doi:10.3799/dqkx.2014.027

湘西寒武纪早期黑色岩系中干酪根的 稀土元素地球化学特征

邓义楠^{1,2,3},郭庆军^{3*},朱茂炎⁴,张俊明⁴

1. 国土资源部广州海洋地质调查局,广东广州 510760

2. 国土资源部海底矿产资源重点实验室,广东广州 510075

3. 中国科学院地理科学与资源研究所,北京 100101

4. 中国科学院南京地质古生物研究所,江苏南京 210008

摘要:湘西寒武纪早期黑色岩系中富含源于上层海水生物体的有机质,其稀土元素(REE)特征不被碎屑物质干扰,能有效地 反映海洋上层水体的古环境特征.样品中作为有机质主体的干酪根的重稀土富集、Ce负异常、Y正异常和 Eu 无明显异常等特 点与现代海水一致,其特征可能反映古海洋上层水体的氧化还原信息.扬子地台各相区沉积剖面底部可能出现滞流(或硫化) 环境,随后沉积环境逐渐氧化.全岩样品中 Ce 的负异常可能由有机质提供,Ce/Ce*值由剖面底部的较低值向上逐渐升高可能 意味着海洋上层水体含氧量的逐渐上升,而海水含氧量逐渐升高或许是由寒武纪早期海洋底部硫化环境的减弱所导致. 关键词:湘西;寒武纪初期;稀土元素;干酪根;黑色岩系;地球化学.

中图分类号: P595 **文章编号:** 1000-2383(2014)03-0283-10

REE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan

收稿日期: 2013-09-26

Deng Yinan^{1,2,3}, Guo Qingjun^{3*}, Zhu Maoyan⁴, Zhang Junming⁴

1. Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou 510760, China

2. Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China

3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China

Abstract: Organic matter from Early Cambrian black rock series in western Hunan was derived from organisms in the euphotic zone. For not interfered by the detrital component, REE geochemistry of organic matter can demonstrate paleoenvironmental characteristics of the upper seawater. As the main part of organic matter, kerogen is fully consistent with the modern seawater—like REE pattern which shows a progressive enrichment towards the heavier REE, depletion of Ce, positive anomalies of Y and no obvious anomalies of Eu. The characteristics of kerogen may trace paleoredox condition of upper seawater. The euxinic environment may have arised in the lower part of sections in the Yangtze area, and the depositional condition may have shifted to gradual oxidization in the upper part of sections. The negative Ce anomalies of bulk rocks are most probably derived from organic matter input. Gradual increase of Ce/Ce^{*} values indicates increasing oxygen content of upper seawater, and weakening of euxinic environment of bottom seawater may result in rising of oxygen content of upper seawater.

Key words: western Hunan; Early Cambrian; rare earth element (REE); kerogen; black rock series; geochemistry.

基金项目:中国科学院"百人计划"项目;国家自然科学基金项目(Nos. 40972023,40930211,40902003,41173008);国家重点基础研究发展计划 "973"项目(No. 2013CB835004).

作者简介:邓义楠(1987-),男,硕士,沉积学和地球化学专业. E-mail: dengyinan@126. com

^{*} 通讯作者:郭庆军, E-mail: guoqj@igsnrr. ac. cn

埃迪卡拉一寒武纪转变期是地球历史上最重要 的时期之一(Zhu et al., 2007; Maloof et al., 2010). 在此期间,海洋环境和生物演化发生了巨大 变化(Knoll and Carroll, 1999; Marshall, 2006). 对于该时期的研究,许多学者已从古生物、沉积学和 地球化学等各方面做了诸多工作(Richard, 1998; 吴朝东等,1999b; Yang et al., 2003; Xiao et al., 2005; Goldberg et al., 2007; Guo et al., 2007b; Jiang et al., 2007; Schröder and Grotzinger, 2007; Zhu et al., 2007; Xu et al., 2013),但在古 环境恢复方面至今仍存有较大争议. 寒武纪早期黑 色页岩广泛沉积、氧化还原敏感元素(如 U、Mo、V 和 Ni 等)富集和同位素的异常情况等被认为是厌氧 甚至滞流(或硫化)环境的特征(Yang et al., 2004; Goldberg et al., 2007; Guo et al., 2007a, 2007b; Lehmann et al., 2007; Wille et al., 2008; Zhou and Jiang, 2009; Pi et al., 2013), 然而 Xiao et al. (2005)所发现的个体较大且原地埋藏的海绵动物化 石似乎表明当时海洋水体为氧化或次氧化环境.

华南下寒武统牛蹄塘组广泛发育以富含有机质 为特征的黑色岩系,岩性包括黑色页岩、硅质泥岩、 粉砂岩、磷块岩和重晶石岩等.黑色岩系中赋存着 镍、钼、钒、磷、石煤和重晶石等矿产,且化石产出丰 富,在研究埃迪卡拉-寒武纪转变期的环境演化方 面意义显著.学者们已对华南寒武纪早期的稀土元 素研究方面做了一些工作(Jiang et al., 2006; 杨兴 莲等,2008; Xu et al., 2013),但因为主要以受到陆 源碎屑物质干扰的全岩为分析对象,无法有效地反 映出古海洋原生组分的特点. 湘西寒武纪早期黑色 岩系中富含有机质,其主要来源于浅水台地边缘的 藻类、疑源类和浮游动物(吴朝东等,1999a),尤以浮 游生物为主(傅家谟和秦匡宗,1995). 它们长期生活 在海水中,通过新陈代谢和呼吸作用等与周围环境 发生充分的物质交换而达到平衡状态,其体内的 REE 组分可能代表海洋上层水体的组合特征(王中 刚等,1989;皮道会等,2008);而干酪根作为沉积岩 中有机质的主体(占有机质总量的 90%以上)(傅家 谟和秦匡宗,1995;杨剑等,2005),受外界干扰小,性 质十分稳定,为研究寒武纪初期的海洋环境提供了 有利的依据.

目前,岩石中干酪根的稀土元素研究工作开展的并不多,Pi et al. (2013)已对黔北牛蹄塘组黑色 岩系中的干酪根进行 REE 地球化学研究,但对于较 深水剖面干酪根中系统的稀土元素地球化学研究有 待进一步地深化. 湘西李家沱剖面和龙鼻嘴剖面分 别位于过渡相和盆地相区(Zhu et al., 2003),对于 华南寒武纪早期的古环境研究工作意义重大. 然而 对这 2 个剖面的稀土元素地球化学特征的研究和探 讨工作至今仍较为缺乏. 本文分析了湘西寒武纪早 期龙鼻嘴剖面和李家沱剖面牛蹄塘组(或小烟溪组) 黑色岩系中干酪根的稀土元素特征,旨在探讨:(1) 寒武纪初期海洋上层水体的 REE 组合特征;(2)古 海洋表层水体的含氧量变化趋势及其形成原因.

1 地质背景

前寒武-寒武纪交变期内扬子地台沿西北-东 南方向主要分为3个不同的沉积相区,包括位于内 陆棚的碳酸盐台地相、外陆棚斜坡的过渡相和深海 盆地相(Zhu et al., 2003).本次研究的龙鼻嘴剖面 和李家沱剖面位于过渡相-深海盆地相,属于较深 水的沉积区域.研究剖面的牛蹄塘组(或小烟溪组) 分为上、下2段,具体岩性特征分述如下:

龙鼻嘴剖面位于湖南省西部古丈县,寒武纪初 期主要沉积牛蹄塘组,与下伏以硅质岩为特征的留 茶坡组呈整合接触,未见明显的沉积间断.牛蹄塘组 下段主要岩性为暗色磷质页岩和硅质页岩,中间夹 黑色页岩,底部为富磷质结核的碳质页岩,该段化石 稀少,厚约5m;上段岩性主要为灰一黑色页岩和含 砂质泥岩,常见海绵骨针残骸,厚约36m(图1).

李家沱剖面位于湖南省西北部的沅陵县,寒武 纪初期主要沉积小烟溪组,与下伏留茶坡组为整合 接触.小烟溪组由硅质岩和黑色页岩组成,底部为含 磷质结核的磷质页岩,剖面底部向上9m、18m、 23m和61m处含较大丰度的海绵动物,小烟溪组厚 约98m(图1).

2 样品与分析方法

对龙鼻嘴剖面和李家沱剖面牛蹄塘组或小烟溪 组进行了系统的样品采集,选取其中有机质含量较 高的样品 39 块(其中龙鼻嘴剖面 20 块,李家沱剖面 19 块),粉碎至 200 目后置于烘箱内烘干,并对岩石 样品进行干酪根组分的提取和 REE 地球化学分析.

2.1 干酪根提取

岩石样品中干酪根的提取主要参考傅家谟和秦 匡宗(1995)的方法,具体步骤如下:(1)将浓度为

图 1 湘西龙鼻嘴剖面和李家沱剖面位置和柱状图 Fig. 1 Location and column of Longbizui and Lijiatuo sections

18%的盐酸缓慢加入装有岩石粉末的聚四氟烯离心 管中,60~70℃水浴加热4h,并不断搅拌溶液.过 夜之后,清洗离心3次,重复上述步骤1次;(2)将 HF(40%)缓慢加入样品残留物中,60~70℃水浴 加热4h,并不断搅拌溶液,之后清洗并离心样品3 次,重复以上步骤1次;(3)反复清洗离心溶液直至 溶液 pH 为7,将有机质烘干即可得到较纯净的 干酪根.

2.2 样品的消解

干酪根样品的消解:(1)称取 50 mg 干酪根样品 转入 Teflon 罐子中,加入 5 mL 浓 HNO₃,将 PTFE 内罐放入钢套中,旋紧后放入烘箱中 190 ℃加热 48 h,溶解样品后于 120 ℃蒸干至湿盐状;(2)重复 加入 5 mL 浓硝酸蒸至湿盐状,再加入 1 mL HClO₄ 于 140 ℃蒸干,除去样品中过量的酸;(3)最后加入 5 mL 20% HNO₃,140 ℃密封加热 4 h,冷却后加入 蒸馏水定容至 50 mL 待测. 样品中的稀土元素测试在中国科学院地理科学 与资源研究所电感耦合等离子质谱(ICP-MS)上完 成,Ba 元素分析使用等离子光谱(ICP-OES)进行测 试,分析精度高于 5%.稀土元素含量使用澳大利亚 后太古代页岩(PAAS)进行标准化(Mclennan, 1989),Ce/Ce*、Eu/Eu*、Y/Y*和 Pr/Pr*的计算 参照(Bau and Dulski, 1996):Ce/Ce* = Ce_N/ (1/2La_N+1/2Pr_N),Eu/Eu* = Eu_N/(1/2Sm_N + 1/2Gd_N),Y/Y* = Y_N/(1/2Dy_N + 1/2Ho_N), Pr/Pr*=Pr_N/(1/2Ce_N+1/2Nd_N).

3 分析结果

龙鼻嘴剖面和李家沱剖面样品分析结果已列入 表1和表2中.黑色岩系中各样品稀土元素总含量 (ΣREE)变化较大(6×10⁻⁶~3987×10⁻⁶).其中李 家沱剖面ΣREE平均值为613×10⁻⁶,而龙鼻嘴剖

西龙鼻嘴剖面样品分析结果(10-6)	
西湘	
表1	

Table 1 Analytical results for samples from the Longbizui sections, western Hunan (10^{-6})

	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Ba/ Nd	$\begin{array}{c} 2 & 264 \\ 3 & 2 & 32 \\ 5 & 59 & 0 \\ 163 & 3 & 248 \\ 163 & 3 & 248 \\ 2 & 48 & 248 \\ 163 & 3 & 248 \\ 115 & 3 & 248 \\ 121 & 121 \\ 153 & 57 $
$\mathbf{Y}_{\mathbf{Y}}^{*}$	1.47 1.47 1.47 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48
Eu/ Eu*	$\begin{array}{c} 4, 94\\ 4, 94\\ 1, 87\\ 2, 11\\ 2, 33\\ 2, 33\\ 2, 35\\ 2,$
Ce/ Ce*	$\begin{array}{c} 0.\ 29\\ 0.\ 29\\ 0.\ 51\\ 0.\ 62\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 68\\ 0.\ 89\\ 0.\ 92\$
LREE/ CHREE	2.82 2.82 2.27 2.27 2.27 2.04 1.53 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
CREE \sum_{Σ}	47, 42 16, 80 6, 54 6, 54 6, 55 6, 55 8, 55 8, 55 8, 55 8, 25 8, 25 8, 26 6, 70 1, 52 75, 47 75, 47 75, 47 75, 47 75, 47 75, 47 75, 47 75, 47 72, 16 75, 47 72, 16 75, 47 72, 16 72, 17 72, 16 72, 16,
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$_{\rm Ba}$	$\begin{array}{c} 56530\\ 110,\\ 23,\\ 23,\\ 23,\\ 23,\\ 24,\\ 21,\\ 542,\\ 21,\\ 26,\\ 21,\\ 255,\\ 21,\\ 255,\\ 21,\\ 256,\\ 21,\\ 256,\\ 21,\\ 256,\\ 21,\\ 256,\\ 21,\\ 20,\\ 21,\\ 20,\\ 21,\\ 20,\\ 21,\\ 20,\\ 21,\\ 20,\\ 21,\\ 21,\\ 21,\\ 21,\\ 21,\\ 21,\\ 21,\\ 21$
Lu	$\begin{array}{c} 0.26\\ 0.28\\ 0.03\\$
Yb	$\begin{array}{c} 3.14\\ 0.66\\ 0.66\\ 0.27\\ 0.28\\$
Tm	$\begin{array}{c} 0.\ 26\\ 0.\ 26\\ 0.\ 03\\ 0.\ 03\\ 0.\ 03\\ 0.\ 14\\ 0.\ 12\\ 0.\ 14\\ 0.\ 0.\ 14\\ 0.\ 0.\ 12\\ 0.\ 75\\ 0.\ 75\\ 0.\ 75\\ 0.\ 75\\ 0.\ 75\\ 0.\ 10\\ 0.\ 10\\ 0.\ 10\\ 0.\ 10\\ 0.\ 10\\ 1.\ 14\ 1.\ 14\ 11\\ 1.\ 14\ 1.\ 14\ 11\ 14\ 11\ 14\ 11\ 11\ 11\ 11\ 11$
Er	$\begin{array}{c} 2.08\\ 0.29\\ 0.29\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.584\\ 5.60\\ 5.584\\ 5.60$
Ho	$\begin{array}{c} 0.62\\ 0.09\\ 0.09\\ 0.09\\ 0.01\\ 0.05\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.05\\ 0.06\\$
Y	24.90 33.00 33.00 53.268 53.288 53.238 53.295 53.295 54.77 73.43 55.254 55.255 55.295 55.2555 55.2555 55.2555 55.2555 55.2555 55.2555 55.2555 55.25555 55.25555 55.255555 55.255555555
Dy	$\begin{array}{c} 2.\ 93\\ 0.\ 41\\ 1.\ 5.\ 55\\ 1.\ 5.\ 55\\ 1.\ 5.\ 55\\ 1.\ 5.\ 55\\ 1.\ 5.\ 55\\ 1.\ 2.\ 5.\ 56\\ 1.\ 1.\ 56\\ 1.\ 1.\ 26\\ 1.\ 1.\ 26\\ 1.\ 1.\ 26\\ 1.\ 26\\ 1.\ 25\ 1.\ 25\\ 1.\ 25\ 1.\$
Tb	$\begin{array}{c} 0. \ 49\\ 0. \ 49\\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. $
Gd	3, 3, 96 0, 57 0, 57 0, 20 0, 20 1, 81 2, 91 2, 57 2, 91 2, 82 2, 91 2, 82 2, 91 2, 82 2, 91 2, 82 2, 91 2, 82 2, 91 2, 92 2,
Eu	$\begin{array}{c} 13.14\\ 0.27\\ 0.27\\ 3.008\\ 3.008\\ 3.005\\ 0.17\\ 1.65\\ 1.74\\ 1.74\\ 1.73\\ 1.73\\ 1.74\\ 1.25\\ 3.66\\ 6.96\\ 6.96\end{array}$
Sm	222.61 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
PN	$\begin{array}{c} 24,97\\ 3,34\\ 3,34\\ 112\\ 253\\ 112\\ 255\\ 12\\ 255\\ 12\\ 225\\ 56\\ 225\\ 345\\ 225\\ 345\\ 225\\ 31\\ 20\\ 55\\ 31\\ 73\\ 312\\ 312\\ 312\\ 312\\ 312\\ 312\\ 312\\ 31$
\mathbf{Pr}	$\begin{array}{c} 5,50\\ 5,50\\ 0,73\\ 2,50\\ 116,50\\$
Ce	$\begin{array}{c} 15, 52\\ 3, 33\\ 3, 33\\ 10, 22\\ 10, 27\\ 5, 27\\ 5, 27\\ 5, 27\\ 10, 29\\ 130, 91\\ 130, 91\\ 131, 05\\ 55, 94\\ 65, 94\\ 132, 27\\ 222, 82\\ 25, 74\\ 87\\ 101, 51\\ 101, 51\\ 100, 76\\ 109, 76\\ 109, 76\\ 109, 76\\ 100, 76\\ $
La	$\begin{array}{c} 27,06\\ 3,16\\ 3,16\\ 14,96\\ 15,27\\ 14,96\\ 15,27\\ 14,93\\ 12,27\\ 14,35\\ 12,16\\ 13,36\\ 12,36\\ 13,36\\ 1$
厚度 (m)	0.00 0.30 0.30 0.30 0.30 0.30 2.54 5.55 5.85 5.85 5.85 5.85 5.85 5.85 5
岩性	磷磷苷黑黑黑苷磷黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑黑
样品号	BZ564 BZ564 BZ566 BZ566 BZ566 BZ566 BZ566 BZ586 BZ566 BZ576

$\begin{array}{c} 1.53\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12$ 1.501.681.2561.2561.25561.25561.25561.25511.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.25561.255661.255661.255661.255661.2¥ X Eu/ Eu* $\begin{array}{c} 0.39\\ 0.35\\ 0.35\\ 0.661\\ 0.75\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\ 0.668\\$ S Ö *<u>SHREE</u> SLREE* ∑REE 140. 271. 271. 3315. 188. 5899. 5899. 570. 571. 571. 572. 572. 573. 322. 321. 0 $\begin{array}{c} 38.\\ 249.\\ 49.\\ 1330.\\ 11530.\\ 11530.\\ 116320.\\ 116320.\\ 116320.\\ 116320.\\ 11640.\\ 7590.\\ 7590.\\ 7590.\\ 112830.\\ 7590.\\ 112840.\\ 7590.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 112840.\\ 1128$ Ва Lu $\begin{array}{c} 8. \ 91\\ 9. \ 97\\ 9. \ 97\\ 9. \ 97\\ 5. \ 42\\ 5. \ 42\\ 5. \ 42\\ 5. \ 42\\ 114, \ 33\\ 114, \ 33\\ 114, \ 33\\ 114, \ 33\\ 113, \ 05\\ 113, \ 05\\ 113, \ 05\\ 113, \ 05\\ 113, \ 05\\ 113, \ 05\\ 113, \ 05\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110\\ 114, \ 110$ 114, \ 110 114, \ 110 114, \ 114, \ 110 114, \ 114, \ 114, \ 110 114, \ 114, \ 114, \ 114, \ 110 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 114, \ 11 Zp $\begin{array}{c} 0.62\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.03\\ 1.06\\ 1.03\\ 1.06\\ 1.03\\ 1.06\\ 1.03\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\ 1.06\\$ Tm $\begin{array}{c} 4.63\\ 7.80\\ 6.68\\ 5.862\\ 5.862\\ 5.862\\ 5.862\\ 5.862\\ 10.79\\ 10.79\\ 110.87\\ 110.87\\ 112.651\\ 114.37\\ 112.652\\ 112.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.52\\ 2.$ д $\begin{array}{c} 1.166\\ 1.12224\\ 6.12242\\ 2.244\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294\\ 2.294$ Ho $\begin{array}{c} 45,\,05\\ 57,\,05\\ 57,\,16\\ 53,\,10\\ 53,\,10\\ 53,\,10\\ 53,\,10\\ 32,\,34\\ 93,\,41\\ 133,\,40\\ 93,\,41\\ 133,\,13\\ 134,\,46\\ 1137,\,14\\ 1137,\,14\\ 1137,\,13\\ 134,\,09\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,30\\ 51,\,3$ \succ $\begin{array}{c} 4, 50\\ 6, 18\\ 6, 18\\ 5, 65\\ 5, 65\\ 5, 65\\ 5, 65\\ 5, 65\\ 2, 69\\ 11, 29\\ 11, 29\\ 11, 29\\ 11, 29\\ 11, 29\\ 11, 29\\ 11, 29\\ 11, 29\\ 11, 29\\ 12, 69\\ 12, 69\\ 12, 69\\ 3, 58\\ 3, 58\\ 3, 58\\ 3, 58\\ 4, 48\\ 3, 58\\ 4, 48\\ 3, 58\\ 4, 48\\ 3, 58\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 48\\ 4, 4$ Q $\begin{array}{c} 0.59\\ 1.22\\ 3.1.22\\ 1.22\\ 1.22\\ 1.24\\ 1.27\\ 1.27\\ 1.27\\ 1.27\\ 1.27\\ 1.27\\ 1.27\\ 1.27\\ 1.22\\ 1.22\\ 1.22\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.52\\ 0.57\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.52\\ 0.5$ Tb g 1112212666 $\begin{array}{c} 0.93\\ 1.61\\ 1.62\\ 1.63\\ 1.64\\ 1.64\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\$ Е $\begin{array}{c} 4, 74\\ 7, 60\\ 7, 60\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 111, 38\\ 11$ Sm $\begin{array}{c} 24, 97\\ 73, 57\\ 73, 57\\ 38, 91\\ 31, 56\\ 53, 93\\ 31, 56\\ 53, 93\\ 31, 56\\ 53, 93\\ 31, 56\\ 32, 59\\ 32, 29\\ 33, 21\\ 33, 21\\ 33, 21\\ 33, 21\\ 33, 21\\ 33, 29\\ 33, 21\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\ 33, 29\\$ PZ $\begin{array}{c} 4.70\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\ 1.20\\$ $\mathbf{P}_{\mathbf{r}}$ S $^{10}_{11}$ 16. $^{10}_{11}$ 15. $^{11}_{11}$ 14. $^{11}_{11}$ 14. $^{11}_{11}$ 14. $^{11}_{11}$ 14. $^{11}_{11}$ 14. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. $^{11}_{11}$ 13. 11 $\begin{array}{c} 19, \ 16\\ 46, \ 44\\ 1282, \ 37\\ 822, \ 1282, \ 37\\ 71, \ 38\\ 71, \ 38\\ 71, \ 38\\ 71, \ 38\\ 71, \ 38\\ 71, \ 38\\ 71, \ 38\\ 71, \ 38\\ 72, \ 78\\ 78, \ 78\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28\\ 76, \ 28$ La 厚度 (m) 97851.82220.0 97851.82220.0 7.851.82220.0 해는 해는 해는 과는 과는 과는 과는 가는 가는 가는 가는 가는 가는 가 坣 ĸ KKKKKKKKKKKKK 质

Ba/ Nd

for samples from the Lijiatuo sections, western Hunan (10^{-6})

湘西李家沱剖面样品分析结果(10-6)

2 results 表

Analytical

 \sim

Table 2

ΨE 更

ΠļΓ

표 ₩

硅 慭

.jt551

Ljt550

角街街街街街街街街街街街街街街

Lj (553 Lj (555 Lj (555 Lj (555 Lj (559 Lj (568 Lj (568 Lj (568 Lj (568 Lj (578 Lj (578) Lj (588) Lj (588) Lj (588)

0 00

0.36 0.37 1.15 0.72

.1t590

t59;

439. ⁶.

面 Σ REE 含量约 234×10^{-6} ;从岩性上看硅质页岩 中 Σ REE 含量最低(平均值约为 7×10^{-6}),磷质页 岩次之(78×10^{-6}),硅质岩为 271×10^{-6} ,黑色页岩 Σ REE 含量最高,平约值为 492×10^{-6} .轻稀土元素 (La-Eu)总量(Σ LREE)与重稀土元素(Gd-Lu)总量 (Σ HREE)比值为 0. 30~6.15, La_N/Yb_N 和 Gd_N/ Yb_N 平均值均为 0.51,重稀土富集.3 个剖面 Ce/ Ce^{*} 值为 0.29~1.79,平均值为 0.69.研究剖面下部 Ce/Ce^{*} 平均值为 0.56,较上部(Ce/Ce^{*} 平均值为 0.79)低.Eu/Eu^{*} 变化范围较大,为 0.85~4.94.Y/ Y^{*} 值均大于 1,变化范围为 1.18~3.77(表 1 和 2).

4 讨论

4.1 岩石样品中有机质的稀土元素特征的指 示意义

沉积原生组分与碎屑组分以不同比例混于沉积 岩中.其中,源于海水的沉积原生组分随着海洋环境 变化沉淀下来,其 REE 特征分析能有效地还原古海 洋环境(Shields and Stille, 2001).然而由于成分复 杂且来源多样的碎屑组分掺杂于岩石中,使得全岩 的地球化学分析可能失去了原始海水的有效信息, 受碎屑物质影响的 REE 配型模式可能会趋于平坦 (Pi et al., 2013).

图 2 湘西寒武纪早期黑色岩系中有机质的 REE 的 PAAS 标准化配分曲线

Fig. 2 PAAS shale-normalized REE distribution spectra of organic matter from the Early Cambrian black rock series, western Hunan

图 2f 中海水表面和 100 m 分别为北大西洋表层和 100 m 深度海水的 REE/PAAS 标准化配分曲线(10⁶)(Elderfield and Greaves, 1982)

岩石中的有机质是一种特殊的原生组分,其主要来源于长期生存于海水氧化带的生物(吴朝东等, 1999a).由于寒武纪初期海洋常出现分层水体(海水 表层为氧化环境而底层水体为还原环境)(Goldberg *et al.*,2007),生物体死亡之后,携带着上层海水的 REE 信息掉落于底层还原环境的海水中沉积下来 (皮道会等,2008).深海水体强烈的还原环境可使有 机物不被再矿化而有效地保存.笔者提取了岩石中 稳定的有机质组分——干酪根,认为其 REE 地球化 学特征可能代表古海洋上层水体的氧化还原环境.

4.2 REE 地球化学特征

4.2.1 REE 的配分曲线 岩石样品提取干酪根的 过程中可能引起有机质中各元素含量的损失,但龙 鼻嘴剖面和李家沱剖面 ΣREE 较高,最高浓度可达 10⁻³(表1和2),与 Mossman *et al*.(1993)所发现 的干酪根中较高的 ΣREE 相一致.并且2个剖面样 品中 REE 的 PAAS 标准化配分曲线(图 $2a \sim 2d$)均 为轻微一中等向左倾斜,重稀土富集(La_N/Yb_N 、 Gd_N/Yb_N 和 Dy_N/Yb_N 平均值分别为 0.51、0.51 和 0.57)、Ce 的负异常(Ljt561 和 Ljt563 两块样品除 外,后文讨论)、Y 的正异常(Y/Y* 值变化范围为 1.18~3.77,表 1 和 2)和轻微的 Gd 富集等均符合 现代海水的 REE 特征(图 3f),因而推测寒武纪早期 海洋 REE 的组合特征与现代海水相似.

干酪根中呈现出海水的 REE 配分曲线,说明岩 石中有机质来源于长期在海水中生存的生物体,且 其 REE 未受到碎屑物质、沉积后期和成岩作用影 响,代表了古海洋原始的 REE 组合特征.

4.2.2 Ce 异常 根据氧化还原环境的变化,海水中铈常以三价或四价的形式出现.三价铈在氧化环境中被氧化为四价而容易被锰的氧化物或氢氧化物吸收(Bau *et al.*, 1996). Fe-Mn 的沉积物富集 Ce

图 3 黑色岩系中有机质的稀土元素各参数的相关关系 Fig. 3 Cross plots of various REE parameters for organic matter in black rock series

体现出 Ce 的正异常而海水中相对地呈现 Ce 的负 异常现象(Bau *et al.*, 1996). 铈含量的变化与溶解 于海水的氧气浓度和锰微粒的含量息息相关(Ling *et al.*, 2013).

沉积和成岩作用等可能会改变干酪根中 Ce/Ce*的值,使样品中呈现出 Ce 的富集、Eu 的减少和 Dy_N/Sm_N 比值的下降(Shields and Stille, 2001). 然 而 Ce/Ce* 值与 Eu/Eu*、Dy_N/Sm_N 和 Σ REE 值均 无明显的相关关系(图 3a~3f)表明样品中的 Ce 异常并未受到沉积后期和成岩作用的影响.

本次所研究的剖面中,源于海洋上层水体有机 质中的 Ce 基本为负异常(Ljt561 和 Ljt563 除外,后 文讨论),变化范围在 0.29 和 0.92 之间.值得注意 的是,3 个剖面由底部向上 Ce/Ce* 值逐渐增大(图 4b)(龙鼻嘴和李家沱剖面下段 Ce/Ce* 平均值分别 为 0.58 和 0.53,而上段依次为 0.76 和 0.64).现代 黑海上层水体(氧化层和次氧化层上部)中 Ce 的含 量与溶解的氧气浓度呈正相关关系而与 Mn 的微粒 含量为负相关关系(图 4a; Slack *et al.*, 2007; Ling *et al.*, 2013).引起 Ce/Ce* 值变化的原因可能是海 水溶解氧的浓度改变,或者是源于海平面升降引起 的海水深度变化(Ling *et al.*, 2013).作为有机物的 主要来源,藻类和浮游生物大量生活在海洋上层水 体的透光层中,故海水升降可能对其 Ce/Ce* 值影 响不大.笔者推测海水中溶解氧含量的变化是导致干 酪根样品中 Ce含量改变的主要决定因素.Ce/Ce* 值 的逐渐升高可能意味着寒武纪早期表层海水中含氧 量的逐渐增大.部分样品中 Ce/Ce* 值高于现代黑海 表层海水中 Ce/Ce* 的最大值(0.54),或许是因为古 海洋中溶解的氧低于现代海水而导致海水的 Ce/Ce* 值可能在 0.55 和 1 之间(Ling *et al.*, 2013).

2 块样品出现 Ce 的正异常现象(Ljt561 和 Ljt563,位于李家沱剖面 9.5 m 和 14.8 m 处,Ce/ Ce* 值分别为 1.59 和 1.79;图 2e 和图 4a)并不符 合氧化的海水中 Ce/Ce* 值的特征,其原因可能是 此时沉积物处于较强烈的还原条件而导致 Ce 的富 集.该阶段较大的有机碳同位素负漂移(Guo *et al.*, 2007b)也证明了这点.

扬子地台寒武纪初期浅水台地相区沉积剖面的 底部可能出现滞流(或硫化)环境(Goldberg et al., 2007; Guo et al., 2007a),而剖面向上逐渐演变为 厌氧环境(Guo et al., 2007a).Pi et al.(2013)通过 微量元素变化特征表明过渡相一盆地相沉积剖面氧 化还原特征与此相似.而盆地相内龙鼻嘴剖面铁组 分含量特征同样表明其底部可能出现滞流(或硫化) 环境,而剖面上部处于稳定的厌氧环境(Wang et

Fig. 4 Variations of Ce/Ce* in the modern black sea and Longbizui and Lijiatuo section a. 海洋氧化层和次氧化层上部水体 Ce/Ce* 值、Mn 和氧气含量随深度的变化情况,修改自 Slack *et al*. (2007)和 Ling *et al*. (2013).数据来源: Ce/Ce* 值源于 German *et al*. (1991), Mn 微粒含量参考 Lewis and Landing(1991), 氧气浓度源于 Luther *et al*. (1991)

al., 2012).因此,寒武纪初始阶段扬子地台可能会 出现较大范围的滞流(硫化)环境,而随着时间的推 移逐渐变化为厌氧或者次氧化甚至氧化环境,还原 环境逐渐减弱. 然而与干酪根样品中 Ce/Ce* 值的 变化特征相似,扬子地台早寒武世各相区剖面全岩 样品随着剖面厚度的升高 Ce/Ce* 值逐渐增大(Guo et al., 2007a; 杨兴莲等, 2008), 似乎意味着当时还 原的沉积环境逐渐增强. Ce/Ce* 值判断的情况与其 他地球化学特征解释有所矛盾. Guo et al. (2007a) 发现黑色岩系内处于较强还原环境的样品中 Ce 具 有明显的负异常,并将此矛盾解释为沉积物可能来 源于生存在氧化还原界面之上的海洋生物.全岩样 品中 Ce 的负异常可能由来源于海洋上层水体生物 的有机质所提供(Pi et al., 2013),海洋水体的逐渐 氧化引起干酪根中 Ce 的负异常减弱从而导致全岩 样品中 Ce/Ce* 值的升高. 浅水相区的沙滩剖面由 底部 Ce 的较大负异常(Ce/Ce*=0.68)迅速上升变 为 Ce 异常不明显(Guo et al., 2007a),可能是因为 其沉积环境趋于氧化之后,离源区较近而受大量碎 屑物质干扰所致. 由扬子地台各沉积相区 REE 中 Ce 的异常情况可知寒武纪早期古海洋环境由较强 的还原环境逐渐趋于氧化,水体含氧量逐渐上升.

Wille et al. (2008) 推测埃迪卡拉一寒武纪转变 期内富硫化氢的底层水体会上升至海水表面. 所以 寒武纪初期,海洋上层水体含氧量的逐渐升高可能 是因为海底富硫化氢气体的滞流(硫化)环境逐渐减 弱所导致.

4.2.3 Eu异常 作为 REE 元素中可变价元素, 铕 的异常经常存在于岩浆岩或者是沉积岩中.在地表 条件下 Eu 以正三价的形式存在, 而强还原或具海 底热液活动的环境可使 Eu³⁺ 被还原为 Eu²⁺ 而出现 Eu的正异常(Shields and Stille, 2001). 但是, Eu 的异常还可能来自于 ICP-MS 测试过程中钡的干扰 (Dulski, 1994). 龙鼻嘴和李家沱剖面的部分样品 具有明显的 Eu 的正异常(图 2b, 2d),但其中 Ba/ Nd和Eu/Eu*均呈一定的正相关关系(相关系数分 别为 0.65 和 0.70, n 分别为 20 和 19; 图 3g, 3h), 表明样品中的 Eu 异常受到了 Ba 元素的干扰而不 能反映原始海水中 Eu 的特征. 但是在 Ba 浓度较小 的样品中(Ba/Nd<20),Ba/Nd和Eu/Eu*基本没 有相关关系(如李家沱剖面 $R^2 = 0.004, n = 8;$ 图 3i). 这些样品中 Eu/Eu* 值为 0.84~1.03,符合正 常海水中 Eu 无明显异常或具微弱亏损的特征.黑 色岩系中有机质的 Eu 异常在没有 Ba 离子的干扰 下符合正常海水的特征进一步验证了干酪根中 REE代表了海洋上层水体稀土元素的组合特征.

5 结论

(1)以富含有机质的黑色岩系中的干酪根为分 析对象,认为其 REE 组合特征能有效地反映海洋上 层水体的氧化还原情况而不被碎屑物质所干扰;(2) 样品中干酪根的 REE 具有现代海水的组合特征,表 明寒武纪早期海洋上层水体的 REE 特征可能与现 代海洋相似;(3)扬子地台寒武纪早期可能出现大范 围的滞流(硫化)环境,随后还原环境逐渐减弱而变 为厌氧或次氧化甚至氧化环境.全岩样品中 Ce 的 负异常可能由有机质所提供,Ce 的负异常逐渐由强 变弱,可能是由于海洋滞流(硫化)环境的减弱而导 致上层海水含氧量逐渐升高.

致谢:样品分析和测试过程中得到了中国科学 院地理科学与资源研究所王建立老师和张宏志老师 的热心帮助.南京大学的蒋少涌教授和凌洪飞教授 均给予了宝贵的意见,在此表示诚挚的谢意.

References

- Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79 (1-2): 37-55. doi: 10.1016/ 0301-9268(95)00087-9
- Bau, M., Koschinsky, A., Dulski, P., et al., 1996. Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawater. *Geochimica et Cosmochimica Acta*, 60(10):1709-1725. doi:10.1016/0016-7037(96)00063-4
- Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. *Fresenius Journal* of Analytical Chemistry, 350(4-5): 194-203. doi: 10.1007/BF00322470
- Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. *Nature*, 296; 214 – 219. doi: 10. 1038/296214a0
- Fu, J. M., Qin, K. Z., 1995. The Geochemistry of Kerogen. Guangdong Science and Technology Press, Guangzhou, 27-78 (in Chinese).
- German, C. R., Holliday, B. P., Elderfield, H., 1991. Redox Cyc-

ling of Rare-Earth Elements in the Suboxic Zone of the Black-Sea. *Geochimica et Cosmochimica Acta*, 55 (12): 3553-3558. doi:10.1016/0016-7037(91)90055-A

- Goldberg, T., Strauss, H., Guo, Q. J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 254 (1-2): 175-193. doi:10.1016/j. palaeo. 2007.03.015
- Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007a. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 254 (1-2): 194-216. doi: 10. 1016/j. palaeo. 2007. 03. 016
- Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2007b. Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 254(1-2): 140-157. doi: 10.1016/j. palaeo. 2007. 03.014
- Jiang, S. Y., Chen, Y. Q., Ling, H. F., et al., 2006. Traceand Rare-Earth Element Geochemistry and Pb-Pb Dating of Black Shales and Intercalated Ni-Mo-PGE-Au Sulfide Ores in Lower Cambrian Strata, Yangtze Platform, South China. *Mineralium Deposita*, 41(5):453-467. doi:10.1007/s00126-006-0066-6
- Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. *Chemical Geology*, 244(3-4):584-604. doi:10.1016/j. chemgeo. 2007.07.010
- Knoll, A. H., Carroll, S. B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284: 2129 - 2137. doi: 10. 1126/science. 284. 5423. 2129
- Lehmann, B., Nägler, T. F., Holland, H. D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. *Geology*, 35(5):403-406. doi:10. 1130/G23543A.1
- Lewis, B. L., Landing, W. M., 1991. The Biogeochemistry of Manganese and Iron in the Black-Sea. Deep-Sea Research, 38(Supplement 2): S773-S803. doi:10.1016/ S0198-0149(10)80009-3
- Ling, H. F., Chen, X., Li, D., et al., 2013. Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates

from the Yangtze Gorges Area, South China; Implications for Oxygenation of Coeval Shallow Seawater. *Precambrian Research*, 225:110-127. doi: 10. 1016/j. precamres, 2011. 10. 011

- Luther, G. W., Church, T. M., Powell, D., 1991. Sulfur Speciation and Sulfide Oxidation in the Water Column of the Black-Sea, *Deep-Sea Research*, 38(Supplement 2):S1121-S1137. doi:10.1016/S0198-0149(10)80027-5
- Maloof, A. C., Ramezani, J., Bowring, S. A., et al., 2010. Constraints on Early Cambrian Carbon Cycling from the Duration of the Nemakit-Daldynian-Tommotian Boundary δ¹³C Shift, Morocco. *Geology*, 38(7):623-626. doi: 10.1130/G30726.1
- Marshall, C. R. ,2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Science, 34:355-384. doi:10.1146/annurev.earth.33. 031504.103001
- Mclennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. *Reviews in Mineralogy*, 21(1):169-200.
- Mossman, D. J., Goodarzi, F., Gentzis, T., 1993. Characterization of Insoluble Organic Matter from the Lower Proterozoic Huronian Supergroup, Elliot Lake, Ontario. *Precambrian Research*, 61(3-4): 279-293. doi: 10. 1016/0301-9268(93)90117-K
- Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. *Precambrian Research*, 225: 218 – 229. doi:10.1016/j. precamres. 2011. 07.004
- Pi, D. H., Liu, C. Q., Deng, H. L., et al., 2008. REE Geochemistry of Organic Matter from Black Shales of the Niutitang Formation, Zunyi, Guizhou Province. Acta Mineralogica Sinica, 28(3): 303-310 (in Chinese with English abstract).
- Richard, A. K., 1998. Did an Ancient Deep Freeze Nearly Doom Life? Science, 281(5381): 1259-1261. doi: 10. 1126/science. 281. 5381. 1259
- Schröder, S., Grotzinger, J. P., 2007. Evidence for Anoxia at Ediacaran-Cambrian Boundary: The Record of Redox Sensitive Trace Elements and Rare Earth Elements in Oman. Journal of the Geological Society, London, 164 (6):175-187. doi:10.1144/0016-76492005-022
- Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Proxies: An Isotopic and REE Study of Cambrian Phosphorites.

Chemical Geology, 175(1-2): 29-48. doi: 10. 1016/ S0009-2541(00)00362-4

- Slack, J. F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255(1-2):243-256. doi:10.1016/j.epsl. 2006. 12.018
- Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran- Cambrian Transition and Implications for Bioradiation. *Chemical Geology*, 306:129-138. doi:10. 1016/j. chemgeo. 2012. 03. 005
- Wang, Z. G., Yu, X. Y., Zhao, Z. H., et al., 1989. Rare Earth Element Geochemistry. Science Press, Beijing (in Chinese).
- Wille, M., Nägler, T. F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. *Nature*, 453 (7196): 767-769. doi:10.1038/nature07072
- Wu, C. D., Chen, Q. Y., Lei, J. J., 1999a. The Genesis Factors and Organic Petrology of Black Shale Series from the Upper Sinian to the Lower Cambrian, Southwest of China. Acta Petrologica Sinica, 15(3): 453-462 (in Chinese with English abstract).
- Wu, C. D., Yang, C. Y., Chen, Q. Y., 1999b. The Origin and Geochemical Characteristics of Upper Sinain-Lower Cambrian Black Shales in Western Hunan. Acta Petrologica et Mineralogica, 18(1):26-39 (in Chinese with English abstract).
- Xiao, S. H., Hu, J., Yuan, X. L., et al., 2005. Articulated Sponges from the Early Cambrian Hetang Formation in Southern Anhui, South China: Their Age and Implications for Early Evolution of Sponges. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 220 (1-2): 89-117. doi:10.1016/j. palaeo. 2002.02.001
- Xu, L. G., Lehmann, B., Mao, J. W., 2013. Seawater Contribution to Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China: Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry. Ore Geology Reviews, 52: 66 – 84. doi: 10. 1016/j. oregeorev. 2012. 06. 003
- Yang, A. H., Zhu, M. Y., Zhang, J. M., et al., 2003. Early Cambrian Eodiscoid Trilobites of the Yangtze Platform and Their Stratigraphic Implications. *Progress in Nature Science*, 13 (11): 861 – 866. doi: 10. 1080/ 10020070312331344560
- Yang, J., Yi, F. C., Qian, Z. Z., 2005. Characters of Lower Cambrian Black Shale Series' Kerogen and Their Car-

bon Isotope Implications in Northern Guizhou Province. Journal of Mineralogy and Petrology, 25(1):99-103 (in Chinese with English abstract).

- Yang, J. H., Jiang, S. Y., Ling, H. F., et al., 2004. Paleoceangraphic Significance of Redox-Sensitive Metals of Black Shales in the Basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. *Progress* in Natural Science, 14 (2): 152 – 157. doi: 10. 1080/ 10020070412331343291
- Yang, X. L., Zhu, M. Y., Zhao, Y. L., et al., 2008. REE Geochemical Characteristics of the Ediacaran-Lower Cambrian Black Rock Series in Eastern Guizhou, *Geological Review*, 54(1):3-15 (in Chinese with English abstract).
- Zhou, C. M., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 271(3-4): 279-286. doi: 10. 1016/j. palaeo. 2008. 10. 024
- Zhu, M. Y., Strauss, H., Shields, G. A., 2007. From Snowball Earth to the Cambrian Bioradiation: Calibration of Ediacaran-Cambrian Earth History in South China. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 254 (1-2):1-6. doi:10.1016/j. palaco. 2007.03.026
- Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform; An Integrated Approach. *Progress in Natural Science*, 13 (12):951-960. doi:10.1080/10020070312331344710

附中文参考文献

- 傅家谟,秦匡宗,1995.干酪根地球化学.广州:广东科技出版 社,27-78.
- 皮道会,刘丛强,邓海琳,等,2008.贵州遵义牛蹄塘组黑色岩 系有机质的稀土元素地球化学研究.矿物学报,28(3): 303-310.
- 王中刚,于学元,赵振华,等,1989.稀土元素地球化学.北京: 科学出版社.
- 吴朝东,陈其英,雷家锦,1999a. 湘西震旦-寒武纪黑色岩系 的有机岩石学特征及其形成条件. 岩石学报,15(1): 453-461.
- 吴朝东,杨承运,陈其英,1999b. 湘西黑色岩系地球化学特征 和成因意义. 岩石矿物学杂志,18(1): 26-39.
- 杨剑,易发成,钱壮志,2005. 黔北黑色岩系干酪根特征与碳 同位素指示意义.矿物岩石,25(1):99-103.
- 杨兴莲,朱茂炎,赵元龙,等,2008. 黔东震旦系一下寒武统黑色 岩系稀土元素地球化学特征. 地质论评,54(1):3-15.