J. Mineral Petrol, 24(4): 59 - 64(in Chinese with English abstract).
- Lin, J. H., Yi, H. S., Zhao, B., et al., 2003. 40 Ar 39 Ar iso topic dating and its implication of Cenozoic volcanic rocks from Zuerkang Ula mountain area, northern Ti betan. J. Mineral Petrol., 23(3): 31-34 (in Chinese with English abstract).
- Mo, X. X., Deng, J. F., Dong, F. L., et al., 2001. Volcanic petrotectonic assemblages in Sanjiang orogenic belt, SW China and implication for tectonics. Geological Journal of China Universities, 7(2): 121-138 (in Chinese with English abstract).
- Mo, X.X., Dong G.C., Zhao, Z. D., et al., 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universit ties, 11(3): 281 - 290 (in Chinese with English ab stract).
- Pan, G. T., Ding, J., 2004. The geological map of the Qing hai Xizang (Tibet) Plateau and adjacent areas, 1 : 1 500 000. Chengdu Cartographic Publishing House, Chengdu (in Chinese).
- Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evi dence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197 - 200.
- Tan, F. W., Pan, G. T., Xu, Q., 2000. The uplift of Qiang hai Xizang plateau and geochemical characteristics of cenozoic volcanic rocks from the center of Qiangtang, Xizang. Acta Petrologica et Mineralogica, 19(2): 121 -130 (in Chinese with English abstract).
- Wei, J. Q., Wang, J. X., Niu, Z. J., 2004. The Cenozoic vol canic rocks from the Chibuzhang lake area in the Qiang tang area. Sed imentary Geology and Tethyan Geology, 24(2): 16 - 21 (in Chinese with English abstract).
- Wei, J. Q., Yao, H. Z., Niu, Z. J., et al., 2005. Identification of the adakitic rock association in Chibuzhang Co. area, northern Tibet, and its significance. Acta Petrologica et Mineralogica, 24(3): 173 - 178 (in Chinese with Eng lish abstract).
- Wei, W. B., Jin, S., Ye, G. F., 2006. Features of the faults in

center and North Tibetan plateau. Based on results of gHouse. All rights reserved. http://www.cnki.ne

Indepth (III) – M.T. Earth Science–Journal of China University of Geosciences, 31(2): 257 – 265 (in Chinese with English abstract).

- Xiong, X., Wang, J.Y., Teng, J.W., 2007. Deep mechanical background for the cenozoic volcanism in the Tibetan Plateau. Earth Science-Journal of China University of Geosciences, 32(1): 1-6 (in Chinese with English abstract).
- Xu, J.F., Wang, Q., 2003. Tracing the thickening process of continental crust through studing adakitic rocks: Evi dence from volcanic rocks in the North Tibet. Earth Science Frontiers, 10(4): 401 - 406 (in Chinese with English abstract).
- Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogensis, and processes and mechanisms for the rise of the plateau. Geology in Chi na, 33(2); 221 - 238 (in Chinese with English ab stract).
- Yogodzinski, G. M., Lees, J. M., Churikova, T. G., et al., 2001. Geochemical evidence for the melting of subdue ting oceanic lithosphere at plates edges. Nature 409: 500 - 504.
- Zhang, Q., Wang, Y., Liu, H. T., et al., 2003. On the space time distribution and geodynamic environments of ada kites in China. Earth Science Fronties, 10(4): 385 - 400 (in Chinese with English abstract).
- Zhang, Q., Xu, J. F., Wang, Y., et al., 2004. Diversity of adakite. Geological Bulletin of China, 23(9-10): 959 -965 (in Chinese with English abstract).
- Zhang, Y.F., Deng, J.K., 1994. An introduction to the geo logical evolution of Hoh Xil and its adjacent region, Seismological Press, Beijing, 1 – 177 (in Chinese).

附中文参考文献

- 卜建军,段其发,2006,藏北赤布张错南部帮麦锑金矿点的地 质特征及意义. 地质通报, 25(1-2): 273-276.
- Castillo, P. R., 2006. 埃达克岩成因的回顾. 科学通报, 51 $(6) \cdot 617 - 627.$
- 迟效国,李才,金巍,等,1999. 藏北新生代火山作用的时空演 化与高原隆升.地质论评,45(增刊):978-986.
- 邓万明, 1998. 青藏高原北部新生代板内火山岩. 北京: 地质 出版社,1-168.
- 赖绍聪,2003. 青藏高原新生代埃达克质岩的厘定及其意义. 地学前缘,10(4):407-415.
- 赖绍聪,刘池阳,2001.青藏高原北羌塘榴辉岩质下地壳及富

- 赖绍聪,刘池阳, O' Reilly, S. Y., 2001. 北羌塘新第三纪高钾 钙碱火山岩系的成因及其大陆动力学意义.中国科学 (D辑), 31(s1): 34 - 42.
- 赖绍聪,伊海生,林金辉,2006. 青藏高原北羌塘新生代火山 岩中的麻粒岩中的捕掳体,岩石矿物学杂志,25(5); 423 - 432.
- 赖绍聪, 伊海生, 刘池阳, 等, 2002. 青藏高原北羌塘新生代高 钾钙碱岩系火山岩角闪石类型及痕量元素地球化学, 岩石学报,18(1):17-24.
- 李光明, 2000. 藏北羌塘地区新生代火山岩岩石特征及其成 因探讨. 地质地球化学, 28(2): 38-44.
- 李佑国,莫宣学,伊海生,等,2005.羌塘错尼地区新生代火山 岩研究,矿物岩石,25(2):27-34.
- 林金辉,伊海生,时志强,等,2004.藏北祖尔肯乌拉山地区新 生代高钾钙碱岩系火山岩同位素地球化学研究.矿物 岩石,24(4):59-64.
- 林金辉,伊海生,赵兵,等,2003. 藏北祖尔肯乌拉山地区新生 代火山岩⁴⁰ Ar³⁹ Ar 同位素定年及其意义. 矿物岩石, 23 $(3) \cdot 31 - 34.$
- 莫宣学,邓晋福,董方刘,等,2001.西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 7(2): 121-138.
- 莫宣学,董国臣,赵志丹,等,2005.西藏冈底斯带花岗岩的时 空分布特征及地壳生长演化信息, 高校地质学报, 11 $(3) \cdot 281 - 290.$
- 潘桂棠,丁俊,2004. 青藏高原及邻区地质图,1:1500000. 成都:成都地图出版社.
- 谭富文,潘桂棠,徐强,2000.羌塘腹地新生代火山岩的地球 化学特征与青藏高原降升,岩石矿物学杂志,19(2); 121 - 130.
- 魏君奇,王建雄,牛志军,2004.羌塘赤布张错地区新生代火 山岩研究,沉积与特提斯地质,24(2),16-21.
- 魏君奇,姚华舟,牛志军,等,2005.藏北赤布张错地区埃达克 岩的厘定及其意义,岩石矿物学杂志,24(3),173-178.
- 魏文博,金胜,叶高峰,等,2006.西藏高原中、北部断裂构造 特征: Indepth(III) - MT 观测提供的依据. 地球科 学——中国地质大学学报,31(2):257-265.
- 熊熊,王继业,腾吉文,2007. 青藏高原新生代火山活动的深 部力学背景.地球科学——中国地质大学学报,32(1): 1 - 6.
- 许继峰, 王强, 2003. A dakitic 火山岩对大陆地壳增厚过程的 指示: 以青藏北部火山岩为例. 地学前缘, 10(4): 401 -406.
- 许志琴,杨经绥,李海兵,等,2006.青藏高原与大陆动力学一 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地 质, 33(2): 221-238.

集型地幔源区..岩石学报, 17(3), 459 – 468. http://**下转680页**)

报, 29(6):661-666. 周辉,储著银,李继亮,等,2000.西昆仑库地韧性剪切带的 ⁴⁰ A r / ³³ A r 年龄,地质科学,35(2):233-239.	特征.岩石学报,16(3):380-384. 周辉,李继亮,侯泉林,等,1999.西昆仑库地大型韧性剪切带 的厘定,科学通报,44(16):1774-1777.
周辉,李继亮,2000.西昆仑库地煌斑岩的年代学和地球化学	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
(上接 614 页)	
王国灿, 贾春兴, 朱云海, 等, 2004. 阿拉克湖幅地质调查新成	勒一哈图一带中生代的岩石隆升剥露一锆石和磷灰石
果及王要进展. 地质通报, 23(5-6): 549-554. 王国灿, 向树元, John, I. Garver, 等, 2003. 东昆仑东段哈拉郭	裂受径迹年代字证据. 地球科字——中国地质大字字 报, 28(6): 645 - 652.
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
(上接 661 页)	

张旗, 王焰, 刘红涛, 等, 2003. 中国埃达克岩的时空分布及其	23(9-10):959-965.
形成背景.地学前缘,10(4):385-400.	张以弗,邓建康,1994. 青海可可西里及临区地质概论.北京;
张旗,许继峰,王焰,等,2004.埃达克岩的多样性.地质通报,	地震出版社,1-177.