doi:10.3799/dqkx.2014.020

具有补给气的异常高压有水凝析气藏 物质平衡方程建立及应用

吴克柳^{1,2},李相方¹,卢 巍³,徐兵祥¹,胡素明⁴

中国石油大学石油工程教育部重点实验室,北京 102249
 加拿大卡尔加里大学化学与石油工程学院,加拿大阿尔伯塔 T2N1N4
 中国石油天然气股份有限公司长庆油田第八采油厂,陕西西安 710021
 塔里木油田公司勘探开发研究院,新疆库尔勒 841000

摘要:物质平衡法是计算气藏地质储量、水侵量、补给气量的有效方法之一.具有补给气的异常高压有水凝析气藏是气藏开发 中最复杂的类型之一,兼具异常高压气藏、凝析气藏和补给气的边底水气藏的特性.综合考虑开发过程中的凝析油析出,岩石、 束缚水和凝析油弹性膨胀,水相挥发,凝析气相中水蒸气增多,水溶气溢出,边底水的推进及外来气补给等复杂物理现象,根 据物质平衡原理,推导了具有补给气的异常高压有水凝析气藏物质平衡方程,并运用相对海明距离及关联度理论,以驱动指 数均方差、比拟压力与采出程度偏差指数和综合目标函数为分析因素,分析了各组合方案贴近程度及相似程度,挑选最佳组 合方案并确定出地质储量、补给气量及水侵量,同时计算了水体倍数.实例计算表明:中国西北某凝析气藏地质储量为 66.80× 10⁸ m³,如果忽略凝析油,计算地质储量偏大,误差高达 91.77%,其次是水侵、弹性膨胀和气侵的影响,误差分别为 75.75%、 23.95%和 12.87%,而溢出水溶气为 2.69%与水蒸气为 1.65%,影响较小,但也不可忽略.

关键词:异常高压;凝析气藏;物质平衡方程;水侵;反凝析;地质储量;石油地质.

中图分类号: P624.7 **文章编号:** 1000-2383(2014)02-0210-11

Application and Derivation of Material Balance Equation for Abnormally Pressured Gas Condensate Reservoirs with Gas Recharge Capacity and Water Influx

收稿日期:2013-04-28

Wu Keliu^{1,2}, Li Xiangfang¹, Lu Wei³, Xu Bingxiang¹, Hu Suming⁴

1.Key Laboratory of Petroleum Engineering of Ministry of Education, China University of Petroleum, Beijing 102249, China
2.Chemical and Petroleum Engineering, University of Calgary, Alberta, T2N1N4, Canada

3. PetroChina Changqing Oilfield Company, Xi'an 710021, China

4. Research Institute of Petroleum Exploration and Development, Tarim Oilfield Company, PetroChina, Kurly 841000, China

Abstract: Material balance equation is an effective approach to estimate the OGIP, water influx, and gas recharge capacity in condensate gas reservoirs. The condensate gas reservoir with gas recharge capacity, abnormally high pressure, and edge and bottom water-drive is one of the most complicated reservoirs which include the features of condensate gas, pressure-dependent parameters and water influx. In this study, a new material balance equation for this reservoir was derived which considering retrograde condensation, the expansion of rock, bounded water and condensate oil, the phase change of vapor and dissolved gas, water and gas influx. The theories of Haiming Distance and relevance is used to analyze the mean square error of drive index, deviation index between pseudo pressure ratio and recovery, and generalized objective function. Based on the analysis of relative similarity degree and closeness coefficient, we chose the optimization scheme, and calculated the OGIP, gas recharge, water influx, and the aquifer volume. Based on the case study in condensate gas reservoir in Northwest China, a calculated reserve is 66.80×10^8 m³. We investigated and analyzed the parameters sensitivity by calculating the errors in the assumption of those pa-

基金项目:国家自然科学基金(No.50974128);国家科技重大专项(No.2011ZX05030-005-04).

作者简介:吴克柳(1985),男,博士,现为加拿大卡尔加里大学博士后,主要从事非常规天然气开发研究.E-mail:wukeliu19850109@163.com

rameters not included. The error of reserve estimation is up to 91.77% if oil condensate is not considered. Other parameters also have some effect such as water influx, the expansion and gas recharge. Respectively, the errors are 75.75%, 23.95% and 12.87%. The effect of gas escape from the dissolution and vapor is not significant but cannot be neglected, the errors are 2.69% of escaped gas and 1.65% of vapor.

Key words: abnormal high pressure; gas condensate reservoir; material balance equation; water influx; retrograde condensation; original gas in place (OGIP); petroleum geology.

为实现凝析气藏高效经济开发,准确预测气藏 原始地质储量和可采储量是非常重要的,而物质平 衡法是一种有效的预测方法(陈元千和王正鉴, 1982;陈元千和董宁宇,1999;陈玉祥等,2005;康晓 东等,2005:Fahd et al.,2010).凝析气藏物质平衡方 程与常规气藏物质平衡方程存在显著差异(Gus et al., 1992; 马永祥, 1997; 余元洲等, 2002; 戚志林 等,2003;付新等,2011).马永祥(1997)、陈元千和董 宁宇(1999)以及余元洲等(2002)对凝析气藏物质平 衡方程进行了推导、改进以及相应的研讨,戚志林等 (2003)推导了带油环的凝析气藏物质平衡方程.而 具有补给气的异常高压有水凝析气藏是气藏开发中 最复杂的类型之一,在开发过程中,地层压力低于露 点压力,凝析油析出,岩石、束缚水和凝析油弹性膨 胀,水相挥发,凝析气相中水蒸气增多,水溶气溢出, 边底水的推进及外来气补给等复杂物理现象均发生 (Hammerlindl, 1971; Humphreys, 1991; 刘建仪等, 2002;李骞等,2010;王星等,2010).笔者在前人研究 的基础上,综合考虑以上因素,推导了具有补给气的 异常高压有水凝析气藏物质平衡方程,为该类气藏 高效开发提供理论支撑.

1 物理模型建立

具有补给气的异常高压且带边底水的凝析气藏

在开发过程中,凝析气被采出,地层压力下降,气藏 原始平衡状态被破坏,边底水推进,外来凝析气侵 入,水相的水蒸气与溶解气更多的进入凝析气相中, 且当地层压力下降至露点压力后,凝析油析出,析出 的凝析油、束缚水及岩石发生弹性膨胀等(陈元千, 1983;张伦友和孙家征,1991;夏静等,2007;刘道杰 等,2011).将该类气藏视为封闭或开启的储集流体 的单独储罐体(余元洲等,2002;王星等,2010;孙贺 东,2011).基于体积平衡原理有:

原始地下储集空间=剩余凝析气+剩余补给凝 析气+溢出水溶气+水蒸气+束缚水体积+凝析油 体积+净水侵量+岩石、束缚水及凝析油膨胀体 积量.

考虑外来补给气及底水,建立实际凝析气藏物理 模型,并对比开发过程中凝析气藏的物理变化(图1).

2 物质平衡方程建立

根据具有补给气的异常高压有水凝析气藏物理 模型,应用物质平衡原理,推导气藏物质平衡方程 如下:

(1)原始地下储集空间:

$$V = \frac{GB_{\rm gi}}{(1 - S_{\rm wi}) (1 - y_{\rm wi})}, \qquad (1)$$

式中:G为储集层原始天然气储量,10⁸ m³;B_{gi}为原 始条件下天然气体积系数,无因次;S_{wi}为束缚水饱

和度,小数;y_{wi}为原始压力下气相中水蒸气所占分量,小数.

(2)剩余凝析气:

$$V_1 = (G - G_{\rm pl}) B_{\rm g}$$
, (2)

式中: G_{pl} 为当前原始凝析气的累积产量,10⁸ m³; B_{g} 为当前地层压力下天然气体积系数,无因次.

(3)剩余补给凝析气:

$$V_2 = (G_c - G_{p^2}) B_g , \qquad (3)$$

式中: G_{p2} 为当前储集层累积补给凝析气量, 10^8 m³; G_{p2} 为当前补给凝析气的累积产量, 10^8 m³.

(4)溢出水溶气:

$$V_{3} = \frac{GB_{\rm gi}S_{\rm wi}(R_{\rm swi} - R_{\rm sw})B_{\rm g}}{(1 - S_{\rm wi})(1 - y_{\rm wi})B_{\rm wi}}, \qquad (4)$$

式中: B_{wi} 为原始条件下地层水的体积系数,无因次; R_{swi} 为原始条件下的溶解气水比, m^3/m^3 ; R_{sw} 为当前地层压力下的溶解气水比, m^3/m^3 .

(5)水蒸气:

$$V_4 = (V_1 + V_2 + V_3) y_w , \qquad (5)$$

式中:y_w为当前地层压力下气相中水蒸气所占分量,小数.

(6)束缚水体积:

$$V_{5} = \frac{GB_{\rm gi}S_{\rm wi}}{(1 - S_{\rm wi})(1 - y_{\rm wi})}, \qquad (6)$$

(7)凝析油体积:

$$V_{6} = \frac{GB_{\rm gi}S_{o}}{(1 - S_{\rm wi})(1 - y_{\rm wi})}, \qquad (7)$$

式中:S。为当前地层压力的凝析油饱和度,小数.

(8)净水侵量:

$$V_7 = W_{\rm e} - W_{\rm p} B_{\rm w} , \qquad (8)$$

式中: W_{e} 为当前累积天然水侵量, 10^{8} m³; W_{p} 为当前 累积采出水量, 10^{8} m³; B_{w} 为当前地层压力下地层 水的体积系数,无因次.

(9)岩石、束缚水及凝析油膨胀体积量:

$$V_{8} = GB_{gi} \frac{C_{w}S_{wi} + C_{o}S_{o} + C_{f}}{(1 - S_{wi})(1 - y_{wi})} (p_{i} - p) , \quad (9)$$

式中: C_w 为地层水压缩系数, MPa^{-1} ; C_o 为凝析油压 缩系数, MPa^{-1} ; C_f 为地层压缩系数, MPa^{-1} ; p_i 为储 集层原始压力,MPa;p为储集层当前压力,MPa.

当地层压力低于凝析气露点压力,烃类气体体 积为:

$$V_{\rm hv-g} = V_{\rm p} \left(1 - S_{\rm wi} - S_0 - \Delta S_{\rm w} \right) \left(1 - y_{\rm w} \right) \,, \tag{10}$$

式中: V_{p} 为当前压力下储集层空间, 10^{8} m³; ΔS_{w} 为水侵造成储集层中增加的含水饱和度,小数,其可表

达为:

$$\Delta S_{\rm w} = (W_{\rm e} - W_{\rm p} B_{\rm w}) (1 - S_{\rm wi}) (1 - y_{\rm wi}) / GB_{\rm gi} .$$
(11)

对应烃类气体体积为:

$$V_{\rm hv-g} = V_1 + V_2 + V_3. \tag{12}$$

由式(10)和(12),可得当前压力下储集空间为:

$$V_{\rm p} = \frac{V_1 + V_2 + V_3}{(1 - S_{\rm wi} - S_0 - \Delta S_{\rm w})(1 - y_{\rm w})} \,. \tag{13}$$

原始储集层空间等于当前压力下储集层空间与 岩石、束缚水及凝析油膨胀体积变化量之和(田文忠 等,2005),由式(1)~(4)、式(9)和式(13)得:

$$\frac{GB_{gi}}{(1-S_{wi})(1-y_{wi})} = \frac{(G-G_{p1})B_{g} + (G_{c}-G_{p2})B_{g} + \frac{GB_{gi}S_{wi}(R_{swi}-R_{sw})B_{g}}{(1-S_{wi})(1-y_{wi})B_{wi}}}{\left[1-S_{wi}-S_{0}-\frac{(W_{e}-W_{p}B_{w})(1-S_{wi})(1-y_{wi})}{GB_{gi}}\right](1-y_{w})} + GB_{gi}\frac{C_{w}S_{wi}+C_{o}S_{o}+C_{f}}{(1-S_{wi})(1-y_{wi})}(p_{i}-p).$$
(14)

3 物质平衡方程应用

3.1 地质储量、补给气量及水侵量计算

具有补给气的异常高压有水凝析气藏物质平衡 方程式(14)为一零维方程,即在任意生产时期,该方 程恒成立.式(14)中的未知量有地质储量G、当前补 给气量G。和水侵量W。,通过同一个方程求解3个 未知量,通常采用无约束最优化方法,即给定目标函 数,求解目标函数的极小值,确定最佳的未知量组合 方案,获得最能反映实际储层发生的物理变化过程 的未知参数.

运用物质平衡方程式(14),获取地质储量G、补 给气量G。和水侵量W。,其目标函数为:

$$\gamma = \delta + \beta , \qquad (15)$$

其中,γ为目标函数;δ、β分别为驱动指数均方差和 比拟压力与采出程度偏差指数,具体定义如下.

3.1.1 驱动指数均方差 将物质平衡方程式(14) 变形为:

$$\begin{split} I_{t} = & \frac{G \bigg[B_{g} - B_{gi} \frac{1 - S_{wi}}{(1 - S_{wi})(1 - y_{wi})} \bigg]}{G_{p}B_{g}} + \\ & \frac{GB_{gi} \frac{S_{o}}{(1 - S_{wi})(1 - y_{wi})}}{G_{p}B_{g}} + \\ & \frac{\bigg[G + G_{c} - G_{p} + \frac{GB_{gi}S_{wi}(R_{swi} - R_{sw})}{(1 - S_{wi})(1 - y_{wi})B_{wi}} \bigg] B_{g}y_{w}}{G_{p}B_{g}} + \end{split}$$

$$\frac{\frac{GB_{gi}S_{wi}(R_{swi} - R_{sw})B_{g}}{(1 - S_{wi})(1 - y_{wi})B_{wi}}}{G_{p}B_{g}} + \frac{G_{c}B_{g}}{G_{p}B_{g}} + \frac{W_{e} - W_{p}B_{w}}{G_{p}B_{g}} + \frac{GB_{gi}}{G_{p}B_{g}} + \frac{GB_{gi}}{(1 - S_{wi})(1 - y_{wi})} + \frac{GB_{gi}}{G_{p}B_{g}} + \frac$$

其中:

原始气体弹性驱动指数,小数;

$$I_{t_{2}} = \frac{GB_{gi}}{G_{p}B_{g}} \frac{S_{o}}{(1 - S_{wi})(1 - y_{wi})}, I_{t_{2}}$$
为凝析油弹

性驱动指数,小数;

 $I_{+3} =$

$$\frac{\left[G + G_{\rm c} - G_{\rm p} + \frac{GB_{\rm gi}S_{\rm wi}(R_{\rm swi} - R_{\rm sw})}{(1 - S_{\rm wi})(1 - y_{\rm wi})B_{\rm wi}}\right]B_{\rm g}y_{\rm w}}{G_{\rm p}B_{\rm g}},$$

I_{t3}为水蒸气驱动指数,小数;

$$I_{t4} = \frac{\frac{GB_{gi}S_{wi}(R_{swi} - R_{sw})B_{g}}{(1 - S_{wi})(1 - y_{wi})B_{wi}}}{G_{p}B_{g}}, I_{t4} \, \% \, \& \, \exists \, \& \, \aleph \, \& \,$$

气驱动指数,小数;

$$I_{t5} = \frac{G_{e}B_{g}}{G_{p}B_{g}}, I_{t5}$$
为补给气侵驱动指数,小数;
$$I_{t6} = \frac{W_{e} - W_{p}B_{w}}{G_{p}B_{g}}, I_{t6}$$
为净水侵驱动指数,

小数;

$$I_{t7} = \frac{GB_{gi} \frac{C_{w}S_{wi} + C_{o}S_{o} + C_{f}}{(1 - S_{wi})(1 - y_{wi})}(p_{i} - p)}{G_{p}B_{g}}, I_{t7}$$

束缚水、凝析油及岩石弹性膨胀驱动指数,小数.

式(16)未知数有地质储量 G、累积补给气侵量 G_{c} 和累积水侵量 W_{c} .实际驱动指数之和 I_{t} 为 1,如 果计算驱动指数越接近 1,则说明计算的参数组(G, G_{c} , W_{c})越符合实际储层发生的物理过程,如果偏离 1 越大,则与实际情况相差越大,这种差异程度用驱 动指数均方差 σ 来表征,其表达式为:

$$\delta = \left(\sum_{t=1}^{n} (I_t - 1)^2\right)^{\frac{1}{2}}, \qquad (17)$$

式中:t 为气藏开发时间.

驱动指数均方差σ是从驱动能量角度来表征储 层发生的物理过程.

3.1.2 比拟压力与采出程度偏差指数 将物质平 衡方程式(14)变形为:

$$\begin{split} &\frac{B_{\rm g}}{B_{\rm gi}} \! \left(\! \frac{G_{\rm p}}{G} \! - 1 \right) \! = \! - \frac{GB_{\rm gi} \left(1 - S_{\rm wi} \right)}{\left(1 \! - \! S_{\rm wi} \right) \left(1 \! - \! y_{\rm wi} \right)} \! / \! GB_{\rm gi} + \\ &\frac{GB_{\rm gi} S_{\rm 0}}{\left(1 \! - \! S_{\rm wi} \right) \left(1 \! - \! y_{\rm wi} \right)} \! / \! GB_{\rm gi} + \\ &\frac{\left[G \! + \! G_{\rm c} \! - \! G_{\rm p} \! + \! \frac{GB_{\rm gi} S_{\rm wi} \left(R_{\rm swi} \! - \! R_{\rm sw} \right)}{\left(1 \! - \! S_{\rm wi} \right) \left(1 \! - \! y_{\rm wi} \right) B_{\rm wi}} \right] B_{\rm g} y_{\rm w}}{GB_{\rm gi}} + \\ &\frac{G_{\rm c} B_{\rm g}}{GB_{\rm gi}} \! + \! \frac{W_{\rm e} \! - \! W_{\rm p} B_{\rm w}}{GB_{\rm gi}} \! + \! \frac{GB_{\rm gi} S_{\rm wi} \left(R_{\rm swi} \! - \! R_{\rm sw} \right) B_{\rm g}}{GB_{\rm gi}} \! + \\ &\frac{GB_{\rm gi}}{GB_{\rm gi}} \! \frac{C_{\rm w} S_{\rm wi} \! + \! C_{\rm o} S_{\rm o} \! + \! C_{\rm f}}{GB_{\rm gi}} (1 \! - \! y_{\rm wi}) \left(1 \! - \! y_{\rm wi} \right) B_{\rm wi}} \! + \\ &\frac{GB_{\rm gi}}{GB_{\rm gi}} \! \frac{C_{\rm w} S_{\rm wi} \! + \! C_{\rm o} S_{\rm o} \! + \! C_{\rm f}}{GB_{\rm gi}} (p_{\rm i} \! - \! p)}{GB_{\rm gi}} \! , \end{split}$$

其中:

$$K_{t1} = -\frac{GB_{gi}(1 - S_{wi} - S_0)}{(1 - S_{wi})(1 - y_{wi})} / GB_{gi}, K_{t1} 为 原$$
始气体占用体积分数,小数;
K_{t2} =

 $\frac{GB_{gi}S_{0}}{(1-S_{wi})(1-y_{wi})}/GB_{gi}, K_{t2}$ 为凝析油占用体积 分数,小数;

$$K_{t3} = \left[G + G_{c} - G_{p} + \frac{GB_{gi}S_{wi}(R_{swi} - R_{sw})}{(1 - S_{wi})(1 - y_{wi})B_{wi}}\right]B_{g}y_{w} - \frac{GB_{gi}}{GB_{gi}}$$

Kts为水蒸气占用体积分数,小数;

$$K_{i4} = \frac{G_c B_g}{G B_{gi}}, K_{i4}$$
 为补给气占用体积分数,

小数;

$$K_{t5} = \frac{W_e - W_p B_w}{G B_{gi}}, K_{t5}$$
为净水侵占用体积分

数,小数,

$$K_{t6} = \frac{\frac{GB_{gi}S_{wi}(R_{swi} - R_{sw})B_{g}}{(1 - S_{wi})(1 - y_{wi})B_{wi}}}{GB_{gi}}, K_{t6}$$
为溢出水溶

气占用体积分数,小数;

$$K_{t7} = \frac{GB_{gi}}{\frac{C_{w}S_{wi} + C_{o}S_{o} + C_{f}}{(1 - S_{wi})(1 - y_{wi})}(p_{i} - p)}{GB_{gi}}, K_{t7}$$

为束缚水、凝析油及岩石弹性膨胀占用的体积分数, 小数.

$$R = \frac{G_{p}}{G}, R 为储集层气体采出程度, 小数.$$
由式(18)简化为:
$$\frac{B_{g}}{B_{gi}}(R-1) = K_{t1} + K_{t2} + K_{t3} + K_{t4} + K_{t5} + K$$

(18)

商集层开反过程中温度可认为不受(刈甸知等, 1999),则:

$$\frac{B_{gi}}{B_{g}} = \frac{p/z}{p_{i}/z_{i}}.$$
(20)

 $\frac{4}{6} = \frac{1}{2} (19) = (20), \diamondsuit:$

$$K_{t} = 1 - R + \frac{p/z}{p_{i}/z_{i}}$$
($K_{t1} + K_{t2} + K_{t3} + K_{t4} + K_{t5} + K_{t6} + K_{t7}) = 0.$
(21)

由式(18)~(21)可知,实际值 K₁为 0,如果计 算值越趋于 0,则说明计算的储量、气侵量、水侵量、 比拟压力和采出量这 5 者关系搭配很好.反之,与实 际储层发生的物理过程偏差越大.偏差程度可用比 拟压力与采出程度偏差指数定义为:

$$\beta = \left(\sum_{t=1}^{n} (K_t - 0)^2\right)^{\frac{1}{2}}.$$
 (22)

β指标反映了储量、气侵量、水侵量、比拟压力 和采出量这5者搭配程度的好坏,是一个综合性较强的指标.

3.1.3 确定最佳组合方案 目标函数 γ 是衡量计算 结果与实际储层发生物理过程的综合吻合程度的指 标,最小 γ 值的方案应该是最贴近的组合方案,但不 一定是最接近实际储层发生物理过程的最优方案. 主要原因:(1) γ 的组合函数 δ 和 β 是分别从不同角 度来衡量物质平衡方程的特征,其用来反映实际储 层物理现象的权重是不等的,即它们在确定最佳组 合方案的地位与作用往往是不平等的;(2)相同的目 标函数 γ 值,组合函数 δ 和 β 有不同的取值组合.因 此,仅仅依据目标函数 γ 的最小值作为优选标准是 不合理的,必须综合分析 δ 和 β 对目标函数控制作 用大小,即它们同实际储层物理现象的贴近程度和 相似程度.依据此方法,对众多较优方案进行优劣排 序,确定最佳组合方案.

(1)贴近程度分析.贴近程度可利用模糊数学中的相对海明距离理论分析.理论解,即实际储层发生物理现象的地质储量、补给气量和水侵量表达为:

$$F^{*} = \left[f_{1}^{*}, f_{2}^{*}, \cdots, f_{j}^{*}, \cdots, f_{m}^{*} \right], \qquad (23)$$

n个较优方案对应的较优解可表达为:

$$F_{i} = \left[f_{i1}, f_{i2}, \cdots, f_{ij} \cdots, f_{im} \right], \qquad (24)$$

其中,i为组合方案数, $i=1,2,\dots,n;j$ 为函数个数, $j=1,2,\dots,m$.

较优解集的组合函数值与目标函数值是分布在

理论解中相应函数值的附近,其对理论解的隶属关系可用正态分布的隶属函数表达:

模糊化理论解可表达为:

$$\widetilde{F}^{*} = \left[u(f_{1}^{*}), u(f_{2}^{*}), \cdots u(f_{j}^{*}), \cdots, u(f_{m}^{*}) \right] =$$

 $\begin{bmatrix} 1, 1, \cdots, 1, \cdots, 1 \end{bmatrix}.$ (27)

每个较优方案的模糊化较优解与模糊化理论解 的海明距离可表达为:

$$d_{i}(\tilde{F}_{i},\tilde{F}^{*}) = \frac{1}{m} \sum_{j=1}^{m} |u(f_{ij}) - u(f_{j}^{*})| , (28)$$

由上式可知,海明距离大小可衡量各个较优方案与 实际储层发生物理变化过程的贴近程度,即符合程 度.海明距离越大,表明越不符合实际情况;反之, 亦反.

(2)相似程度分析.实际储层发生物理变化过程 与计算的较优方案两者的相似程度可用关联度分 析,通过组合函数和目标函数与对应理论解的总体 相似程度作为衡量指标进行最佳组合方案的优选. 总体相似程度越大,该方案最接近理论方案;反之, 亦反.

第 i 个方案总体相似程度的关联度表达式为:

$$\boldsymbol{\omega}_{i} = \frac{1}{m} \sum_{j=1}^{m} \boldsymbol{\xi}_{i}(j) \quad . \tag{29}$$

其中,组合函数及目标函数的关联度表达式为:

$$\begin{aligned} \xi_{i}(j) &= \\ \min_{i} \min_{j} |f_{j}^{*} - f_{ij}| + \rho \max_{i} \max_{j} |f_{j}^{*} - f_{ij}| \\ \hline |f_{j}^{*} - f_{ij}| + \rho \max_{i} \max_{j} |f_{j}^{*} - f_{ij}| \end{aligned} ,$$
(30)

式中: min min $|f_{j}|^{*} - f_{ij}|$ 称为两级最小差,表示 首先在 m 个目标函数中找到最小值,然后在 n 个较 优 方 案 中 找 出 进 一 步 的 最 小 值. max $\max_{i} |f_{j}|^{*} - f_{ij}|$ 称为两级最大差; ρ 为分辨系数, 一般取 $\rho = 0.5$.

基于相似程度分析,确定最佳组合方案时,以两 个组合函数与一个目标函数作为评价因素,计算的 总体相似程度值ω,越高时,对应最佳组合方案越符 合实际情况;反之,亦反.

(26)

(3)最佳组合方案优选.根据不同组合方案的贴 近程度指标与相似程度指标计算值的排序结果,进 行最佳组合方案的优选.当两个指标计算值排序结 果一致时,则优选出排序第一的方案为最佳组合方 案;当两个指标排序结果不一致,并更重视贴近程度 时,以贴近程度指标排序第一的方案为最佳组合方 案;反之,当更重视相似程度时,以相似程度指标排 序第一的方案为最佳组合方案.

3.2 水体大小计算

对于有限水体的弹性水驱气藏,当气藏压力降 波及到整个天然水域范围后,则气藏的累积水侵量:

 $W_{\rm e} = V_{\rm pw} \bullet (C_{\rm w} + C_{\rm f})\Delta p , \qquad (31)$

式中:V_{pw}为天然水域水体体积,10⁸ m³.

由式(31)变形可得:

 $V_{\rm pw} = W_{\rm e} / (C_{\rm w1} + C_{\rm f1}) \Delta p$ (32)

当压力降波及整个天然水域之前,随着压力波 扩展,参与流动的天然水域范围不断扩大,其水域体 积也不断增大,此时计算的 V_{pw}只为压力波及水域 体积大小.当压力降波及整个天然水域之后,参与流 动的天然水域范围固定,计算的 V_{pw}为固定值,即相 邻两个测压点计算出的水体体积大小之差等于 0, 即 ΔV_{pw}=0,此时计算 V_{pw}为整个天然水域水体体 积大小.

4 实例计算

4.1 基础数据

中国西北某气藏为带有底水的异常高压凝析气 藏,其东部有一补给的凝析气藏,之间有一条断层分 隔.该气藏埋深 4 791 m,原始压力 p_i 为 57.28 MPa, 露点压力 p_d 为 55.12 MPa,地层温度 T 为 137 °C, 束缚水饱和度 S_{wi} 为 0.34,原始凝析气压缩因子 z_i 为 1. 332,凝析气中原始水蒸气含量 y_{wi} 为 0.005 425 m³/m³,水溶气原始气水比 R_{swi} 为 5.617 m³/m³,岩石压缩系数 C_i 为 14.15 × 10^{-4} MPa⁻¹,地层水压缩系数 C_w 为 5.32 × 10^{-4} MPa⁻¹,凝析油压缩系数 C_o 为 7.64 × 10^{-4} MPa⁻¹,其生产动态数据见表 1.而表 2 中不同 压力下的凝析油饱和度 So_v 水蒸气含量 y_w 、水溶气 气水比 R_{sw} 与地层水体积系数 B_w 根据实验数据插 值得到的,凝析气体积系数 B_g 依据凝析气压缩因子 计算获得.

4.2 计算结果及讨论

依据 3.1 节的地质储量、补给气量及水侵量计 算方法,编制计算机程序,依据地质、测试等资料,赋 予地质储量和 2009 年 5 月 5 日的补给气量及水侵 量初值范围,并组合成 27 000 个较优方案为基础样 本,以驱动指数均方差δ、比拟压力与采出程度偏差 指数β和综合目标函数γ三者为分析因素,进行最

表 1	某异常高压有	ī水凝析 4	气藏历年	生产动	态数据

Table 1 Production data of an overpressured condensate gas reservoir with gas and water recharge

时间	$G_{\rm p}(10^8~{\rm m^3})$	$W_{\rm p}(10^4~{ m m^3})$	p(MPa)	z(无因次)	p/z (MPa)
1992-05-05	1.151 785 87	0.131 8	57.21	1.331	42.99
1993-05-05	2.126 046 64	0.224 1	57.13	1.330	42.96
1994-05-05	3.154 868 49	0.3537	56.89	1.327	42.87
1995-05-05	3.598 907 41	0.417 3	56.75	1.325	42.82
1996-05-05	3.885 874 76	0.445 8	56.64	1.324	42.78
1997-05-05	5.337 316 62	0.645 5	56.46	1.322	42.71
1998-05-05	6.851 595 73	0.866 2	56.23	1.319	42.63
1999-05-05	8.004 122 27	0.939 1	56.04	1.317	42.56
2000-05-05	8.875 949 43	0.968 0	55.87	1.315	42.50
2001-05-05	9.590 680 61	0.9917	55.62	1.312	42.40
2002-05-05	10.809 073 08	1.119 8	55.21	1.307	42.25
2003-05-05	12.077 439 45	1.196 5	54.91	1.302	42.18
2004-05-05	13.317 895 74	1.279 8	54.65	1.300	42.04
2005-05-05	$14.412\ 627\ 56$	1.383 3	54.53	1.298	42.00
2006-05-05	17.921 065 70	1.691 5	53.06	1.281	41.41
2007-05-05	24.213 451 08	1.873 8	50.11	1.256	39.90
2008-05-05	31.114 022 74	2.160 2	48.01	1.232	38.96
2009-05-05	39.002 150 12	2.774 4	47.15	1.208	38.02

	B (无因次)	B (无因次)	$(10^4 m^3 / 10^4 m^3)$	$R = (10^4 \text{m}^3 / 10^4 \text{m}^3)$	S
		1.000.007	y _w (10 m / 10 m /	K _{sw} (10 m / 10 m /	
1992-05-05	0.008 528	1.003 627	0.005 435	5.600	0.000
1993-05-05	0.008 545	1.003 620	0.005 447	5.593	0.000
1994-05-05	0.008 560	1.003 582	0.005 479	5.578	0.000
1995-05-05	0.008 582	1.003 560	0.005 496	5.568	0.000
1996-05-05	0.008 585	1.003 555	0.005 513	5.554	0.000
1997-05-05	0.008 600	1.003 536	0.005 548	5.542	0.000
1998-05-05	0.008 629	1.003 520	0.005 580	5.528	0.000
1999-05-05	0.008 640	1.003 491	0.005 600	5.516	0.000
2000-05-05	0.008 651	1.003 455	0.005 633	5.496	0.000
2001-05-05	0.008 680	1.003 418	0.005 663	5.468	0.000
2002-05-05	0.008 703	1.003 373	0.005 740	5.432	0.000
2003-05-05	0.008 726	1.003 320	0.005 840	5.388	0.004
2004-05-05	0.008 740	1.003 291	0.005 880	5.364	0.008
2005-05-05	0.008 746	1.003 273	0.005 905	5.350	0.009
2006-05-05	0.008 836	1.003 091	0.006 200	5.170	0.022
2007-05-05	0.008 951	1.002 727	0.006 770	4.880	0.040
2008-05-05	0.009 040	1.002 350	0.007 450	4.570	0.061
2009-05-05	0.009 093	1.002 055	0.008 243	4.275	0.074

表 2 某异常高压有水凝析气藏流体特征参数

Table 2 Characteristic parameters of the fluid in the example reservoir

表 3 前 10 个最佳组合方案各项计算指标

Table 3 Index list of the top 10 optimal combination programs

$G(10^8 \text{ m}^3)$	$G_{\rm c}(10^8{ m m}^3)$	$W_{\rm e}(10^4{ m m}^3)$	δ	β	γ	d i	ω_{i}	优选顺序
66.800	2.298	1 016.25	0.680 0	0.002 9	0.682 9	0.632 0	0.654 0	1
66.980	2.297	1 015.93	0.681 5	0.005 1	0.686 6	0.633 1	0.652 5	2
67.600	2.254	1 015.38	0.693 3	0.006 5	0.699 8	0.634 3	0.6510	3
67.610	2.245	1 015.78	0.693 5	0.004 1	0.697 6	0.637 3	0.647 2	4
67.870	2.227	1 015.13	0.701 2	0.006 2	0.707 4	0.640 2	0.642 3	5
68.110	2.230	1 015.06	0.710 0	0.0077	0.717 7	0.641 0	0.6364	6
68.110	2.221	1 015.07	0.705 8	0.006 9	0.712 7	0.642 9	0.6310	7
68.500	2.199	1 014.78	0.727 1	0.0077	0.734 8	0.6437	0.627 8	8
68.850	2.183	1 014.40	0.745 3	0.009 5	0.754 8	0.644 5	0.626 9	9
69.280	2.163	1 014.38	0.7712	0.010 1	0.781 3	0.645 5	0.624 8	10

佳组合方案排序,优选出前 10 个最佳组合方案,其 各项计算指标见表 3.

由表 3 可看出:(1)各组合方案δ、β 和γ 值高低 不一致,以简单绝对值的比较,挑选最佳组合方案是 困难的;(2)通过贴近程度分析与相似程度分析,以 定量指标的形式表征出各组合方案间的微小差异和 各函数值间的大小不一致性,方便了最佳组合方案 的排序挑选.

表 3 中最佳组合方案中排序第一的表明:该凝 析气藏地质储量为 66.800×10^8 m³,2009 年 5 月 5 日累积净水侵量 W_e为 1 016.250 × 10⁴ m³,累积补 给气量 G_e为 2.298 × 10⁸ m³.同样方法计算该气藏任 意生产时刻的累积补给气量和累积水侵量,见图 2. 对应各种能量驱动指数变化见图 3. 随着凝析气藏开发,地层压力下降,水蒸气不断 增多,水溶气不断溢出,对应的驱动指数略有增加, 至 2009 年 5 月 5 日水蒸气驱动指数 I_{j3}为 0.009 9, 溢出水溶气驱动指数 I_{j4}为 0.006 8,均小于 0.01,表 明水蒸气与水溶气对气藏开发能量贡献有限.当地 层压力低于露点压力 55.12 MPa 时,凝析油析出,至 2009 年 5 月 5 日凝析油饱和度为 0.074,对应驱动 指数 I_{j2}为 0.180 8.由于凝析油的析出,储层中凝析 气弹性膨胀量急剧减小,即凝析气体弹性驱动指数 从 2002 年 5 月 5 日(反凝析)之后下降幅度较大.岩 石、束缚水及凝析油随着压力下降,不断膨胀,但对 应弹性膨胀驱动指数却由 1992 年 5 月 5 日的 0.069 8降至 2009 年 5 月 5 日的 0.040 4,这是由于 该气藏为异常高压储层,开发初期,岩石、束缚水弹

Fig.2 Relations of cumulative gas recharge and water influx versus cumulative gas production

Fig.3 Relations of each drive index versus average reservoir pressure

性膨胀显著,之后慢慢减弱.地层压力下降,水体不断推进,外来气不断侵入,对应驱动指数不断增加, 至 2009 年 5 月 5 日水侵驱动指数为 0.284 1,补给 气侵驱动指数为 0.048 7.表明水体及外来气体能量 较活跃,对气藏开发能量贡献大.

忽略水蒸气、溢出水溶气、凝析油、水侵量、补给 气量及束缚水、岩石及凝析油的弹性膨胀,分别计算 地质储量,见表 4.

表4表明,对地质储量计算影响最大的是反凝 析现象,如果忽略凝析油,计算地质储量偏大,误差 高达91.77%,其次是水侵、弹性膨胀和气侵的影响, 误差分别为75.75%、23.95%和12.87%.而溢出水 溶气为2.69%、水蒸气为1.65%,影响较小,但也不 可忽略.其中弹性膨胀量、溢出水溶气与水蒸气会因 为气藏的异常高压而加剧此影响.造成计算偏差的 原因是将气相中水蒸气、溢出水溶气、外来气及水侵 量视为原始烃类气体而增大了地质储量,凝析油析 出造成压力急剧降低,为了拟合正常压力降而增大 了地质储量,将岩石、束缚水和凝析油弹性膨胀能量 视为烃类气体能量而增大了地质储量.

通过分析不同模型考虑的影响因素,并对比不 同模型计算的地质储量,结果表明建立的新模型能 够较准确地计算具有补给气的异常高压有水凝析气 藏地质储量.结果分别见表 5 和表 6.

依据3.2节计算水体大小(表7),2008年5月

表 4 地质储量计算结果

Table 4 Caculated results of estimated OGIP

影响因素	新模型	凝析油	水蒸气	溢出水溶气	气侵量	水侵量	弹性膨胀量
地质储量(10 ⁸ m ³)	66.80	128.11	67.96	68.62	75.45	117.42	82.83
误差(%)	0.00	91.77	1.65	2.69	12.87	75.75	23.95

表 5 不同模型的影响因素

Table 5 Considering influence factors of different models

考虑因素项	反凝析	水蒸气	溢出水溶气	气侵量	水侵量	弹性膨胀量
新模型	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fetkovich et al., 1998						
夏静等,2007					\checkmark	
刘道杰等,2011		\checkmark	\checkmark		\checkmark	
王星等,2010				\checkmark	\checkmark	
李骞等,2010	\checkmark				\checkmark	
马永祥,1997	\checkmark				\checkmark	
陈玉祥等,2005	\checkmark				\checkmark	

表 6 不同模型地质储量计算结果

Table 6 Estimated OGIP of different models

模型	新模型	Fetkovich et al., 1998	夏静等,2007	刘道杰等,2011
地质储量(10 ⁸ m ³)	66.8	193.9	142.6	139.5
偏大程度(%)	0.0	190.3	113.5	108.8
模型	王星等,2010	李骞等,2010	马永祥,1997	陈玉祥等,2005
地质储量(10 ⁸ m ³)	134.3	81.6	80.5	80.0
偏大程度(%)	101.0	22.2	20.5	19.8

表 7 水体能量计算结果

Table 7 Calculated water influx

时间	p(MPa)	$W_{\rm e}(10^4{ m m}^3)$	$(C_w+C_f)\Delta p$ (无因次)	$V_{\rm pw}(10^4{ m m}^3)$	水体倍数(无因次)
1992-05-05	57.21	0.00	0.000 357	0.00	0.000
1993-05-05	57.13	0.04	0.000 617	64.86	0.011
1994-05-05	56.89	0.18	0.001 396	128.96	0.023
1995-05-05	56.75	0.31	0.001 850	167.55	0.029
1996-05-05	56.64	0.41	0.002 207	185.75	0.033
1997-05-05	56.46	0.63	0.002 792	225.68	0.040
1998-05-05	56.23	1.09	0.003 538	307.51	0.054
1999-05-05	56.04	14.00	0.004 155	3 369.53	0.592
2000-05-05	55.87	22.00	0.004 707	4 674.19	0.822
2001-05-05	55.62	30.00	0.005 518	5 436.56	0.956
2002-05-05	55.21	59.00	0.006 849	8 614.32	1.514
2003-05-05	54.91	89.00	0.007 823	11 376.91	2.000
2004-05-05	54.65	111.00	0.008 667	12 807.47	2.251
2005-05-05	54.53	120.00	0.009 056	13 250.39	2.329
2006-05-05	53.06	228.00	0.013 828	16 488.33	2.898
2007-05-05	50.11	507.00	0.023 404	21 663.28	3.808
2008-05-05	48.01	930.00	0.030 220	30 774.06	5.410
2009-05-05	47.15	1 016.25	0.033 012	30 807.15	5.416

219

5日与2009年5月5日计算的水域体积 V_{pw} 差值最小,满足工程上 ΔV_{pw} =0,即在2008年5月5日压力降已经波及整个水域,此时计算的水体 30774.06×10⁴ m³为整个天然水域水体体积,换算 成水体倍数为5.4倍,水体较活跃.

5 结论

(1)建立了具有补给气的异常高压有水凝析气 藏物质平衡方程,该方程既考虑了外来气、水侵量及 反凝析现象,又考虑了异常高压下的水蒸气变化、水 溶气溢出及岩石、束缚水和凝析油的弹性膨胀.

(2)推导了地质储量、补给气量及水侵量的计算 方法,运用相对海明距离及关联度理论,以驱动指数 均方差、比拟压力与采出程度偏差指数和综合目标 函数为分析因素,分析了各组合方案贴近程度及相 似程度,挑选出最佳组合方案并确定出地质储量、补 给气量及水侵量.

(3) 实例计算结果对比,地质储量计算影响最大的是反凝析现象,如果忽略凝析油,计算地质储量偏大,误差高达91.77%,其次是水侵、弹性膨胀和气侵的影响,误差分别为75.75%、23.95%和12.87%,而溢出水溶气为2.69%与水蒸气为1.65%,影响较小,但也不可忽略.其中弹性膨胀量、溢出水溶气与水蒸 气影响,主要是该气藏为异常高压造成的.

(4)计算地质储量差异的主要原因是:凝析气藏 开发过程中,地层压力低于露点压力,凝析油析出, 同时地层水不断蒸发,水蒸气含量增多,水溶气不断 溢出,外来气及水体侵入,岩石、束缚水和凝析油弹 性膨胀等,当忽略这些因素后,是将气相中水蒸气、 溢出水溶气、外来气及水侵量视为原始烃类气体而 增大了地质储量,凝析油析出造成压力急剧降低,为 了拟合正常压力降而增大了地质储量,将岩石、束缚 水和凝析油弹性膨胀能量视为烃类气体能量而增大 了地质储量.

(5)建立了水体大小计算方法,实例计算表明中 国某凝析气藏的 2008 年 5 月 5 日压力降已经波及 整个水域,水体体积为 30 774.06×10⁴ m³,水体倍 数为 5.4 倍,水体能量较活跃.

References

Chen, Y.Q., 1983. Application and Derivation of Material Balance Equation for Abnormally Pressured Gas Reservoirs. Acta Petrolei Sinica, 4(1): 45-53 (in Chinese with English abstract).

- Chen, Y.Q., Dong, N.Y., 1999. New Deriving Method Material for Balance Equation of Gas and Gas-Condensate Reservoirs. *Fault-Block Oil & Gas Field*, 6(3): 24-28 (in Chinese with English abstract).
- Chen, Y. Q., Wang, Z. J., 1982. A Method to Give a Unique Solution to the Equation of Material Balance. Petroleum Exploration and Development, 9(6): 84-89 (in Chinese with English abstract).
- Chen, Y.X., Ma, F.M., Wang, X., et al., 2005. New Calculation Method of Material Equilibrium Equation for Condensate Reservoirs. *Natural Gas Industry*, 25 (2): 104-106(in Chinese with English abstract).
- Fetkovich, M. J., Reese, D. E., Whitson, C. H., 1998. Application of a General Material Balance for High-Pressure Gas Reservoirs (Includes Associated Paper 51360).
 SPE Journal, 3(1):3-13.doi: 10.2118/22921-PA
- Fahd, S., Ghulam, M. W., Khan, M. N., 2010. Application of General Material Balance on Gas Condensate Reservoirs GIIP Estimation. The Paper SPE 142847 was Presented at SPE/PAPG Annual Technical Conference, 10 - 11 November 2010, Islamabad, Pakistan. doi: 10. 2118/ 142847-MS
- Fu, X., Wang, Z. H., Guo, P., et al., 2011. Establishment and Application of the Material Balance Equation in Gas Injection for Fractured-Porous Gas Condensate Reservoirs while Considering the Influence of Capillary Pressure. *Natural Gas Industry*, 31(9): 65-68(in Chinese with English abstract).
- Gus, A., Leblanc, J. L., Farshad, F., 1992. A New and Improved Material Balance Equation for Retrograde Gas Condensate Reservoirs—Part I. The Paper SPE 24355 was Prepared for Presentation at the SPE Rocky Mountain Regional Meeting, Held in Casper WY, May 18— 21,1992.doi: 10.2118/24355-MS
- Hammerlindl, D.J., 1971. Predicting Gas Reserves in Abnormally Pressured Reservoirs. The Paper SPE 3479 was Presented at Fall Meeting of the Society of Petroleum Engineers of AIME, 3-6 October 1971, New Orleans, Louisiana.doi: 10.2118/3479-MS
- Humphreys, N. V., 1991. The Material Balance Equation for Gas Condensate Reservoir with Significant Water Vaporization. The Paper SPE 21514 was Presented at SPE Gas Technology Symposium, 22 - 24 January 1991, Houston, Texas.doi: 10.2118/21514-MS
- Kang, X. D., Li, X. F., Li, J. S., et al., 2005. Material Balance Equation of Condensate Gas Reservoirs Exploited by Cycle Gas Injection Considering the Injection/Produc-

tion Difference. Natural Gas Industry, 25(3): 118-120(in Chinese with English abstract).

- Li,Q.,Li,X.F.,Guo,P.,et al.,2010.Deduction of the Material Balance Equation of Abnormal High Pressure Gas Condensate Reservoirs. *Natural Gas Industry*, 30(5): 58-60(in Chinese with English abstract).
- Liu, D.J., Liu, Z.B., Tian, Z.J., 2011. A Modified Material Balance Equation for Abnormal-Pressure Gas Reservoirs with Aquifer. *Acta Petrolei Sinica*, 32(3): 474-478(in Chinese with English abstract).
- Liu, J. Y., Guo, P., Li, S. L., et al., 2002. Experimental Study of Formation Water Properties at High Pressure for Abnormally-High-Temperature Condensate Gas Reservoir. Journal of Southwest Petroleum Institute, 24 (2): 9-11(in Chinese with English abstract).
- Liu, S. Z., Sun, A. Y., Huang, B. G., et al., 1999. The Prediction Method of Water Influx and Formation Pressure for a Water Drive Gas Reservoir. *Petroleum Exploration and Devel*opment, 26(2): 79-85(in Chinese with English abstract).
- Ma, Y.X., 1997. A Study on Material Balance Equation for Gas Condensate Reservoir. *Petroleum Exploration and Devel*opment, 24(6): 45-50(in Chinese with English abstract).
- Qi,Z.L., Tang, H., Du, Z.M., 2003. Material Balance Equation of Oil-Rimming Condensate Gas Reservoir. *Natural Gas Industry*, 23(1): 70-72(in Chinese with English abstract).
- Sun, H. D., 2011. A Balance Equation of Gas Materials with Recharge Capacity and Their Performance Prediction. Acta Petrolei Sinica, 32(4): 683-686(in Chinese with English abstract).
- Tian, W. Z., Sun, L., Sun, L. T., et al. 2005. Application and Evaluation of a New Material Balance Method for Super High Pressure Oil (Gas) Reservoirs. *Journal of Southwest Petroleum Institute*, 27(3): 37-40 (in Chinese with English abstract).
- Wang, X., Huang, Q. H., Yin, L., et al., 2010. Setting-Up and Application of the Material Balance Equations for a Gas Reservoir Considering Water Influx and Supply Region. *Natural Gas Industry*, 30(9): 32-35(in Chinese with English abstract).
- Xia, J., Xie, X. L., Ji, G., et al., 2007. Derivation and Application of Material Balance Equation for Over-Pressured Gas Reservoir with Aquifer. Acta Petrolei Sinica, 28 (3): 96-99(in Chinese with English abstract).
- Yu, Y.Z., Yang, G.R., Tian, J. H., et al., 2002. Improvement and Application of Material Balance Equation for Con-

densate Gas Reservoir. Oil & Gas Recovery Technology,9(4): 66-68(in Chinese with English abstract).

Zhang, L.Y., Sun, J.Z., 1991. Variable Volume Material Balance Method and Its Application to Gas Field Development. *Natural Gas Industry*, 11(5): 58-63(in Chinese with English abstract).

附中文参考文献

- 陈元千,1983.异常高压气藏物质平衡方程式的推导及应用. 石油学报,4(1):45-53.
- 陈元千,董宁宇,1999.气藏和凝析气藏物质平衡方程式的新 推导.断块油气田,6(3):24-28.
- 陈元千,王正鉴,1982.物质平衡方程式多解性的判断方法.石 油勘探与开发,9(6):84-89.
- 陈玉祥,马发明,王霞,等,2005.凝析气藏物质平衡方程计算 新方法.天然气工业,25(2):104-106.
- 付新,汪周华,郭平,等,2011.考虑毛细管压力影响的裂缝— 孔隙性凝析气藏注气物质平衡方程的建立与应用.天 然气工业,31(9):65-68.
- 康晓东,李相方,李敬松,等,2005.考虑注采差异的循环注气 开发凝析气藏物质平衡方程.天然气工业,25(3): 118-120.
- 李骞,李相方,郭平,等,2010.异常高压凝析气藏物质平衡方 程推导.天然气工业,30(5):58-60.
- 刘道杰,刘志斌,田中敬,2011.改进的异常高压有水气藏物 质平衡方程.石油学报,32(3):474-478.
- 刘建仪,郭平,李士伦,等,2002.异常高温凝析气藏地层水高 压物性实验研究.西南石油学院学报,24(2):9-11.
- 刘蜀知,孙艾茵,黄炳光,等,1999.水侵气藏水侵量与地层压 力预测方法研究.石油勘探与开发,26(2):79-85.
- 马永祥,1997.对凝析气藏物质平衡方程的研讨.石油勘探与 开发,24(6):45-50.
- 戚志林,唐海,杜志敏,2003.带油环的凝析气藏物质平衡方 程.天然气工业,23(1):70-72.
- 孙贺东,2011.具有补给的气藏物质平衡方程及动态预测.石 油学报,32(4):683-686.
- 田文忠,孙雷,孙良田,等,2005.异常高压油(气)藏物质平衡 新方法的应用评价.西南石油学院学报,27(3):37-40.
- 王星,黄全华,尹琅,等,2010.考虑水侵和补给的气藏物质平 衡方程的建立及应用.天然气工业,30(9):32-35.
- 夏静,谢兴礼,冀光,等.2007.异常高压有水气藏物质平衡方 程推导及应用.石油学报,28(3):96-99.
- 余元洲,杨广荣,田金海,等,2002.凝析气藏物质平衡方程的 改进与应用.油气地质与采收率,9(4):66-68.
- 张伦友,孙家征,1991.变容物质平衡方法及其在气田开发中的应用.天然气工业,11(5):58-63.