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Abstract: Five principal sources of uncertainty in quantitative mineral resource estimation are listed and illustrated by means of
a simple example (mosaic model) and a case history study for large copper deposits in the Abitibi area of the Canadian Shield.
Abitibi copper potential originally was estimated on the basis of 1968 estimates of production and reserves totalling 3. 12 Mt Cu.
This prognostication now could be evaluated on the basis of 2008 copper production and reserves totalling 9. 50 Mt Cu. An ear-
lier hindsight study performed on the basis of 1977 data (totalling 5. 23 Mt Cu) showed seven new discoveries occurring either
in the immediate vicinities of known deposits or on broad regional copper anomalies predicted from the 1968 inputs. By 1977,
the global geographic distribution pattern of large copper deposits in the Abitibi area had stabilized. During the next 30 years,
new copper was essentially found close to existing deposits, much of it deeper down in the Earth’s crust. In this paper, uncer-
tainties associated with copper ore tonnage are analyzed by comparison of 2008 data with 1968 data using (a) log-log plots of
size versus rank, and (b) lognormal QQ-plots. Straight lines fitted by least squares on these plots show that 1968 slopes pro-
vide good estimates of 2008 slopes but 1968 intercepts are much less than 2008 intercepts. In each linear log-weight versus log-
rank plot, the slope is related to fractal dimension of a Pareto frequency distribution, and in a lognormal QQ-plot it is deter-
mined by logarithmic variance. The difference between 2008 and 1968 intercepts represents the increase in copper ore produc-
tion and reserves from 1968 to 2008. The Pareto model fits actual copper and massive sulphides increase over the past 40 years
better than the lognormal frequency distribution model for 10 km><10 km cells on favorable environments in the Abitibi area.

Key words: mineral resources; quantitative estimation; uncertainty; mosaic model; case history study; Abitibi area; copper de-
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INTRODUCTION ing “where ore is, there it is” was to be replaced
by answering the question “why ore is where it
Geoscientists are using both facts and concepts is”. He promoted “intelligently directed search for

to determine the probable occurrence of mineral de-
posits. Examples of basic facts are age and lithol-
ogical data on rock units, chemical determinations
and geophysical measurements. There is a gradual
transition from basic facts to conceptual projections
of structures and composition of rock formations.
For this paper, standard conceptual projections
normally made geoscientists, e. g. extrapolations
to bedrock partially overlain by glacial debris, will
be taken as facts. Originally, ore was discovered
by prospectors but later economic geologists could
narrow their search by using genetic models. Bate-

man (1919) argued convincingly that the old say-
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ore or oil”. Today much ore is being found by
means of advanced geophysical prospecting tech-
niques. Moreover, as Zhao et al. (2008) pointed
out, increasingly new deposits are being discovered
at greater depths with the aid of 2D and 3D special-
ized technologies on the one side (see e. g. de
Kemp, 2006) and non-linear modeling on the other
(Cheng, 2007, 2008). Both geomathematics and
conceptual thinking are needed to extrapolate data
from the surface downward into hidden rock for-
mations at greater depths. Such projections remain
subject to significant uncertainty that has to be

quantified in order to allow valid decision-making.
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The problem considered in this paper is how the
mineral potential of a region can be assessed sys-
tematically by statistical extrapolation from known
facts. Because of the complexity of the geological
framework, many authors have employed a variety
of more subjective methods for mineral potential
estimation, often with good results, but these oth-
ers, “knowledge-driven” methods (cf. Bonham-
Carter, 1994; Bardossy and Fodor, 2004; Carran-
za, 2008; Singer and Menzie, 2010) are outside
the scope of this paper. In the next section, some
basic principles of quantitative treatment of the ge-
ological framework of a region will be considered
first and demonstrated on the basis of a simple, 2D
mosaic model. Later, in a case history study, a
geomathematical prognosis made from 1968 data
for copper potential of the Abitibi area on the Ca-
nadian Shield will be reviewed and compared with
amounts of copper and copper ore discovered in
this area during the past 40 years.

The future of fully automated regional mineral
resource estimation is promising because, increas-
ingly, sophisticated geophysical remote sensing
techniques are becoming available, while rapid pro-
gress is being made in the field of three-
dimensional geological mapping. It should be kept
in mind, however, that the geological framework
generally is highly heterogeneous. In addition to
continuous spatial variability observed for geophys-
ical fields, there are numerous discontinuities in
the upper Earth crust, e. g. at contacts between
different rock units and where there are faults. In
general, advanced pre-processing techniques are
required to produce realistic 3D images providing

the inputs for mineral potential estimation.

MINERAL RESOURCE ESTIMATION

For the purpose of this discussion, it is useful
to make a distinction between mineral exploration
and mineral resource estimation. The objective of
mineral exploration is to delineate high-potential
target areas. This can be achieved by ranking cells

or pixels by means of a probability index for rela-

tive prospectivity. In mineral resource estimation,
the primary objective is to predict number of de-
posits and their sizes for larger regions. Any prob-
ability index has to be converted into a probability
that is unbiased. Early on, mineral resource esti-
mation problems were considered by relatively few
authors including Allais (1957) who used the Pois-
son model for random spatial distribution of large
mineral deposits of any type, Griffiths (1966) ad-
vocating use of “unit regional value” lumping dif-
ferent types of metal and hydrocarbon deposits to-
gether, and Harris (1965) who quantified geolog-
ical maps for cells relating “total dollar value”
based on all metals to bedrock variables by means
of multivariate statistical analysis. A characteristic
feature of these early statistical publications was
that natural resources of different types were ana-
lyzed simultaneously. Such lumping can be advan-
tageous if statistical models have the property of
additivity (e. g. a mixture of two spatial Poisson
process models is another Poisson process model)
but often it is better to incorporate different genet-
ic models into the mineral resource estimation. My
own approach to mineral resource estimation was
commodity-based (Agterberg, 1971, 1974). It can
be summarized as follows:

Various sources of uncertainty have to be con-
sidered in mineral resource estimation, and to some
extent in exploration. These different types of un-
certainty were considered separately and combined
with one another when copper and zinc mineral po-
tential maps were constructed for the Abitibi area
on the Canadian Shield in the early 1970s (Agter-
berg et al. , 1972) to be reviewed in more detail for
copper later in this paper. Today, of course, bet-
ter answers could be obtained than in the early
1970s, because of both theoretical and computa-
tional advances. However, the basic problems to
be solved remain the same. The five principal
sources of uncertainty are;

(1) The first major source of uncertainty is
provided by the probability of occurrence itself.
Any point in a study area on a map has probabili-

ties associated with it that a small unit area sur-
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rounding it contains mineral deposits of different
types (If depth can be considered as a third dimen-
sion, unit volumes can be used in addition to unit
areas).

(2) The estimated probabilities have vari-
ances. Suppose that we are concerned with a single
deposit type or commodity in 2D. For small unit
areas, the probabilities of occurrence then are very
small. For example, suppose that the 10%4 largest
probabilities are approximately 0. 01. This does
not only mean that a unit area with probability
0. 01 would contain a deposit but also that the vari-
ance of this probability is 0. 01. This intrinsic vari-
ance normally exceeds the estimation variance of
the probability itself.

(3) Intensity of exploration is a third source
of uncertainty. This is a largely unknown variable
that is difficult to quantify. Fortunately, uncer-
tainty associated with variable intensity of explora-
tion is much less than the uncertainty intrinsic in
the probability itself. However, it should be kept
in mind that, from an economic point of view, in-
tensity of exploration can be regarded as the most
important variable because it determines the num-
ber of undiscovered ore deposits.

(4) A second major source of uncertainty in
mineral resource estimation is size distribution of
the deposits for which the probabilities of occur-
rence are being estimated. In general, size of min-
eral deposits as a random variable covers several
orders of magnitude with the largest deposits being
exceedingly rare but of utmost economic impor-
tance. It should be kept in mind that it is possible
that deposit size is positively correlated with prob-
ability of occurrence.

(5) Metal grades including cut-off grades are
to be considered as well although these can often
be incorporated in the definition of deposit type. In
general , economic data on past production, various
types of reserves and grades are of highest quality
for the largest deposits with amount of information
diminishing and tending to become unavailable for
smaller and lower-grade deposits. Two factors to

be considered are that mineral deposits for the

same metal may occur in different geological set-
tings and that usually more than a single metal is
mined from the same deposit suggesting that total
amount of ore also is useful as a variable for esti-
mating probabilities of occurrence together with
size frequency distribution modeling.

In order to further illustrate uncertainties (1)
and (2), let us take a typical weights-of-evidence
(cf. Bonham-Carter, 1994) result for example.
The output map with posterior probabilities in
weights-of-evidence usually is accompanied by a -
value map. Suppose that the z-value associated
with a posterior probability of 0. 01 is equal to 4.
This would mean that the estimation variance of
the probability of 0. 01 amounts to (the square of
0.04 = 0.0016), and this is less than 0. 01 repre-
senting the intrinsic variance associated with the
probability itself.

Uncertainties (1) and (2) can be combined
with one another by adding the variances. In the
preceding example the combined variance is
0. 011 6. Suppose now, in the preceding situation,
that the probability of a (larger) unit cell is 0. 1, it
would imply that the intrinsic variance is 0. 1, with
estimation variance of 0. 16, and combined variance
of 0. 26. It illustrates that for larger unit areas and
for larger posterior probabilities, relative uncer-
tainty associated with estimation increases signifi-
cantly. It is noted that probabilities for groups of
adjoining pixels can be added. The resulting sums
can be interpreted as probabilities if they are less
than 1 but are expected values if they are greater
than 1.

Elementary Statistics of the Mosaic Model

A small-scale geological map of bedrock in a
region is a mosaic on which mineral deposits are
projected as points. A simple example of how one
can proceed when information of this type is availa-
ble is as follows: Suppose a study area contains 1
million pixels of which 20 percent are underlain by
“favorable” environment A. There are 10 pixels
with mineral deposits in this study area of which 8
are on A. The other 2 are on “unfavorable” A~

”»

where the “~” symbol denotes “not”. Therefore,
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the probability that any pixel contains a deposit is
P(D) = 0.00001. The probability that a pixel on
A has a deposit can be written as P(D|A) = 8/
200 000 = 0. 000 04; likewise, P(D|A~™) = 2/
800 000 = 2. 5X107°,

rence map is constructed on the basis of this infor-

If a probability of occur-

mation, it contains 200 000 pixels with probability
0. 000 04, and 800 000 with probability 2. 5X 1075,

The second type of uncertainty is related to
precision of the statistics. When weights-of-
evidence modeling is applied, the positive weight
for the preceding example is 0. 982 representing the
natural log of the ratio P(A|D)/P(A| D) =
0.75/0.281 = 2. 669, and the negative weight is
—1. 056 representing the natural log of the ratio
P(A™|D)/P(A~|D™) = 0.25/0.719. Thus, the
contrast for this example is 2. 04 with approximate
standard deviation equal to 1. 18. The correspond-
ing ¢-value of 1. 73 is barely significant at the 95%
level if a one-sided test is used under the normality
assumption. It is interesting to apply other re-
source estimation techniques to this simple mosaic
model as well.

For example, we can fit the linear model Y =
a +0b « x, where Y is a random variable assuming
the value of 1 at pixels on “A” where x=1, and 0
where x = 0. Using the method of least squares,
this gives a = 2. 5X 107% and b = 37. 5 X 107",
Obviously, this linear regression model exactly re-
produces the two probabilities estimated in the
first paragraph of this section. The linear equation
can also be used in logistic regression with Y repre-
senting the logit of occurrence instead of the prob-
ability itself. Application of the LOGDIA program
(Agterberg, 1989a) then yields @ = —12. 90 and
b = 2.773, with variances of 0. 50 and 0. 624, re-
spectively, and covariance of —0. 50. Conversion
of logits into probabilities again reproduces
P(D|A) = 0.00004 and P(D|A™) = 2.5X10°°,
The preceding four methods (probability calculus,
weights-of-evidence, linear least squares, and lo-
gistic regression) all produce the same estimates of
the probabilities (uncertainty type 1). However,

they produce slightly different answers for the va-

riances of these probabilities (uncertainty type 2).

Some remarks on other applications pertaining
to the mosaic model are as follows. This model
was used by Bernknopf et al. (2007) for different
rock units with probabilities of occurrence for min-
eral deposits of different types. Probabilities and
expected values were modified according to relative
amount of exposure of each rock unit by these au-
thors. In the context of weights-of-evidence mod-
eling, Carranza (2009) asked the question of what
would be the optimum pixel size. For the mosaic
model, the answer to this question is simply that
pixels should be sufficiently small to allow precise
estimates of relative areas of rock units on the
map. Further size decrease does not affect estima-
tion results when mineral deposits are modeled as
points, because of the dichotomous nature of every
rock unit represented by a mosaic model.

In Agterberg et al. (1972), stepwise multiple
regression analysis was used to estimate a proba-
bility index for occurrence of large copper deposits
shown schematically in Fig. 1 for most of the
study area. The input for explanatory variables
primarily consisted of information on rock types
systematically quantified for cells measuring 10 km
on a side. Geophysical field data at cell centers
were used for gravity (Bouguer) and regional aero-
magnetic anomaly. Products of variables provided
better results than scores for individual variables.
The dependent variable used in this multivariate
linear model was logarithmically transformed total
amount of copper in one or more copper deposits
per input cell (also see later for schematic repre-
sentation in Fig. 2A). Neither of the two geophys-
ical input variables made a significant contribution
to the magnitudes of the probabilities that were be-
ing estimated. However, in a separate computer
experiment using binary (presence-absence) input
data only, the variable most strongly correlated
with occurrence of large copper deposits was a
combination of presence of felsic volcanics at the
surface of bedrock and higher than average Bougu-
er anomaly. This result can be interpreted in terms

of a mineral deposit model, because nearly all large
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Fig. 1 Pattern of probability index for 10 km><10 km cells with occurrence of large copper deposits in the Abitibi area of the Canadian

Shield using 1968 mineral deposit data; single X denotes probability index greater than 4 (and <(8); XX for cells with proba-

bility index >>8. Probability index values and numbering of cells after Agterberg (1971, Appendix 3)

12

12

12

12 20 30 40 52
XX
(A) ;
XX X
XX X X X
X X
XX X X
X XX
X XXXX X
X XXX X
X
X X
12 20 30 40 52
(B) XX
X
XX XX X
XX X X X
X X
XX XX X X
X XX
XXXXXX X
X XXXX X
X
X X
12 20 30 40 52
© XX
X
XX XX X
XX X X X
X X
XX XX XX X
X XX
XXXXXX XX
X XXXX X
X
X X

Fig. 2 Pattern comparison for 10 km X 10 km cells with one or more large copper deposits in (A) 1968, (B) 1977 and (C)

2008. Original 1968 figures for production and reserves reported in short tons (st) were converted into tons (t). Single

X denotes one or more deposits with copper production + reserves (Cu) between 1 000 short tons (st) of but less than
50 000 tons (1); XX for cells with 50 000 t<ZCu (1 t=0. 907 184 X1 st). Numbering of cells as in Fig. 1

copper deposits in Abitibi are of the volcanogenic

massive sulphide (VMS) type formed near volcanic

centers in association with felsic volcanics, while a

relatively high Bouguer anomaly on the Canadian

Shield indicates relatively large amounts of mafic

volcanic rocks with above average specific gravity

at greater depths. The probability index map sche-

matically shown in Fig. 1 was converted into prob-
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Fig. 3 Log-Log Ore Tonnage-Copper Grade plot (2008 data).
The three points on the left may be outliers. When these
3 points are deleted, the correlation coefficient (=
0.079) is nearly zero suggesting lack of functional rela-

tionship between grade and ore tonnage

abilities of occurrence, which were added for larger
40 km X 40 km unit areas to produce a prognostic
contour map for expected numbers of known and
unknown copper deposits. The difference between
predicted and known occurrences for a relatively
well explored “control area” was shown on a sepa-
rate map displaying three broad subareas with rela-
tively high copper potential ( Agterberg, 1971,
Fig. 3). Later, Assad and Favini (1980) per-
formed statistical mineral exploration for the east-
ern part of the Abitibi study region using localized
geophysical (aeromagnetic, gravity and terrain ele-
vation) anomalies only. This prompted me (Agter-
berg, 1989b) to use the probabilities previously
obtained in the Abitibi case study as priors in
weights-of-evidence modeling incorporating Favini
and Assad’s map layers based on the more local
geophysical anomalies in order to obtain more local

posterior probabilities of occurrence.

ABITIBI COPPER POTENTIAL PREDICTION
HISTORICAL CASE STUDY

The Abitibi area copper potential map con-
structed in 1971 was based on 1968 statistics for
production and reserves (Agterberg et al. , 1972).
During the 1970s a considerable amount of explora-
tion for additional massive sulphides was undertak-

en in this region. Agterberg and David (1979)

evaluated the prognostic copper potential contours
on the basis of the locations and sizes of seven dis-
coveries made between 1966 and 1977 (Millen-
bach, Louvem, Conigo, Iso-Copperfield, New In-
sco, Corbet and Montcalm Ni-Cu deposits). The
first three of these deposits had been discovered
when the original statistical analysis was per-
formed but published figures on production and re-
serves were not yet available for them. All seven
new discoveries occurred either within the vicinity
of one or more of the original set of 41 deposits, or
on the three relatively high copper potential subar-
eas mentioned before (also see Wellmer, 1983).
Together the 41 deposits contained 3. 12 Mt of cop-
per at the end of 1968. In 1977, the set of (41-+7
=) 48 deposits contained 5. 23 Mt Cu. This in-
crease was largely due to increased production and
reserve estimates for the Kidd Creek mine (near
Timmins, Ontario). The overall change in geo-
graphic distribution of large copper deposits from
1968 to 1977 can be seen by comparing Fig. 2B
with Fig. 2A.

More recently, Lydon (2007) has published a
comprehensive overview of the economic and geo-
logical contexts of Canada’s major mineral deposit
types accompanied by a DVD with production and
estimated reserves of Canadian mineral deposits in-
cluding large copper deposits in the Abitibi area.
Between 1977 and 2007, there were five major new
discoveries ( Ansil, Bouchard-Hebert, Bousquet-
Laronde, Amos and Louvicourt deposits), all
within the vicinities of the 48 deposits known to
exist in 1977. Revising our original 1968 data set
(Agterberg et al., 1972, Appendix 1) using
Lydon’s dataset, and including one 2008 estimate
for the newly discovered Upper Beaver ore zone
near Kirkland Lake, Ontario (cf. www. queen-
ston. ca/news/pdf/080922. pdf), yields a combined
set of 66 copper deposits containing 9. 50 Mt Cu,
about three times as much as the 41 copper depos-
its in 1968. The 41 copper deposits in the 1968
dataset occur in 27 “copper cells” measuring 10 km
on a side and belonging to the original set of 644

cells for which copper potential was estimated in
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1971. Fig. 2 shows most copper cells, with (A)
locations of 1968 copper cells, (B) locations of
1977 copper cells including 2 new cells with new
discoveries, and (C) locations of copper cells in
2008 each containing one or more copper deposits
in the combined data set. The 1968 data set has 3
deposits not in Lydon’s data base but plotted in
Fig. 2, whereas the Lydon data base contains 3 Ni-
Cu deposits with 0. 1% copper grade not in Agter-
berg et al. (1972, Appendix 1) and not plotted in
Fig. 2. On average, a copper cell shown in Fig.
2C contains (63/35) = 1. 80 large copper deposits
but because of localized strong spatial clustering,
the frequency distribution of number of deposits
per copper cell is highly positively skewed with one
cell (37,8) in the Noranda mining district contai-
ning as many as 11 large copper deposits. Compar-
ison with Fig. 2B shows that nearly all differences
between the patterns in Figs. 1A and 1C date from
before 1977. As mentioned before, new discoveries
during the 1970s either were close to known 1968
deposits or within the areas with relatively high
copper potential outlined in Fig. 1. By 1977, geo-
graphical distribution of large copper deposits in
the Abitibi area had stabilized and further increases
in production and reserves (from 5. 23 to 9. 50 Mt)
were for copper within known deposits and for new
discoveries close to known deposits. Average grade
of total production and reserves is about 1. 6%
copper in the original 1968 data set with 41 copper
deposits as well as in the 2008 data set with 66
copper deposits. Fig. 3 is a log-log plot of copper
grade versus amount of ore for the corresponding
35 copper cells that also will be analyzed later in
this paper.

Predictions made in Agterberg et al. (1972),
such as the one for a “test area” in the surround-
ings of Timmins, Ontario, were based on the as-
sumption that the frequency distribution of amount
of copper per control cell could be used for this
purpose. As mentioned in the introduction, a rela-
tively recent development is that increasingly it is
realized that ore deposits, like earthquakes and

several other types of natural phenomena, have

fractal characteristics and resulted from non-linear
processes. Mandelbrot (1983, p. 263) posed a
challenge to geoscientists by stating that oil and
other natural resources have Pareto distributions
and “this finding disagrees with the dominant opin-
ion, that the quantities in question are lognormally
distributed. The difference is extremely signifi-
cant, the reserves being much higher under the hy-
perbolic than under the lognormal law. ” This topic
will now be investigated in more detail for copper
in the Abitibi area.

Comparison of Weight Frequency Distributions for
Copper Metal and Ore Contained in (10 km X
10 km) Cells in the Abitibi Area

Size frequency distribution studies usually are
carried out on populations of mineral deposits of
the same type. In this study, it is applied to total
amount of copper in the one or more copper depos-
its per 10 km><10 km cell. This procedure has ad-
vantages as well as drawbacks. An advantage is
that the effect of strong localized clustering of de-
posits is reduced, and total number of observations
(27 in 1971 versus 35 in the combined data set) is
stabilized. A disadvantage is that copper deposits
of different types are being combined with one oth-
er although frequency distributions for different
types of deposits can be different, especially if two
or more metals are used.

Nearly all (86% of 66) large copper deposits
in the combined data set are VMS. There are rela-
tively few (6) magmatic Ni-Cu deposits (and 5 of
these are small), plus three porphyry-type copper
deposits. Preliminary statistical analysis was per-
formed on various subsets such as using copper de-
posits instead of copper cells, VMS deposits only,
Lydon’ s statistics only, but these exercises pro-
duced results similar to those to be presented here.
However, explicit consideration of average copper
grade (= amount of copper/amount of ore) gener-
ates somewhat different results. For this reason,
the following analysis is for two variables per cop-
per cell: (1) total weight (amount) of copper, and
(2) total weight of ore. A comparison will be made
between the 2008 and 1968 data.
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Figure 4 shows log-log plots of copper and ore
weight versus rank. A Pareto distribution plots ap-
proximately as a straight line on this type of plot as
previously shown for gold tonnages in lode gold de-
posits in the Superior Province of the Canadian
Shield (Agterberg, 1995). In each plot of Fig. 4,
a straight line was fitted by least squares to most
data points excluding the smallest copper or copper
ore cells for which information is probably incom-
plete. Also, it can be expected that the Pareto dis-
tribution does not provide a good fit for low weight
cells because it has the property that frequency of
occurrence continues to increase with decreasing
weight. Figure 5 shows the corresponding four
lognormal QQ-plots. In Figs. 5a and 5c¢ for copper
weight, the patterns are not linear but in Figs. 5b
and 5d they are, and straight lines were fitted by
least squares using all data points. Degree of fit is
good in these two diagrams as illustrated by the
95% confidence interval in Fig. 5d.

It may be concluded that six of the eight plots
(Figs. 4 and 5) show straight line patterns. The

patterns in Figs. 6a and 6b are not approximately

4
= 3
o0 3.0
2 st
5 2.0 S
qé 1.5 .
S 1o v
> 0s y=-2.123x+3.461 9 \
= 0.0 =
_0 5 1 1 1 1 1 1 1
200 02 04 06 08 10 12 14 1.
Log Rank
4.5
4.0 ©
£ 35—
5 3.0 ¢
255 T~
2 2.0 M
15 IASION
10 M
2 s = 2.234 8x+4.018 6 o
= 0.0 .
0.5

Log Rank

Fig. 4

1 1 1 1 1 1 1 1
0002 04 06 08 10 12 14 1.6 1.8

linear, probably because in several deposits copper
is not the main metal of economic interest but
mineable as a by-product. For these deposits, total
weight of ore fits in with the population of all cop-
per deposits but total weight of copper does not be-
cause of the lower copper grades. It seems that
both the Pareto and the lognormal are good candi-
dates for modeling total copper and ore weight fre-
quency distributions. The high-value tail of a Pare-
to frequency distribution is thicker than that of the
lognormal. As discussed in more detail elsewhere
(e. g. Agterberg, 2007), the Pareto and lognormal
each can be considered as the end product of a mul-
tiplicative cascade model. They are generated by a
de Wijs cascade and a Turcotte cascade, respective-
ly. Other cascades (cf. Lovejoy and Schertzer,
2007) can result in frequency distributions that re-
semble a lognormal except in their high-value Pare-
to-type tails. It may not be possible to determine
whether a high-value tail is lognormal or Pareto-
type if a frequency distribution has strong positive
skewness like the distributions of Figures 5 and 6,

because then there are too few very large values for
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Log-Log Weight-Rank plots for 1968 and 2008 data with straight lines fitted by least squares. (a) 1968 Copper Weight;

(b) 1968 Ore Weight; (c) 2008 Copper Weight; (d) 2008 Ore Weight. Base of logarithm= 10; Weight measured in

(metric) kilotons. Straight line approximates Pareto frequency distribution with fractal dimension estimated by inverse

of slope. For 1968 data, first 18 of 27 data points were used to fit straight lines. For 2008 data, first 27 of 35 data

points were used to fit straight lines
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parison with Figs. 4c and 5d shows 1968 to 2008 intercept increases

application of standard goodness-of-fit tests (also
see Agterberg, 1995). However, the few largest
values contribute much or most of total weight for
all deposits in the data set. This dilemma can be
resolved by using the following new method of
comparing the Pareto and lognormal frequency dis-
tributions with one another.

Comparison of coefficients of the straight lines
fitted in Figs. 4 and 5 shows that 1968 and 2008
data have approximately the same slope but 2008

intercepts are markedly greater than 1968 inter-

cepts. In Fig. 4 the straight lines were based on 18
or 27 data points for 1968 and 2008, respectively.
All data points were used for the lognormals of
Fig. 5. Because slope differences are small, it can
be assumed that 1968 slopes are unbiased estimates
of 2008 slopes. This is illustrated in Fig. 6 for
1968 copper and ore weight data where the best-
fitting lines were forced to have the 2008 slopes.
The intercept of the Pareto distribution for copper
weight in Fig. 6a is less than its intercept in Fig.
4c. This difference can be written as Ap= 0. 458 5.
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The equations of the straight lines in Figs. 4 to 6
are of the form y = bx + a indicating that the de-
pendent variable (y) was regressed on the explana-
tory variable (x). All uncertainty is assumed to be
associated with y that is plotted in the vertical di-
rection. These equations can be rewritten as x =
b’y + a’; for example, x = 0.984 3y + 3.3737
for Fig. 5d and x = 0. 984 3y + 3. 108 0 for Fig.
6b.

The intercept (a’) of the lognormal distribu-
tion in Fig. 6b is only Ay = 0. 262 7 less than the
intercept in Fig. 5d. Each intercept difference A
corresponds to a factor of 10® for increase in aver-
age weight per cell between 1968 and 2008. These
factors are 2. 875 for copper and 1. 831 for copper
ore, respectively. Incorporating a 6. 1% correction
related to the increase in total number of cells with
known deposits due to new discoveries (cf. Fig.
2), the factors of increase in total weight become
3. 049 for the copper-weight Pareto model, and
1. 943 for the ore-weight lognormal model. Ob-
served factors of increase are 3. 026 for total copper
weight and 3. 030 for total ore weight, respective-
ly. Consequently, the copper-weight Pareto agrees
better with observed increase in total copper
weight than the ore-weight lognormal, which sig-
nificantly underestimates observed overall change
in total ore weight. As an additional test, it was
determined from the straight lines in Figs. 4b and
4d, that Ap= 0. 488 5 for total ore weight, resul-
ting in an increase factor of 3. 266, slightly overes-

timating the observed value of 3. 030.

CONCLUDING REMARKS

Five principal sources of uncertainty in quantita-
tive mineral resource estimation were listed at the be-
ginning of this paper. The first two uncertainties are
related to probability of occurrence of a mineral deposit
in a small unit area within a study area, and these were
illustrated by means of a simple example (mosaic mod-
eD). The third uncertainty is “intensity of exploration”
and the remaining uncertainties are related to size and

grade of the mineral deposit considered. The latter

three uncertainties were illustrated by means of a case
history study for large copper deposits in the Abitibi
area of the Canadian Shield. Copper potential of this
area was predicted on the basis of estimates of produc-
tion and reserves that were available in 1968 totalling
3. 12 Mt Cu. This prognostication could now be evalu-
ated on the basis of copper production and reserves
available in 2008 totalling 9. 50 Mt Cu.

The method used consisted of relating a loga-
rithmic measure of amount of copper for 10 km X
10 km cells to rock unit and geophysical variables
and their cross-products by means of stepwise mul-
Felsic

strongly represented in the probability index origi-

tiple regression, volcanics were most
nally estimated in agreement with the fact the vast
majority of large copper deposits in this region are
volcanogenic massive sulphide deposits. A small
minority of the deposits are magmatic Ni-Cu depos-
its primarily associated with mafic and ultramafic
rocks. “Intensity of exploration” in Agterberg et
al. (1972) was quantified by converting the proba-
bility index into a probability by defining a “con-
trol area” including the mining districts in 1968, In
order to delineate target areas with undiscovered
deposits it was assumed that all large copper de-
posits had been found within the “control area”.
This resulted in delineation of three regional cop-
per anomalies. The earlier hindsight study per-
formed 30 years ago on the basis of copper produc-
tion and reserves available in 1977 (totalling 5. 23
Mt Cuw) showed seven new discoveries occurring ei-
ther in the immediate vicinities of known deposits
or on the prognostic regional copper anomalies.
Post-1977 exploration resulted in six additional
large copper deposits all relatively close to known
deposits. Most of the increase from 3. 12 to 9. 50
Mt Cu was due to increased production and reserve
estimates for known deposits. By 1977 the broad
geographic distribution pattern of large copper de-
posits in the Abitibi area had stabilized. Much new
copper was found at greater depths by deeper pene-
tration of the Earth’s crust.

Uncertainties associated with copper deposit

size and grade were analyzed in the last part of this
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paper by comparing log-log plots for 1968 and 2008
copper cell size and ore weight versus rank and cor-
responding lognormal QQ-plots. Most of these
plots show linear patterns indicating that both the
Pareto and lognormal frequency distribution mod-
els can be used in a parametric approach. Straight
lines fitted by least squares show that 1968 slopes
These

slopes are determined by fractal dimension of the

provide good estimates of 2008 slopes.

Pareto and logarithmic variance of the lognormal,
respectively. On the other hand, the intercepts
corresponding to these slopes showed significant
increases related to the large increase in copper and
ore production and reserves between 1968 and
2008. A new method based on comparing these in-
creases, which was introduced at the end of the pa-
per, showed that the Pareto is superior to the log-
normal frequency distribution model.

It can be concluded that within the favorable
environments in the Abitibi area, copper deposit
size is controlled by a 2-parameter Pareto distribu-
tion. The fractal parameter (related to slope of
best-fitting straight line on log size-log rank plot)
is approximately independent of location but the
other parameter (intercept of best-fitting straight
line) is related to total volume of the block of fa-
vorable rock thoroughly explored for occurrences
of large copper deposits. The practical significance
of this result can be visualized as follows. Suppose
both the Pareto and lognormal originally had been
applied to the 1968 data set. Then, for the same
total amount spent on exploration and ore reserve
estimation during the next 40 years, the lognormal
model would have underestimated 2008 copper ore
production and reserves by approximately
(3.030—1.831)/3. 030 or 40 percent, whereas the
Pareto model would have overestimated measured
amounts of ore and copper by 8% and less than

1%, respectively.
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