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A Lognormal Distribution of Metal Resources
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Abstract: For national or global resource estimation of frequencies of metals, a lognormal distribution has commonly been rec-

ommended but not adequately tested. Tests of frequencies of Cu, Zn, Pb, Ag, and Au contents of 1984 well-explored mineral

deposits display a poor fit to the lognormal distribution. When the same metals plus Mo, Co, Nb,O;, and REE,O; are grouped

into 19 geologically defined deposit types, only eight of the 73 tests fail to be fit by lognormal distribution, and most of those

failures are in two deposit types suggesting a problem with those types. Estimates of the mean and standard deviation of each of

the metals in each of the deposit types are provided for modeling.
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INTRODUCTION

Whether considering a country’s possible fu-
ture supply of minerals, planning the merits of ex-
ploring for certain kinds of mineral deposits, or ex-
amining possible global availability of some mineral
materials, having a probability distribution of the
amounts of minerals of interest would be invalua-
ble (Singer and Menzie, 2010). One probability
distribution that has been suggested as appropriate
for mineral resources is the lognormal distribution.
Recommendations of the lognormal distribution as
an appropriate model of the frequency of ore depos-
its has waxed and waned over the years. Part of
the change in views is due to variation in apparent
fit of the distribution to case studies and part of the
change may be due to variation in popularity of dif-
ferent techniques over time.

Much of the early research focused on the dis-
tribution of grades of mineral deposits or geochem-
ical abundances ( Rasumovsky, 1940; Ahrens,
1954; Matheron, 1959). These studies found an
empirical and theoretical basis for believing that
the lognormal distribution is an appropriate model
for observed mineral deposit grades and values of
trace elements in samples. Usefulness of the log-

normal distribution was further documented by the
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development of its theoretical foundations and by
the empirical evidence of its applicability in biolo-
gy, sociology, astronomy and economics provided
by Aitchison and Brown (1963).

Based on studies of mineral production, Allais
(1957) selected a lognormal distribution to repre-
sent the values of mineral deposits thereby sugges-
ting a lognormal distribution of metals. Slichter et
al. (1962) documented a graphical fit of the lognor-
mal distribution to the gross values of copper,
lead, zinc, gold and silver mines in part of the
Southwest of the United States. Gross values of
sandstone-hosted uranium deposits in the Am-
brosia Lake region of the United States were tested
and shown to be well represented by the lognormal
distribution (Griffiths and Singer, 1973). Eco-
nomic effects on the fit of the lognormal distribu-
tion to diamond production were demonstrated by
Sharp (1976). Zhang et al. (2004) found that cop-
per equivalent grades of deposits in China could be
represented by a lognormal distribution but metal
content could only be represented by lognormal af-
ter separating the deposits and districts into differ-
ent groups. Singer (1993) tested the distribution
of ore tonnages and average grades of sixty-seven
types of mineral deposits and found that most were

not significantly different than the lognormal. On-
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ly five of the sixty-seven tonnage of ore distribu-
tions were significantly different from lognormal at
the 1 percent level. Although it is commonly as-
sumed that the distribution of metal amounts can
be represented by lognormal distributions, the idea
has seen little actual testing and no modern esti-
mates of the parameters of these lognormal distri-
butions of metals have been published.

In this study the ability of the lognormal dis-
tribution to fit the observed distribution of some
metals is tested. In addition, estimates of the pa-
rameters of the lognormal distributions are provid-
ed where appropriate. Before testing the distribu-
tions consideration of the nature of mineral deposit
data suitable for testing and the sources of these

data are presented.

MINERAL DEPOSIT INFORMATION

Typically, a lognormal distribution can be
used to model the observed distributions of homo-
geneous populations of variables representing
weights, lengths, volumes, and grades of trace
quantities. It tends to not fit grade distributions of
elements that have grades greater than about 10
percent, such as Fe, Mn, and Al. So what is the
proper homogeneous population that should be
sampled to represent metals in mineral deposits?

The geological and mining literature contains
many terms such as district, zone, ore body, lens,
shaft, vein, bench, open-pit, underground, and
mine that might be considered as possible sampling
units, These terms are applied in different ways by
different groups at different points in time, making
them undesirable as our sampling unit. Grade-and-
tonnage data are available to varying degrees for
districts, deposits, mines, and shafts. In many ca-
ses, old production data are available for some de-
posits and recent resource estimates are available
for other deposits. A common error is mixing old
production data from some deposits with resource
data from other deposits. It is extremely important
that all data used in the model represent the same

sampling unit because mixing data from deposits

and districts or old production and recent resource
estimates usually produce bimodal distributions re-
presenting non-homogeneous populations and it
may introduce correlations among the variables
that are artifacts of the mixed sampling units.
Models constructed using data from mixed sam-
pling units are of questionable value because the
frequencies observed are directly related to the pro-
portion of deposits from each sampling unit and are
unlikely to be representative of the proportion in
the undiscovered deposits being estimated.

For the analysis here of the frequency distri-
butions of metal contents, data used in grade-and-
tonnage models are used because they were specif-
ically prepared for assessments to show the fre-
quencies of different sizes and grades of each min-
eral deposit type based on data collected on thou-
sands of well-explored deposits from around the
world. For each deposit type, these models help
define a deposit, as opposed to a mineral occur-
rence or a weak manifestation of an ore-forming
process. Data utilized to construct these models in-
clude average grades of each metal or mineral com-
modity of possible economic interest and the asso-
ciated tonnage based on the total production, re-
serves, and resources at the lowest possible cutoff
grade. These data represent an estimate of the en-
dowment of each of many known deposits. Well-
explored in this report means completely drilled in
three dimensions or completely mined out. Addi-
tionally these data were gathered using spatial
rules in order to be consistent in what they repre-

sent.

DATA SOURCES AND SPATIAL RULES

For sediment-hosted zinc-lead deposits (Singer
et al. » 2009), all mineralized rock or alteration
within two kilometers was combined into one de-
posit for these deposits. Thus, if the alteration
zones of two deposits are within two kilometers of
each other, they were combined. The two-
kilometer rule was developed to try to insure that

deposits in grade and tonnage and spatial density
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models correspond to deposits as geological enti-
ties. Rules such as the two-kilometer rule are es-
sential in order to have an internally consistent as-
sessment system where the estimate of number of
undiscovered deposits is consistent with the grade-
and-tonnage model. Sediment-hosted zinc-lead
types include; CAam (carbonate-hosted amagmat-
ic), CAig (carbonate-hosted igneous), CAme
(carbonate-hosted metamorphic), SHam (shale-
hosted amagmatic), Kipushi, SHig (shale-hosted
igneous) , MLig (mixed lithology-hosted igneous) ,
ML me (mixed lithology-hosted metamorphic), and
SSPb (sandstone-hosted Pb).

For the porphyry copper deposits used in this
analysis (Singer et al. , 2008) , all mineralized rock
or alteration within two kilometers was combined
into one deposit. Thus if the alteration zones of
two deposits are within two kilometers of each oth-
er, they were combined.

Sediment-hosted copper deposits (Cox et al. ,
2003) were combined into one deposit if they were
within two kilometer of each other. Iron oxide Cu-
Au deposits (Cox and Singer, 2007) were com-
bined if they occurred within two kilometers of
each other.

For the deposits in the carbonatite model
(Berger et al. , 2009), the following rule was used
to determine which ore bodies were combined. All
mineralized rock or altered rock within two kilome-
ters was combined into one deposit. Some exam-
ples illustrate the effects of the application of this
rule to combined deposits: (1) Salitre I and II de-
posits in Brazil and (2) Upper Fir and Fir in
Canada.

For the volcanogenic massive sulfide deposits
(Mosier et al. , 2009), the following spatial rule
was used to determine which ore deposits were
combined. All mineralized rock within 500 m was
combined into one deposit. A 500 m rule was used
for volcanogenic massive sulfide deposits because
of their smaller size and the scarcity of mapped al-
teration zones around these deposits. For example,
in this report, Horne and Quemont in Quebec,

Canada, are combined into one deposit, and Je-

rome in Arizona, United States, has been treated
as two separate deposits, United Verde and United
Verde Extension, because of the 500 m rule. The
volcanogenic massive sulfide deposits were classed
into three types. The felsic type (VMSFelsic) in-
cludes those volcanogenic massive deposits hosted
in dominantly felsic or bimodal-felsic rocks. The
bimodal-mafic type (VMSBimodal) includes those
volcanogenic massive sulfide deposits dominantly
hosted in mafic volcanic rocks with rhyolite to da-
cite constituting 10 to 40 percent of the host rocks.
The mafic type (VMSMafic) of volcanogenic mas-
sive sulfide deposit is dominantly hosted in mafic

volcanic rocks and associated pelitic rocks.

TESTS OF LOGNORMAL DISTRIBUTIONS

A total of 1984 mineral deposits with reported
tonnages and grades is available from the above lis-
ted sources. The copper content in the 1 591
copper-bearing deposits plotted against a standard
normal distribution seems to deviate slightly from
the expected normal line only in the upper copper
values. By visual examination, many might con-
clude that the lognormal distribution adequately
fits the observed copper contents on mineral depos-
its. Similar results are obtained for the 1 069 zinc-
bearing deposits, the 786 lead-bearing deposits,
the 1 061 silver-bearing deposits, and the 890 gold-
bearing deposits. However, when the distributions
of each of these metals were tested using the
Shapiro-Wilk W test (Stuart and Ord, 1991), the
probability that the observed distributions came
from random samples of lognormal distributions
was found to be 0. 002 or less. Thus we reject the
lognormal distribution as a model of the distribu-
tion of metal in these grouped deposits.

Perhaps the lack of fit is due to observed dis-
tributions not being from homogeneous popula-
tions of the metals. The data used in this analysis
were compiled by deposit types, which are defined
as deposits that occur in similar geological settings
and have similar characteristics. Deposits within

each type might represent the homogeneous popu -



204 HBRBL A E TR 2 4

% 36 &

Table 1 Copper content distributions by deposit type and tests of lognormality. Mean metric tons of contained copper (logi,

data) » standard deviation (logy, data) » median observed copper content of all deposits, Shapiro-Wilk goodness-of-fit

probability of lognormal distributions number of deposits with reported grade, and total number of deposits with re-

ported tonnage (in thousands t)

Deposit type Mean St. dev. Median Cu (kt) Prob. Number deposits ~ Total number deposits
CAam 4.3551 0.9412 0 0. 797 9 132
CAig 4.3154 0. 876 4 0 0. 892 86 187

FeOxideCuAu 5. 644 4 0.779 4 376 0. 819 32 36

Kipushi 5.4385 0.894 1 480 0. 668 8 8
MLig 4.854 3 0.7353 0 0. 587 12 38
MLme 4.207 3 0.7611 0 0. 296 5 12
PorCu 6. 008 6 0.703 1 1030 0. 391 422 422

RedbedCu 4.494 0 0. 804 0 21 0. 030 33 33
Reduced Cu 5.8199 0.898 3 500 0. 647 62 62
Revett Cu 5.2240 0.9315 125 0.934 14 14
SedHstCu 5.076 4 0.9201 120 0. 952 31 31
SHam 5.107 2 1.1335 0 0. 983 7 25
SHig 4.5034 0.8224 0 0. 487 13 32
SSPh 3.8308 1.6257 0 0. 042 ) 22
VMSBimodal 4.376 7 0.929 2 26 0. 666 267 272
VMSFelsic 4.480 2 0.9200 36 0. 001 411 421
VMSMafic 4.0613 0.983 6 11 0. 066 174 175

Table 2 Zinc content distributions by deposit type and tests of lognormality. Mean metric tons of contained zinc (logy, data)

standard deviation (logy, data) » median observed zinc content of all depositss Shapiro-Wilk goodness-of-fit probabili-

ty of lognormal distributions number of deposits with reported grades and total number of deposits with reported

tonnage (in thousands t)

Deposit type Mean St. dev. Median Zn (kt) Prob. Number deposits ~ Total number deposits
CAam 5.648 1 0.756 7 498 0. 338 128 132
CAig 5.3594 0.917 6 308 0. 002 185 187
CAme 5.3725 0.744 5 128 0. 378 7 7

Kipushi 5.7659 1.226 1 ) 0. 335 4 8
MLig 5.609 9 0. 876 0 354 0. 926 38 38
MLme 5.169 1 1.0250 96 0. 888 12 12
SHam 6.334 1 0.6749 1600 0. 924 25 25
SHig 5.7575 0.9949 644 0.511 30 32
SSPh 4,628 2 1.5438 8 0. 264 16 22

VMSBimodal 4.716 6 0.9231 30.5 0. 407 217 272

VMSFelsic 5.0437 0.8927 75 0. 000 349 421
VMSMafic 4.3257 0.7338 0 0. 383 58 175

lations desirable for a good fit by the lognormal
distribution.

Each of 1 984 deposits was classfied into one
of 19 deposit types and the distributions of repor-
ted metals within type were each tested for lognor-
mality with the Shapiro-Wilk W test (Tables 1—
6). The probability that the observed distributions
came from random samples of lognormal distribu-

tions was found to be less than 0. 01 in only eight

of the 73 tests. Thus we reject the lognormal dis-
tribution as a model of the distribution of metals in
eight of these cases. Out of the eight rejections,
five are from one deposit type, the volcanic-hosted
massive sulfide felsic (VMSFelsic) type. Two oth-
er rejections are from the carbonate-hosted, igne-
ous (CAig) related type. This strongly suggests
that the VMSFelsic model contains more than one

population and perhaps the CAig model does also.
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Table 3 Lead content distributions by deposit type and tests of lognormality. Mean metric tons of contained lead (log), data)

standard deviation (logy, data) » median observed lead content of all deposits, Shapiro-Wilk goodness-of-fit probabili-

ty of lognormal distributions number of deposits with reported grades and total number of deposits with reported

tonnage (in thousands t)

Deposit type Mean St. dev. Median Pb (kt) Prob. Number deposits ~ Total number deposits
CAam 5.176 4 0.8222 146 0. 647 121 132
CAig 5.1813 0.8573 130 0. 230 166 187
CAme 5.044 8 0.8010 30 0. 243 6 7

Kipushi 5.2919 1.1619 275 0.123 6 8
MLig 5.3729 0. 885 2 169 0. 838 34 38
MLme 4.852 3 0.8300 45 0. 420 11 12
SHam 5.823 6 0.718 4 592 0. 482 25 25
SHig 5.428 0 1.0419 721 0. 066 32 32
SSPb 5.167 4 0.852 6 204 0. 691 22 22

VMSBimodal 4.058 6 0.844 2 0 0. 006 77 272

VMSFelsic 4.497 6 0.9820 7 0. 005 273 421
VMSMafic 3.564 9 1.0180 0 0. 636 6 13 175

Table 4 Silver content distributions by deposit type and tests of lognormality. Mean metric tons of contained silver (log), da-

ta) , standard deviation (log), data), median observed silver content of all deposits, Shapiro-Wilk goodness-of-fit

probability of lognormal distributions number of deposits with reported grade, and total number of deposits with re-

ported tonnage (in t)

Deposit type Mean St. dev. Median Ag (1) Prob. Number deposits ~ Total number deposits
CAam 2.2750 0.759 8 0 0. 875 58 132
CAig 2.6512 0.9391 144 0. 147 138 187
CAme 2.0450 0.9276 26 0. 210 5 7

FeOxideCuAu 1.918 2 1.1552 0 0. 621 10 36

Kipushi 2.6925 0.968 3 193 0. 970 6 8
MLig 2.6885 0.9513 106 0.928 26 38
MLme 2.5882 0.7020 32 0. 565 6 12
PorCu 2.897 5 0.692 6 0 0. 584 172 422

RedbedCu 1.544 1 1.1420 0 0. 698 10 33
Reduced Cu 2.6780 1. 0535 0 0. 274 16 62
Revett Cu 2.807 3 0.756 3 140 0. 097 8 14
SedHstCu 1.7979 0. 988 4 0 0. 153 7 31
SHam 3.067 3 0.7838 277 0. 540 18 25
SHig 2.760 3 0.999 9 786 0. 056 28 32
SSPb 2.0415 0.904 8 2 0. 344 11 22
VMSBimodal 1.7549 0.936 8 10 0. 816 172 272
VMSFelsic 2.0513 0.958 1 32 0. 003 300 421
VMSMafic 1.442 0 1. 058 8 0 0. 399 70 175

The large number of tests of lognormality of these
metals by deposit types that were not rejected indi-
cates that the lognormal distribution is an appro-
priate model for metals when deposit types are
used and when the data are consistently gathered.
Figure 1 shows the copper content distributions
plotted against standard normal distributions of

several deposit types that seem to deviate slightly

from the expected normal lines demonstrating how
difficult it is to identify which distributions fit or
do not fit a lognormal distribution graphically.
Previous publications recommending the lognormal
distribution for metal resources relied on graphical
comparisons or on improper statistical tests such as

The

graphical results in Figure 1 should be compared to

correlations with cumulative distributions.
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Table 5 Gold content distributions by deposit type and tests of lognormality. Mean metric tons of contained gold (log), data)

standard deviation (log), data) » median observed gold content of all deposits, Shapiro-Wilk goodness-of-fit probabili-

ty of lognormal distributions number of deposits with reported grades and total number of deposits with reported

tonnage (in t)

Deposit type Mean St. dev. Median Au (1) Prob. Number deposits ~ Total number deposits
CAam 0.9857 0.4027 0 0. 424 3 132
CAig 0.676 6 1. 026 3 0 0. 002 70 187

FeOxideCuAu 1.3135 0.7978 12 0. 563 27 36
MLig 0.408 9 0.766 9 0 0. 039 7 38
PorCu 1.678 6 0.7125 12 0.631 256 422
SHam 0.7558 0.444 6 0 0. 695 4 25
SHig 0.6620 1.190 3 0 0. 135 14 32

VMSBimodal 0.3091 0.956 7 0 0. 093 158 272

VMSFelsic 0.4306 0.9807 1 0. 000 279 421
VMSMafic 0. 058 6 1.042 8 0 0.121 72 175

Table 6 Molybdenum, cobalts Nb,O;, and REE,O; content distributions by deposit type and tests of lognormality. Mean

metric tons of contained molybdenum (median observed Mo content in all deposits) s cobalt (median observed cobalt

content in all deposits) s Nb;Os » and REE, O; (log), data) » standard deviation (logj, data) s Shapiro-Wilk goodness-

of-fit probability of lognormal distributions number of deposits with reported grade, and total number of deposits

with reported tonnage (in thousands t)

Mean Mo Mean Co

Deposit type

Mean Nby O3

Number Total number

Mean REE; O St. dev. Prob.

(median Mo (kt)) (median Co (kt)) (median NbyOs (kt)) (median REE; O3 (kt)) deposits deposits
4.618
PorCu 0.7654 0.592 228 422
(28)
5.088 1
Reduced Cu ©) 0.8004 0.633 15 62
5.3258
Carbonatite © 1.1025 0.737 39 55
5.5589
Carbonatite 1.0793 0.925 35 55
(68)

the probabilities of the fits to the lognormal in Table 1.

The tables also contain means and standard
deviations of the metal contents for those deposits
with reported grades for the metal and deposit
type. Because many of the metals are byproducts,
they are not always reported and in these cases it is
reasonable to assume that they have quite low
grades. It is for this reason that the numbers of de-
posits with reported grades are provided along with
the total number of deposits for which there are
tonnages. For example, in Table 1, the CAam de-
posit type has a total number of deposits with ton-
nages of 132, but only nine of these deposits have
a reported copper grade and only these nine depos-

its were used for the mean and standard deviation

contained metal estimates. Thus the mean and
standard deviation copper contents are only repre-
sentative of 9/132 or about 7 percent of the depos-
its of this type. Although the number of deposits
that have reported copper is small in the CAam
case, it provides useful information not otherwise
available. For the copper contents of the CAam
group and the CAig group, it is also important to
remember that these types are representing zinc
and lead deposits hosted in sediments and not prin-
cipally copper deposits in these settings such are
copper skarns which are not reported here. The
column showing the median contained metal in the
tables reflects the observed medians of all of the

deposits including those without reported grades.
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Fig. 1 The copper content of porphyry Cu, reduced facies
Cu, carbonate-hosted igneous related, volcanic-
hosted massive sulfide felsic-related, and volcanic-
hosted massive sulfide mafic-related deposits plotted
against each type's straight line representing its

standard normal distribution

CONCLUSIONS

The lognormal distribution cannot be used to
model the distribution of metals in mineral deposits
when multiple deposit types are combined. Where
the mineral deposit models are developed using
consistent geological settings and the data repre-
sent well-explored deposits with consistently ap-
plied spatial rules, the lognormal distribution is a
good representative of the frequencies of metal con-
tents.

Out of the 73 tests of the adequacy of the log-
normal distribution to fit the observed distributions
of metals here, most of the inadequate fits were for
metals in the volcanic-hosted massive sulfide, felsic
setting type. In each of these cases, the lack of fit
was because some of the largest content deposits
had less metal reported than would be expected by
the lognormal distribution. It is not known why
this occurred, however, if the reason is poor re-
porting of tonnages or grade of these large depos-
its, then the lognormal distribution could be used
to model the metals correctly. If the reason for the

poor fit is that there is really another as yet unrec-

ognized deposit type that is appropriate for these
larger deposits, then the use of the estimated pa-
rameters of the lognormal distribution reported
here would overestimate the amounts of metals.
Fortunately, this deposit type is not the primary
supplier of any of the metals, so an estimation er-
ror would probably not be fatal for global esti-

mates of metals.
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