四川石棉县大水沟岩片绿片岩锆石
SHRIMP U-Pb 年代学及其地质意义

阮林森1,2, 赵鹏大1, 胡光道1, 杨晓勇3, 侯立玮4, 陈陵康5, 赵陕兰6

1. 中国地质大学资源学院, 湖北武汉 430074
2. 安徽省地质矿产勘查局 313 地质队, 安徽六安 237000
3. 中国科学技术大学地球与空间科学学院, 安徽合肥 230026
4. 四川省地质调查院, 四川成都 610084
5. 江西理工大学资源与环境工程学院, 江西赣州 341000
6. 陕西省地质矿产局区域地质矿产研究院, 陕西西安 712000

摘要：大水沟岩片位于安宁河深大断裂带中段, 川西松潘甘孜造山带与扬子地台结合部位, 因其特殊的构造位置和赋存碲矿床而备受重视。运用 SRHIMPU-Pb 定年技术对大水沟绿片岩进行年龄测试, 以确定大水沟岩片的形成时代, 为大水沟周边石棉—冕宁一带乃至川西扬子地台西缘的构造岩浆演化提供有益信息, 同时为大水沟碲铋矿床的形成时代提供线索。

关键词：大水沟岩片; 原岩; 地质年代学; 岩浆活动; 热液锆石; 岩石学。

SHRIMP U-Pb Dating of Greenschist from Dashuigou Schiefer, Shimian County, Shichuan Province and Its Geological Significance

RUAN Lin-sen1,2, ZHAO Peng-da1, HU Guang dao1, YANG Xiao-yong3, HOU Li-wei4, CHEN Ling-kang5, ZHAO Shan-lan6

1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
2. No.313 Geological Team, Bureau of Geology and Mineral Exploration of Anhui Province, Liu’an 237000, China
3. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
4. Geological Survey of Shichuan Province, Chengdu 610084, China
5. Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
6. Institute of Regional Geology and Mineral, Bureau of Geology and Mineral Exploration, Xi’an 712000, China

Abstract: Located at the central of the Anning River discordogenic fault, the binding site of the Songpan-Ganze orogenic belt and the Yangtze block, Dashuigou schiefer has attracted increasing attention of researchers regarding to its special tectonic site and the occurred tellurium deposit. In order to provide chronologic evidences for reconstructing tectonic and magmatic geochron evolution of areas around Dashuigou and the western margin of the Yangtze block in Shichuan, as well as for locating time of Dashuigou schiefer, zircon ages of the greenschist from Dashuigou were determined by SHRIMP U-Pb dating technique. Five age groups of the zircons with different characteristics of inner texture and cosmetics are obtained and subdivided.
from the greenschist of Dashuigou schiefer which should contain great proportions of sediments in the protolith. Ages of 2467−2430 Ma from remained detrital magma zircons shows the mass transportation of Archaean-early proterozoic basement, whereas ages of 790, 5−762, 5 Ma probably represent the magmatic event around Dashuigou on the background of Rodinia crack and upwelling mantle in early neoproterozoic. Metamorphism and magmatism generated by orogenics and postorogenics are documented by ages of 696.8−642.9 Ma from magma zircons, Zircons of 262.0−220.0 Ma ages are inferred from alkali rock nearby related to the Emeishan movement. 216.5−167.1 Ma ages of typical new growth and re-crystallized zircons caused by hydrothermal alteration reveal the post-magmatic hydrothermal activity. Dashuigou schiefer is probably allochthonous thrust sheet and ages from magma zircons and those thermal genetical bound its general locating time to the interval from 220.0 Ma to 167.1 Ma.

Key words: Dashuigou schiefer; protolith; geochronology; magmatism; thermal zircons; petrology.

0 引言

大水沟岩片位于扬子地台西缘与松潘－甘孜造山带结合部，龙门山－大雪山－锦屏山推覆构造带北西向安宁河深大断裂带中段，同时也处于传统意义上呈南北向展布的康定杂岩带的北部。由于大水沟地区经历了复杂的变质和变形，对于其原岩性质和形成时代、变形变质史争议颇多。其围岩的形成年代有晚二叠、中、下三叠世、志留纪、早元古代等多种看法（陈毓川等，1996；徐士进等，1998；喻安光和郭建强，1998）。由于缺乏精确的年龄数据，对该区二叠纪之前的变形变质史和构造事件鲜有探讨。笔者利用SHRIMP U-Pb微区定年技术对大水沟绿片岩的锆石进行年龄测试以期提供大水沟岩片形成时代的年龄限制，为恢复石棉－冕宁地区乃至整个川西扬子地台西缘大地构造岩浆演化提供有价值的信，同时也为赋存在大水沟岩片中碲铋矿床的成矿时代背景提供有益线索。

1 地质背景

大水沟岩石片位于扬子地台西缘与松潘－甘孜造山带结合部。龙门山－大雪山－锦屏山推覆构造带北西向安宁河深大断裂带中段，同时也处于传统意义上呈南北向展布的康定杂岩带的北部。由于大水沟地区经历了复杂的变质和变形，对于其原岩性质和形成时代、变形变质史争议颇多。其围岩的形成年代有晚二叠、中、下三叠世、志留纪、早元古代等多种看法（陈毓川等，1996；徐士进等，1998；喻安光和郭建强，1998）。由于缺乏精确的年龄数据，对该区二叠纪之前的变质史和构造事件鲜有探讨。笔者利用SHRIMP U-Pb微区定年技术对大水沟绿片岩的锆石进行年龄测试以期提供大水沟岩片形成时代的年龄限制，为恢复石棉－冕宁地区乃至整个川西扬子地台西缘大地构造岩浆演化提供有价值的信，同时也为赋存在大水沟岩片中碲铋矿床的成矿时代背景提供有益线索。
第 4 期
阮林森等: 四川石棉县大水沟岩片绿片岩锆石 SHRIMP U-Pb 年代学及其地质意义

图 1 大水沟区域构造略图(据喻安光等改编, 1998)

Fig. 1 Tectonic and geologic map of the Dashuigou region

1. T-P1 三叠系-二叠系下统; 2. S1-S3 志留系通化群; 3. γ3 侏罗纪二长花岗岩; 4. γ3 早白垩世中粒二长花岗岩; 5. Ar-Pt 康定杂岩; F1. 滨东滑脱韧性剪切带; F2. 西油坊逆冲推覆性剪切带; F3. 拉古盆子滑脱韧性剪切带; F4. 野鸡洞逆冲推覆性剪切带; I. 洪坝构造岩片; II. 大水沟构造岩片; III. 蟹螺构造岩片; IV. 岩勒构造岩片; V. 挖角坝构造岩片

1972) 进行判别，DF3 = -0.21SiO2 - 0.320F2O3 (全铁) - 0.98MgO + 1.46Na2O + 0.54K2O + 10.44，结果 H1 ~ H5 的 DF3 值分别为 -4.11，-1.66，-1.22，-0.11 和 -4.03，极为副斜长角闪岩特征值。

由于大水沟岩片经历了区域变质、热变质以及岩浆热液的蚀变作用，主量元素尤其是 Si, Al, K, Na 发生了一定程度的迁移和再分配，等化学方法恢复原岩可能造成误判。因此我们采取微量元素，尤其是不活泼元素和高场强元素（Ti, Nb, Ta, Hf, Zr, Y 等）和稀土元素（REE）来进一步进行原岩的恢复。

稀土元素 La/Yb-ΣREE 图解 (Allegre, 1978) (图 3) 上，各样品均位于玄武岩和泥质岩的混合区。为进一步判别它们是属于火成岩还是沉积岩原岩，本文用针对蚀变变质岩常用的不活泼元素 Zr/TiO2-Ni 的图解 (Wenchester et al., 1980) 投点，可以看出 5 件样品均落入副变质沉积岩区 (TiO2 含量单位 wt.%) (图 4a)。微量元素组合判别的戈尔巴乔夫图解 (Wenchester et al., 1980) 投点，可以看出 5 件样品均落入副变质沉积岩区 (图 4b)。因此基本上可以认为所采样品为沉积变质岩，这与 1：20 万区调资料认为的原岩为碎屑沉积建造的观点一致 (四川地矿局区测队, 1974, 中华人民共和国区域地质调查报告(1：20 万, 石棉幅, 地质部分))。本次所采样品是大水沟碲
表1 大水沟绿片岩主量（％）和微量元素（μg/g）分析结果

<table>
<thead>
<tr>
<th>样品名称</th>
<th>H1片岩</th>
<th>H2片岩</th>
<th>H3片岩</th>
<th>H4片岩</th>
<th>H5片岩</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>45.43</td>
<td>44.02</td>
<td>39.20</td>
<td>39.64</td>
<td>37.89</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.70</td>
<td>1.70</td>
<td>1.35</td>
<td>1.48</td>
<td>1.85</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.46</td>
<td>17.49</td>
<td>16.88</td>
<td>16.16</td>
<td>18.06</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.80</td>
<td>4.67</td>
<td>3.16</td>
<td>3.26</td>
<td>2.86</td>
</tr>
<tr>
<td>FeO</td>
<td>10.84</td>
<td>8.17</td>
<td>9.75</td>
<td>9.01</td>
<td>11.98</td>
</tr>
<tr>
<td>MnO</td>
<td>0.26</td>
<td>0.22</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>MgO</td>
<td>7.26</td>
<td>7.97</td>
<td>8.14</td>
<td>7.73</td>
<td>9.37</td>
</tr>
<tr>
<td>CaO</td>
<td>7.57</td>
<td>10.15</td>
<td>9.64</td>
<td>10.69</td>
<td>7.49</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.77</td>
<td>2.47</td>
<td>1.67</td>
<td>1.66</td>
<td>1.68</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.80</td>
<td>0.31</td>
<td>2.38</td>
<td>2.39</td>
<td>2.35</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.30</td>
<td>0.37</td>
<td>0.16</td>
<td>0.32</td>
<td>0.26</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.91</td>
<td>1.91</td>
<td>1.85</td>
<td>1.58</td>
<td>2.67</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>0.06</td>
<td>0.06</td>
<td>0.13</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>SiO₂</td>
<td>3.14</td>
<td>0.65</td>
<td>4.04</td>
<td>4.87</td>
<td>1.57</td>
</tr>
<tr>
<td>Total</td>
<td>99.47</td>
<td>100.31</td>
<td>98.74</td>
<td>99.30</td>
<td>98.53</td>
</tr>
<tr>
<td>%</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>O</td>
<td>0.15</td>
<td>0.15</td>
<td>0.18</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>CO₂</td>
<td>3.14</td>
<td>0.65</td>
<td>4.04</td>
<td>4.87</td>
<td>1.57</td>
</tr>
<tr>
<td>Ti</td>
<td>215.00</td>
<td>201.05</td>
<td>128.00</td>
<td>199.00</td>
<td>219.60</td>
</tr>
<tr>
<td>Ca</td>
<td>299.00</td>
<td>250.44</td>
<td>289.00</td>
<td>315.39</td>
<td>348.92</td>
</tr>
<tr>
<td>Ga</td>
<td>28.34</td>
<td>19.45</td>
<td>21.97</td>
<td>20.88</td>
<td>25.56</td>
</tr>
<tr>
<td>Nb</td>
<td>134.00</td>
<td>94.00</td>
<td>78.90</td>
<td>113.00</td>
<td>101.00</td>
</tr>
<tr>
<td>Ta</td>
<td>3.55</td>
<td>1.45</td>
<td>0.69</td>
<td>0.52</td>
<td>0.58</td>
</tr>
<tr>
<td>Zr</td>
<td>21.45</td>
<td>19.46</td>
<td>44.02</td>
<td>61.42</td>
<td>51.18</td>
</tr>
<tr>
<td>Hf</td>
<td>272.44</td>
<td>177.15</td>
<td>156.27</td>
<td>145.55</td>
<td>146.10</td>
</tr>
<tr>
<td>V</td>
<td>28.90</td>
<td>36.18</td>
<td>27.03</td>
<td>24.81</td>
<td>20.08</td>
</tr>
<tr>
<td>Cr</td>
<td>15.50</td>
<td>19.46</td>
<td>11.20</td>
<td>18.47</td>
<td>21.18</td>
</tr>
<tr>
<td>Sc</td>
<td>36.30</td>
<td>34.78</td>
<td>26.60</td>
<td>30.59</td>
<td>36.90</td>
</tr>
<tr>
<td>Ce</td>
<td>4.79</td>
<td>4.76</td>
<td>3.28</td>
<td>4.28</td>
<td>4.96</td>
</tr>
<tr>
<td>Nd</td>
<td>20.20</td>
<td>20.71</td>
<td>12.90</td>
<td>17.91</td>
<td>21.21</td>
</tr>
<tr>
<td>Sm</td>
<td>4.51</td>
<td>5.51</td>
<td>3.23</td>
<td>4.68</td>
<td>5.29</td>
</tr>
<tr>
<td>Eu</td>
<td>1.51</td>
<td>1.55</td>
<td>1.40</td>
<td>1.90</td>
<td>1.95</td>
</tr>
<tr>
<td>Gd</td>
<td>3.70</td>
<td>4.55</td>
<td>2.58</td>
<td>3.96</td>
<td>4.27</td>
</tr>
<tr>
<td>Tb</td>
<td>0.77</td>
<td>1.10</td>
<td>0.50</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Dy</td>
<td>4.95</td>
<td>6.68</td>
<td>2.93</td>
<td>6.32</td>
<td>5.68</td>
</tr>
<tr>
<td>Ho</td>
<td>0.90</td>
<td>1.42</td>
<td>0.55</td>
<td>1.31</td>
<td>1.17</td>
</tr>
<tr>
<td>Er</td>
<td>2.58</td>
<td>3.71</td>
<td>1.60</td>
<td>3.38</td>
<td>3.12</td>
</tr>
<tr>
<td>Tm</td>
<td>0.40</td>
<td>0.58</td>
<td>0.25</td>
<td>0.54</td>
<td>0.48</td>
</tr>
<tr>
<td>Yb</td>
<td>2.35</td>
<td>3.17</td>
<td>1.43</td>
<td>2.91</td>
<td>2.52</td>
</tr>
<tr>
<td>Lu</td>
<td>0.35</td>
<td>0.41</td>
<td>0.24</td>
<td>0.40</td>
<td>0.34</td>
</tr>
<tr>
<td>Y</td>
<td>23.50</td>
<td>39.78</td>
<td>14.30</td>
<td>38.63</td>
<td>33.86</td>
</tr>
<tr>
<td>La/Sm</td>
<td>122.31</td>
<td>148.14</td>
<td>82.99</td>
<td>136.27</td>
<td>143.89</td>
</tr>
<tr>
<td>LREE</td>
<td>122.31</td>
<td>148.14</td>
<td>82.99</td>
<td>136.27</td>
<td>143.89</td>
</tr>
<tr>
<td>HREE</td>
<td>16.00</td>
<td>21.60</td>
<td>10.08</td>
<td>19.39</td>
<td>18.54</td>
</tr>
<tr>
<td>LR/HR</td>
<td>5.04</td>
<td>4.02</td>
<td>5.81</td>
<td>3.93</td>
<td>4.93</td>
</tr>
</tbody>
</table>

图2 区分正副变质岩的 A-C-FM 图（据王仁民等，1987）

Fig. 2 A-C-FM Diagram for differing orthorock.

图3 岩石类型La/Yb-ΣREE判别图解（据 Allegre，1978）

Fig. 3 La/Yb-ΣREE discriminant diagram of rock types.

3 锆石特征和测试结果分析

3.1 样品处理和测试方法

在上部细粒绿帘石斜长角闪片石岩只挑出 8粒锆石(N1)，其他因为太细小而不能利用。在底部

Fig. 4 Zr/TiO_{2}–Ni diagram and Rfm–Rfl–Rv diagram for differing orthorock from pararock

阳起石斜长角闪片岩中获得 100 多颗锆石，挑选了其中 37 粒粒相对较大的锆石样品 (N2)。样品破碎和锆石挑选由河北廊坊市科大岩石矿物分选技术服务有限公司完成。采用常规的电磁和浮选法分选后在双目镜下挑选颗粒相对较大的锆石，与标准锆石 (TEM 标准锆石 U-Pb 年龄为 417 Ma) 一起制靶后在中国地质科学院矿产资源研究所进行反射与透反射以及阴极发光观察与照相。确定锆石的内部结构和特征，然后对样品靶进行清洗和抛光。选择具有代表性的锆石在北京离子探针中心 SHRIMP II 上完成 SHRIMP U-Pb 测试。具体制靶、分析程序和原理见宋彪等 (2002)。样品数据和图形处理采用 SQUID (DR K. R Lodwig 2001 年 9 月 21 日 1.03d 版) 和 ISOPLOT3.25 版软件。用^{204}Pb 进行普通铅的校正。标准样和未知样品的普通铅根据 Stacey et al. (1975) 模式给出，其中，common^{204}Pb/^{208}Pb = 18.052，common^{207}Pb/^{206}Pb = 0.864，common^{208}Pb/^{206}Pb = 2.097。对于年龄在 1.2 Ga 以下的锆石采用^{208}Pb/^{238}U 复值，对于年龄较老的锆石 (大于 1.2 Ga) 年龄数值采用^{207}Pb/^{206}Pb (杜利林等, 2005)，年龄置信误差为 1σ。95% 置信水平。

3.2 锆石特征和 SHRIMP U-Pb 年龄特征

所选锆石样品长度一般 60～120 μm，小于直径 200 μm，宽度 40～60 μm，对 45 颗锆石进行了 47 个点位的系统测试，阴极发光结合透反射图显示 45 颗锆石晶体外形、内部结构变化较复杂。其中 41 个测点根据不同的年龄段结合锆石的晶型、内部结构可以区分出 5 类具有相对明确地质意义的锆石 (图 5)。A 类来自上部 N1 锆石，其他 4 类来自底部 N2 锆石。

A. 2430 ± 9.0 Ma～2467 ± 16.0 Ma (^{207}Pb/^{206}Pb 年龄)；共有 4 颗锆石，呈短柱状，表面粗糙，边部浑圆状，说明经过强烈的挤压作用。具有核幔结构，核部可见明显暗色的震荡环带，U/Pb 比值 0.53～0.92，说明其是酸性岩浆锆石。边部有多晶化作用形成的亮边或热液作用形成的暗色增生边。这类锆石很明显来自于古老的岩浆结晶基底。经过长距离的搬运过程。4 颗锆石在谐和图上均不一致但线或附近，说明其可能为同一物质。其上交点年龄为 2482 (−140, ±300) Ma，可能代表其原岩结晶年龄 (图 6a)。

B. 790.5 ± 13.0 Ma～762.5 ± 6.6 Ma；2 颗锆石，年龄 790.5 ± 13.0 Ma～780.0 ± 8.2 Ma，其外形呈短柱状或大颗粒锆石的碎片，内部无裂纹，具有比较清晰的锯短形韵律环带或者由发光强弱不同的晶域相间构成宽的平行条带，Th/U 比值为 0.97～1.43，同时 Th/(53×10^{-6})～78×10^{-6} 和 U/(56×10^{-6}) 含量较低，具有基性岩浆锆石特征 (周建雄和陈振宇, 2007)。锆石内部均匀，透射光下无筛孔，结合其比较清晰的环带结构说明未受到变质重结晶作用的影响。核部平均年龄 784 Ma 可以代表源岩结晶年龄 (Pidgeon, 1992; Hoskin and Black, 2000)。由于锆石外形呈棱角状，可以判断其离物源不远。另外一颗锆石可能受到重结晶作用影响，具有阴极分带，幔部年龄 762.5 ± 6.6 Ma 应该是其变质年龄。

C. 696.8 ± 9.1 Ma～642.9 ± 4.0 Ma；共有 9 颗锆石，以自型板状和长柱状为主，等轴粒状次之，表面比较粗糙，阴极发光下有比较宽的扇形韵律环带
图 5 大水沟绿片岩锆石阴极发光图（图下方为细粒斜长角闪片岩中 8 颗锆石的反射光照片）

Fig. 5 Zircon CL images for greenschist in Dashuigou
或者由发光强弱不同的晶域相间构成的平行条带（如2#10.1, 2#11.2, 2#8.1），可能受局部酸化作用影响，有的条带比较模糊（如2#14.1, 2#9）。

几颗锆石还具有继承锆石的残留核，有的锆石内部无环带或有布丁状结构，这些锆石的Th/U比值均较高（0.48~1.43），说明其原为岩浆锆石，棱角状形态说明物源也不是很远。其中两颗锆石核部年龄非常接近（2#31.2, 2#32.2），增生边的年龄也相近，核部未显示重结晶的影响，其核部平均年龄262.0±2.7Ma，可能代表一期岩浆结晶时代。其他锆石可能均受到局部亚固相重结晶或者少量流体作用下的局部重结晶影响，年龄最大值（696.4Ma）可能最接近于早期岩浆结晶年龄（Vavra et al., 1999），而年龄的最小值特别是靠近边部的年龄（642.9 Ma）可能最接近引起锆石退变质的岩浆或构造事件的时代（刘福来等，2003）。

D. 262.0±2.7~220.0±1.7; 共有17颗锆石，其中3颗（2#6.2, 2#37.1, 2#15.1）锆石具有较明显的平行条带，外形比较规则，一颗边部具有重结晶的亮壳。其他锆石外形极不规则，内部分带特征为无环带，弱分带或云雾状分带，面状环带以及模糊的曲面状环带。我们起初判断可能是完全变质重结晶锆石，但透射光下却比较均匀，基本没有见到酸化产生的孔洞和骨架状构造，也极少有裂纹，无老核新壳的结构。次棱角状的外形也不可能在完全重结晶的情况下保持，因此它们和重结晶作用比较彻底的锆石特征完全不同，它们与变质流体或混合岩化、深熔作用下具有规则外形的新生锆石或具有明显的震荡环带、面形分带的变质流体锆石（周建雄和陈振宇，2007）也不同，因此基本可以排除变质锆石的可能。所有这些锆石的Th/U比值均较高（1.42~3.30），同时部分锆石U, Th含量极高（U=（799.1×10^-6）, Th=（1423~4576）×10^-6），这些特征和攀西一带碱性岩体中的锆石特征非常类似，如攀西白马、鸡街的霓辉长岩、川南德昌炭带的碱性岩体中锆石均具有不规则外形，高Th, U含量和Th/U比值，内部无环带或模糊环带等特点（夏斌等，2004），因此该类锆石很可能是由变质锆体的岩浆锆石，其中12颗锆石组成密集环带并相交一致曲线。207Pb/235Pb, 206Pb/238U和207Pb/235U的比值在误差范围内较为一致。12颗锆石的加权平均年龄为252.4 Ma, MSWD=0.93（图7）。

E. 216.5±1.0 Ma～167.5±1.8 Ma变质增生锆石，几乎所有锆石的边部都发育有或窄或宽的变质重结晶边，其中的8颗锆石生边宽大，锆石边部具有晶棱圆化，港湾状结构等外形特征。再生边部位U含量高，Th/U比值低（0.01~0.06），具有典型热液蚀变锆石的特征（吴元保和郑永飞，2004）。此类锆石年龄跨度较小（216.5±1.0 Ma～167.1±1.8 Ma）, 8颗锆石的再生边测试结果表明其年龄具有较好的一致性，在207Pb/206Pb, 238U/235U和图上一致曲线上或附近（图6b），不一致曲线下交点年龄为182.0±19.0 Ma，其中7颗锆石加权平均年龄为172.0±13.0 Ma。该年龄的最小值167.1±1.8 Ma最有可能代表热液变质作用发生的时间（Hoskin and Black, 2000）。

其余6个测点中4个来自N1锆石，2个来自N2锆石。这几个测点由于数量少，年龄比较分散，或
图 7 12 颗高 Th、U 共生锆石加权平均年龄

Fig. 7 Weighted age of 12 zircon with abnormally high Th and U

是普通铅含量特高不具实际意义（1 ≠ 2, 1），同时具有变质锆石甚至年龄，难以判断它们的地质意义，本文不再具体讨论。

由于岩石为沉积原岩，锆石的来源可能不同，锆石 SHRIMP U-Pb 年龄跨度大（表 2），锆石又遭受不同期次的变质作用，造成放射性 Pb 的丢失或移动，因此部分锆石并没有构成一致性的年代序列（图 8），这也反证了我们对某些物源和性质的研究是合理的。锆石的来源虽然不同，但是每个年龄段都有对应的年龄峰值，而且每类年龄段的锆石又具有比较明显的外部和内部特征，这就使我们可能比较合理的划分锆石成因，恢复每类锆石年龄对应的区域构造岩浆活动事件。

4.2 扬子地台西缘 metamorphism 的锆石性质问题；关于扬子地台西缘是否存在太古代-古元古代的结晶基底一直存在争议。本次石棉大水沟斜长角闪片岩中获得年龄为 2467±2358 Ma 的锆石内部明显环带结构显示其岩浆锆石的属性，表明确实存在着太古代-古元古代的物源，但是所采锆石原岩恢复为碎屑岩的性质，而且该类锆石明显经过了长距离的多次搬运过程，因此该类锆石究竟属于扬子地台西缘本地的岩浆岩结晶基底物源，还是来自东部古扬子陆块或早期其他陆块经长期和长距离多次搬运的物源还有待考证。

4.1 大水沟岩片形成年龄探讨

和川西南其他地区类似的可能来自碱性岩体的 261.9±2.7 Ma～220.0±1.7 Ma 锆石年龄限制，大水沟岩片年龄上限应该为 220.0 Ma，热液增生岩浆的缺乏不可能经历搬运沉积或者在引起推覆构造的强大构造应力下还保持完整形态，所以变质增生锆石代表年龄 167.1 Ma 应该是大水沟岩片形成的时间，大水沟岩片应该是在 220.0～167.1 Ma 时间段形成的，这与早期 1：20 万区调认为大水沟岩片属于中下三叠统观点比较一致。本文获得的来自绿片岩上部和底部岩层的锆石在形态、结构和数量以及年龄特征方面均有很大的区别，因此它们的原岩来源可能截然不同。徐士进等(1998)在该岩片中曾经获得 936 Ma 左右的年龄，而喻安光等(1998)也获得相当于志留系的球藻类化石。大水沟岩片普遍发育推覆褶皱构造，上部绿片岩和下部大理岩呈构造不整合或者构造假整合接触，接触带附近的大理岩普遍出现与区域地层产状极不协调的变质褶皱，因而前人曾认为大水沟岩片为异地推覆系统（喻安光和郭建强，1998）。我们此次的研究结果进一步证实大水沟岩片总体应该是构造推覆体，造成不同时代地层的相互叠置。因此 220.0～167.1 Ma 年龄非其原岩形成年龄，其可以确切代表的是大水沟岩片总体定位年代。

4.2 扬子地台西缘 metamorphism 的锆石性质问题；关于扬子地台西缘是否存在太古代-古元古代的结晶基底一直存在争议。本次石棉大水沟斜长角闪片岩中获得年龄为 2467±2358 Ma 的锆石内部明显环带结构显示其岩浆锆石的属性，表明确实存在着太古代-古元古代的物源，但是所采锆石原岩恢复为碎屑岩的性质，而且该类锆石明显经过了长距离的多次搬运过程，因此该类锆石究竟属于扬子地台西缘本地的岩浆岩结晶基底物源，还是来自东部古扬子陆块或早期其他陆块经长期和长距离多次搬运的物源还有待考证。

扬子地台西缘 metamorphism 的锆石性质问题：关于扬子地台西缘是否存在太古代-古元古代的结晶基底一直存在争议。本次石棉大水沟斜长角闪片岩中获得年龄为 2467±2358 Ma 的锆石内部明显环带结构显示其岩浆锆石的属性，表明确实存在着太古代-古元古代的物源，但是所采锆石原岩恢复为碎屑岩的性质，而且该类锆石明显经过了长距离的多次搬运过程，因此该类锆石究竟属于扬子地台西缘本地的岩浆岩结晶基底物源，还是来自东部古扬子陆块或早期其他陆块经长期和长距离多次搬运的物源还有待考证。

4.1 大水沟岩片形成年龄探讨

和川西南其他地区类似的可能来自碱性岩体的 261.9±2.7 Ma～220.0±1.7 Ma 锆石年龄限制，大水沟岩片年龄上限应该为 220.0 Ma，热液增生岩浆的缺乏不可能经历搬运沉积或者在引起推覆构造的强大构造应力下还保持完整形态，所以变质增生锆石代表年龄 167.1 Ma 应该是大水沟岩片形成的时间，大水沟岩片应该是在 220.0～167.1 Ma 时间段形成的，这与早期 1：20 万区调认为大水沟岩片属于中下三叠统观点比较一致。本文获得的来自绿片岩上部和底部岩层的锆石在形态、结构和数量以及年龄特征方面均有很大的区别，因此
Table 2: Analytical data of SHRIMP U-Pb isotope of zircon grains from greenschist in Dashugou schierf

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>Pb (ppm)</th>
<th>Th/Pb</th>
<th>U/Pb</th>
<th>δ²⁰⁶⁰⁻⁰⁶⁰U</th>
<th>δ²³⁸⁰⁻⁰⁶⁰U</th>
<th>δ²⁰⁶⁰⁻⁰⁶⁰Th</th>
<th>δ²³⁸⁰⁻⁰⁶⁰Th</th>
<th>ε⁰⁶⁰⁻⁰⁶⁰Pb</th>
<th>δ²³⁸⁰⁻²³⁰Th</th>
<th>δ²⁰⁶⁰⁻²³⁰Th</th>
<th>ε⁰⁶⁰⁻⁰⁶⁰Pb</th>
<th>ε⁰⁶⁰⁻⁰⁶⁰Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3784-2-12</td>
<td>1.3</td>
<td>1.9</td>
<td>1.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
<td>0.4</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>G3784-2-1</td>
<td>2.1</td>
<td>3.2</td>
<td>2.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>G3784-2-10</td>
<td>2.3</td>
<td>3.5</td>
<td>2.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>G3784-2-9</td>
<td>2.4</td>
<td>3.6</td>
<td>3.0</td>
<td>1.8</td>
<td>1.8</td>
<td>1.5</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>G3784-2-8</td>
<td>2.5</td>
<td>3.7</td>
<td>3.1</td>
<td>1.9</td>
<td>1.9</td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>G3784-2-7</td>
<td>2.6</td>
<td>3.8</td>
<td>3.2</td>
<td>2.0</td>
<td>2.0</td>
<td>1.7</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>G3784-2-6</td>
<td>2.7</td>
<td>3.9</td>
<td>3.3</td>
<td>2.1</td>
<td>2.1</td>
<td>1.8</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>G3784-2-5</td>
<td>2.8</td>
<td>4.0</td>
<td>3.4</td>
<td>2.2</td>
<td>2.2</td>
<td>1.9</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>G3784-2-4</td>
<td>2.9</td>
<td>4.1</td>
<td>3.5</td>
<td>2.3</td>
<td>2.3</td>
<td>2.0</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>G3784-2-3</td>
<td>3.0</td>
<td>4.2</td>
<td>3.6</td>
<td>2.4</td>
<td>2.4</td>
<td>2.1</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>G3784-2-2</td>
<td>3.1</td>
<td>4.3</td>
<td>3.7</td>
<td>2.5</td>
<td>2.5</td>
<td>2.2</td>
<td>2.0</td>
<td>2.1</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>G3784-2-1</td>
<td>3.2</td>
<td>4.4</td>
<td>3.8</td>
<td>2.6</td>
<td>2.6</td>
<td>2.3</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.2</td>
<td>2.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Note: All values are given in ppm except for the Th/Pb, U/Pb, δ²⁰⁶⁰⁻⁰⁶⁰U, δ²³⁸⁰⁻⁰⁶⁰U, δ²⁰⁶⁰⁻²³⁰Th, and δ²³⁸⁰⁻²³⁰Th ratios which are given in percent. The ε values are calculated relative to the Concordia. The errors are given in parentheses.
<table>
<thead>
<tr>
<th>样点编号</th>
<th>U ((10^{-6}))</th>
<th>Th ((10^{-6}))</th>
<th>(^{238}\text{Th}/^{238}\text{U})</th>
<th>(^{235}\text{Th}) ((%)</th>
<th>(^{236}\text{Th}/^{236}\text{U})</th>
<th>lô</th>
<th>(^{206}\text{Pb}/^{238}\text{U}) lô</th>
<th>(^{231}\text{Pb}/^{236}\text{Pb}) lô</th>
<th>(^{207}\text{Pb}/^{206}\text{Pb}) err</th>
<th>(^{207}\text{Pb}/^{206}\text{Pb}) err</th>
<th>(^{207}\text{Pb}/^{206}\text{Pb}) corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3784-2#-24.1</td>
<td>533</td>
<td>1471</td>
<td>2.85</td>
<td>0.91</td>
<td>16.9</td>
<td>232.3</td>
<td>1.3</td>
<td>228</td>
<td>4</td>
<td>-87</td>
<td>94</td>
</tr>
<tr>
<td>G3784-2#-26.1</td>
<td>1556</td>
<td>3617</td>
<td>2.40</td>
<td>0.25</td>
<td>48.6</td>
<td>229.6</td>
<td>1.0</td>
<td>203</td>
<td>2</td>
<td>193</td>
<td>25</td>
</tr>
<tr>
<td>G3784-2#-28.1</td>
<td>1822</td>
<td>4576</td>
<td>2.60</td>
<td>0.17</td>
<td>56.6</td>
<td>228.4</td>
<td>1.0</td>
<td>202</td>
<td>2</td>
<td>238</td>
<td>21</td>
</tr>
<tr>
<td>G3784-2#-19.1</td>
<td>909</td>
<td>2596</td>
<td>2.95</td>
<td>0.58</td>
<td>28.2</td>
<td>227.1</td>
<td>1.1</td>
<td>196</td>
<td>3</td>
<td>89</td>
<td>49</td>
</tr>
<tr>
<td>G3784-2#-37.1</td>
<td>799</td>
<td>1423</td>
<td>1.84</td>
<td>0.32</td>
<td>23.9</td>
<td>220.0</td>
<td>1.7</td>
<td>198</td>
<td>2</td>
<td>174</td>
<td>42</td>
</tr>
<tr>
<td>G3784-2#-35.1</td>
<td>3411</td>
<td>1022</td>
<td>0.31</td>
<td>0.45</td>
<td>100.5</td>
<td>216.5</td>
<td>0.9</td>
<td>216</td>
<td>4</td>
<td>273</td>
<td>22</td>
</tr>
<tr>
<td>G3784-2#-30.1</td>
<td>5209</td>
<td>293</td>
<td>0.06</td>
<td>0.54</td>
<td>130.9</td>
<td>184.9</td>
<td>1.2</td>
<td>230</td>
<td>20</td>
<td>215</td>
<td>25</td>
</tr>
<tr>
<td>G3784-2#-31.1</td>
<td>4596</td>
<td>241</td>
<td>0.05</td>
<td>0.22</td>
<td>112.4</td>
<td>180.5</td>
<td>1.6</td>
<td>221</td>
<td>9</td>
<td>164</td>
<td>18</td>
</tr>
<tr>
<td>G3784-2#-29.1</td>
<td>4479</td>
<td>52</td>
<td>0.01</td>
<td>0.14</td>
<td>105.5</td>
<td>174.1</td>
<td>1.8</td>
<td>115</td>
<td>30</td>
<td>133</td>
<td>17</td>
</tr>
<tr>
<td>G3784-2#-32.1</td>
<td>3838</td>
<td>134</td>
<td>0.04</td>
<td>0.14</td>
<td>89.3</td>
<td>172.0</td>
<td>0.8</td>
<td>172</td>
<td>10</td>
<td>157</td>
<td>17</td>
</tr>
<tr>
<td>G3784-2#-33.1</td>
<td>4455</td>
<td>182</td>
<td>0.04</td>
<td>0.16</td>
<td>103.6</td>
<td>172.0</td>
<td>1.1</td>
<td>172</td>
<td>11</td>
<td>173</td>
<td>18</td>
</tr>
<tr>
<td>G3784-2#-34.1</td>
<td>4952</td>
<td>193</td>
<td>0.04</td>
<td>0.19</td>
<td>114.9</td>
<td>171.5</td>
<td>0.7</td>
<td>180</td>
<td>13</td>
<td>115</td>
<td>20</td>
</tr>
<tr>
<td>G3784-2#-36.1</td>
<td>5356</td>
<td>211</td>
<td>0.04</td>
<td>0.17</td>
<td>121.1</td>
<td>167.1</td>
<td>1.8</td>
<td>150</td>
<td>10</td>
<td>150</td>
<td>17</td>
</tr>
<tr>
<td>G3784-1#-1.1</td>
<td>145</td>
<td>317</td>
<td>2.26</td>
<td>1.15</td>
<td>10.9</td>
<td>533.0</td>
<td>4.0</td>
<td>477</td>
<td>10</td>
<td>259</td>
<td>111</td>
</tr>
<tr>
<td>G3784-1#-2.1</td>
<td>37</td>
<td>40</td>
<td>1.11</td>
<td>9.08</td>
<td>0.7</td>
<td>127.0</td>
<td>5.2</td>
<td>88</td>
<td>24</td>
<td>0.019</td>
<td>9</td>
</tr>
<tr>
<td>G3784-1#-3.1</td>
<td>200</td>
<td>107</td>
<td>0.56</td>
<td>0.28</td>
<td>58.7</td>
<td>1892.7</td>
<td>9.9</td>
<td>1649</td>
<td>23</td>
<td>2430</td>
<td>9</td>
</tr>
<tr>
<td>G3784-1#-4.1</td>
<td>193</td>
<td>103</td>
<td>0.55</td>
<td>1.44</td>
<td>7.5</td>
<td>282.6</td>
<td>2.4</td>
<td>233</td>
<td>16</td>
<td>-17</td>
<td>181</td>
</tr>
<tr>
<td>G3784-1#-5.1</td>
<td>193</td>
<td>101</td>
<td>0.54</td>
<td>0.25</td>
<td>61.7</td>
<td>2030.7</td>
<td>11.0</td>
<td>2217</td>
<td>32</td>
<td>2400</td>
<td>9</td>
</tr>
<tr>
<td>G3784-1#-6.1</td>
<td>522</td>
<td>456</td>
<td>0.90</td>
<td>3.61</td>
<td>19.1</td>
<td>259.5</td>
<td>1.7</td>
<td>169</td>
<td>10</td>
<td>-38</td>
<td>180</td>
</tr>
<tr>
<td>G3784-1#-7.1</td>
<td>509</td>
<td>451</td>
<td>0.92</td>
<td>0.39</td>
<td>118.6</td>
<td>1542.5</td>
<td>6.8</td>
<td>1436</td>
<td>15</td>
<td>2358</td>
<td>9</td>
</tr>
<tr>
<td>G3784-1#-8.1</td>
<td>141</td>
<td>73</td>
<td>0.53</td>
<td>0.63</td>
<td>45.6</td>
<td>2049.7</td>
<td>15.7</td>
<td>1790</td>
<td>57</td>
<td>2467</td>
<td>16</td>
</tr>
</tbody>
</table>

注：(1)1#为上部细粒斜长角闪片岩中的N1锆石，2#为下部阳起石斜长角闪片岩中的N2锆石；(2)\(^{206}\text{Pb}\) 表示普通\(^{206}\text{Pb}\) 占总\(^{206}\text{Pb}\) 的百分比，\(^{206}\text{Pb}\) 表示放射性\(^{206}\text{Pb}\) 的含量。
并后2期与扬子古陆块发生拼贴造山作用（刘家铎 等，2004），并在后期与扬子古陆块发生拼合造山作用（侯立玮，1999）认为大水沟地区210～150 Ma期间同造山作用岩浆上侵作用形成大水沟穹隆构造。胡健民等（2005）认为松潘甘孜一带在印支晚期早中生代发生了两期花岗岩的侵入，早期侵位发生在219±8 Ma～204±7 Ma，晚期侵位时间是199±3 Ma～185±3 Ma，这与本次热液变质生成锆石的年龄是一致的，最少年龄 167.1±1.8 Ma 代表了晚期岩浆后热液作用的时间。

4.3 大水沟碲铋矿床形成的时间约束

大水沟岩片主体定位于 220.0～167.1 Ma，那么大水沟碲铋矿床的形成年代只能是 220 Ma 以后，因为脉状矿体不可能是原先形成经过构造推覆以后还保持完整的时间。热液变质生成锆石的下交点年龄 182.0 Ma 和最小年龄 167.1 Ma 与大水沟低品位的含碲白云石脉和含碲硫铁矿 177.7～167.1 Ma 成矿阶段（夏斌等，1995）非常接近，也和铜铋矿床典型的热液矿床的特征相符，大水沟地区和周缘并未见到晚侏罗世和白垩纪的岩浆作用迹象（王汝城等，1995），锆石的热液活动最低年龄 167.1 Ma 也不支持该区晚侏罗世以后有大规模的岩浆热液活动，因此大水沟碲铋矿床很可能与 182.0～167.1 Ma 的热液活动有关。

5 结论

（1）四川石棉大水沟碲铋矿床矿围岩绿片岩原岩有相当部分为沉积岩，大水沟岩片总体很可能是地层推覆系统，定位年代为晚三叠世 220.0～167.1 Ma。

（2）2467～2358 Ma 年龄的锆石具有浑圆的外形，说明了太古代～新元古代的物源搬运，而 790.5±13.0 Ma～762.5±6.6 Ma 锆石年龄证明了新元古代岩浆活动的存在。

（3）扬子地台西缘石棉～冕宁一带在 696.8±9.1 Ma～642.9±4.0 Ma 左右经历了碰撞造山和后造山岩浆侵入和热变质作用；伴随峨眉大规模基性岩浆事件，大水沟周缘很可能有 260～220 Ma 的碱性岩浆侵入。
1.8 Ma该代表了晚期岩浆期后热液作用的时间。

(4) 大水沟碲铋矿床很可能与中侏罗世热液活动有关。

致谢: 本文成文过程中得到四川省地质调查院付小芳高级工程师的指导和帮助, 在 SHRIMP U-Pb 测试过程中得到中国地质科学院李海兵教授的帮助, 四川鑫鑫矿业资源开发股份有限公司在野外工作和经费方面给予了大力支持, 在此一并致谢。

References

附中文参考文献
胡健民，孟庆任，石玉若，等，2005，松潘甘孜地体内花岗岩锆石 SHRIMP U-Pb 定年及其构造意义. 岩石学报，21(3):867-880.