doi:10.3799/dqkx.2014.076

滇西腾冲地块新生代火山岩中 高温麻粒岩包体的发现及成因

林木森1,彭松柏1,2*,乔卫涛3,李昌年1,徐海军1

1.中国地质大学地球科学学院,湖北武汉 430074

2.中国地质大学教育部长江三峡库区地质灾害研究中心,湖北武汉 430074

3.贵州省地质调查院,贵州贵阳 550004

摘要:腾冲地块芒棒乡新生代新近纪芒棒组火山岩的研究,发现粗面安山岩中含有较多麻粒岩包体,主要类型为长英质麻粒 岩和二辉麻粒岩,直径一般为3~5 cm,略具定向排列构造,粒状变晶结构特征.长英质麻粒岩包体平衡温度和压力为:869~ 969℃,0.94~1.00 GPa,二辉麻粒岩包体平衡温度为:841~972℃,均显示为高温麻粒岩相变质;寄主岩粗面安山岩中斑晶结 晶估算的温度和压力为:1008~1059℃,1.26~1.33 GPa,表明它们形成和起源于下地壳到上地幔顶部之间.二辉麻粒岩包体 电子背散射衍射(EBSD)显微组构分析表明,斜方辉石(紫苏辉石)和单斜辉石(普通辉石)均具有明显晶格优选方位(LPO),斜 方辉石和单斜辉石主滑移系分别为:(010)[001]和(100)[001],(010)[001],变形机制为位错蠕变,说明麻粒岩包体经历了高 温塑性变形变质作用.新生代新近纪火山岩中高温麻粒岩的发现和研究表明,腾冲新生代岩浆活动可能与印度板块和腾冲地 块俯冲一碰撞造山后的伸展垮塌一拆沉和板片断离,以及随后的上地幔物质上涌减压熔融产生玄武质岩浆底侵,导致的下地 壳发生高温变质及火山岩浆作用有密切关系.

关键词:腾冲地块;新生代粗面安山岩;高温麻粒岩包体;平衡温度压力;电子背散射衍射;显微组构;岩石学. **中图分类号:** P588 **文章编号:** 1000-2383(2014)07-0807-13 **收稿日期:** 2013-12-20

Characteristics and Genetic Significance of High Temperature Granulite Xenoliths in Cenozoic Volcanic Rocks, Tengchong, Western Yunnan Province, China

Lin Musen¹, Peng Songbai^{1,2*}, Qiao Weitao³, Li Changnian¹, Xu Haijun¹

 $1. Faculty \ of \ Earth \ Sciences \ , \ China \ University \ of \ Geosciences \ , \ Wuhan \ \ 430074 \ , \ China$

2. Three Gorges Research Center for Geo-hazards, Ministry of Education, China University of Geosciences, Wuhan 430074, China
3. Guizhou Geological Survey, Guiyang 550004, China

Abstract: Researches on the Cenozoic volcanic rocks of the Mangbang Formation in the Mangbang area of the Tengchong block, South China, reveals many granulite xenoliths of felsic granulite and two-pyroxene granulite in trachyandesite. The granulite xenoliths range 3-5 cm in diameters, featured with aligned formation and blastic texture. Equilibrium temperature and pressure estimates for the felsic granulite xenoliths and two-pyroxene granulite xenoliths are 869-969 °C, 0.94-1.00 GPa and 841-972 °C respectively, indicating that they are high temperature granulites. The crystallization temperature and pressure of trachyandesite phenocryst is 1008-1059 °C, 1.26-1.33 GPa, indicating that they were formed in and originated from the lower crust to the top of the upper mantle. Electron backscatter diffraction(EBSD) analyses of two-pyroxene granulite xenoliths show that orthopyroxene and clinopyroxene have obvious lattice preferred orientation (LPO), and the main slip systems are: (010) [001] and (100) [001], (010) [001] respectively. The deformation mechanism is dislocation creep, which indicates that granulite xenoliths experienced a strong plastic deformation and metamorphism. The discovery of high temperature granulite in Cenozoic volcanic rocks suggests that Tengchong Cenozoic magmatic activity may be related with volcanic magamatism and high

基金项目:国土资源部深部探测技术与实验研究专项课题(No.201011060).

作者简介:林木森(1987-),男,博士研究生,构造地质学专业,主要从事构造与岩石方面的研究.E-mail: lmswyc@aliyun.com

^{*} 通讯作者:彭松柏, E-mail: psongbai@gmail.com

temperature metamorphism in the lower crustal caused by post-collisional extensional collapse, delamination and slab break-off after subduction and collision of the Indian Plate and the Tengchong block.

Key words: Tengchong block; Cenozoic trachyandesite; High-temperature granulite xenolith; equilibrium temperature and pressure; electron backscatter diffraction; micro-fabric; petrology.

碱性玄武岩中携带的麻粒岩包体为我们提供了 丰富的下地壳和上地幔地质演化信息,前人对中国 东部地区新生代火山岩中麻粒岩包体已做了十分详 细的研究,并取得了许多重要进展(周新民和陈图 华,1984;李有柱,1995;樊祺诚和刘若新,1996;孔华 等,2000;翟明国和刘文军,2001;张海祖和张宏飞, 2001;黄小龙等,2002;于津海等,2002;李丽敏等, 2011),但对滇西腾冲地块新生代火山岩中深源包体 成因的研究还很少(于红梅等,2010),特别是对腾冲 地块新生代火山岩中麻粒岩包体的研究尚未见报 道.本文通过对腾冲地块东部芒棒一带新生代新近 纪火山岩中发现的麻粒岩包体矿物组合特征、温度 和压力,变形变质显微组构及变形机制的初步研究, 对其成因及地质构造意义进行了探讨.

1 区域地质背景

腾冲地块大地构造位于青藏高原东南缘的怒江 和密支那缝合带之间,是中特提斯怒江洋、新特提斯 密支那洋相继发生俯冲消亡(Yin and Harrison, 2000; 莫宣学和潘桂棠,2006;莫宣学等,2009),腾冲地块在 燕山期与保山地块发生碰撞拼贴、印度板块于喜马拉 雅早期与腾冲地块发生碰撞之后(Searle, 1988;莫宣 学等,2003;Chung et al.,2005;Mo et al.,2007),引发 块体发生大规模旋转、逃逸和走滑(Tapponnier and Molnar, 1976; Tapponnier et al., 1982; 张克信等, 2007)形成青藏高原东南缘大型走滑变形构造的重要 组成部分,并以发育强烈走滑剪切构造变形、火山岩 浆活动,以及发育异常高温地热温泉,一直受到众多 地质学家的关注.新生代喜马拉雅期,在印度板块向 北俯冲一碰撞的强烈挤压过程中,腾冲地块东部怒江 缝合带(高黎贡带)和西部的那邦韧性剪切带(实皆断 裂的北沿部分)向南西旋转、挤出,形成现今东部以近 南北向高黎贡弧形韧性剪切带为界,西部以密支那缝 合带东侧的那帮韧性剪切带为界,中部则发育始新世 断陷盆地为特征的构造格局(图1).

本研究区位于云南腾冲县芒棒乡北约4km的 大石头山(图1).大地构造位置属中新生代近南北向 高黎贡造山带西侧的腾冲地块,该区出露的主要岩 石是新生代新近纪上新世芒棒组粗面安山岩一粗面 玄武岩(姜朝松,1998),其中发现有较多深源包体, 多呈次棱角状.包体多为块状构造,部分具片麻状构 造,主要类型有:长英质麻粒岩、二辉麻粒岩包体和 花岗岩类包体.长英质麻粒岩和二辉麻粒岩包体,一 般直径为 3~5 cm,最大直径可达 6 cm;花岗岩类包 体则一般较大,最大可达 10~15 cm.

2 包体及寄主岩岩相学、地球化学 特征

本文所分析的包体及寄主岩样品均采自腾冲地 区芒棒乡大石头山采石场的粗面安山岩(安粗岩). 所有用于岩石常量和微量元素分析的样品均经表面 去皮、清洗、粉碎至 200 目.常量元素的测试分析采 用 X-射线荧光光谱仪(XRF)测定,并用等离子光谱 法进行校正,试验在湖北武汉地质实验测试中心完 成.微量元素和稀土元素采用 Agilent 7500a ICP-MS 分析,此分析在中国地质大学(武汉)地质过程 与矿产资源国家重点实验室(GPMR)完成,精度优 于1%~3%.锆石阴极发光成像成因结构分析在中 国科学院地质与地球物理研究所完成.

岩石常量元素、微量元素分析结果(表1和表 2)采用地球化学工具软件包 GeoKit 程序(路远发, 2004)进行岩石地球化学数据处理.根据野外宏观观 察,微观光学显微镜下岩石薄片、电子探针观察分析 (表3)和岩石地球化学分析数据的综合研究,可知 本次研究的包体主要有两种类型:花岗岩类包体和 麻粒岩类包体.寄主火山岩为粗面安山岩.

2.1 花岗岩类包体特征

研究区花岗岩类包体主要产于粗面安山岩中, 岩性以黑云斜长花岗岩和二长花岗岩为主,灰白色, 呈次棱角状、块状构造,少量具片麻状构造,均为中 粗粒结构,最大直径可达10~15 cm,由石英 (65%~70%)、斜长石(15%~25%)和钾长石 (5%~20%)组成.石英为透明、无解理、裂纹发育、 正低突起和波状消光.斜长石主要为拉长石,聚片双 晶发育.钾长石发育两组近正交解理,并常见有钾长 石出溶斜长石现象,出溶斜长石为中长石,钾长石为

Fig.1 Geological sketch map of the Tengchong block

透长石.

2.2 麻粒岩类包体特征

本区发现的麻粒岩类包体,主要为长英质麻粒 岩包体和二辉麻粒岩包体两种类型.麻粒岩包体以 出现紫苏辉石为特征,一般直径为3~5 cm,最大直 径可达6 cm,但通常都小于花岗岩包体.

长英质麻粒岩包体,颜色灰白色到灰色,具有块 状构造、片麻状构造、中粒花岗变晶结构,矿物颗粒 具弱定向特征(图 2a);主要矿物有:石英(65%~ 70%)、斜长石(15%~20%)和辉石(5%~10%).光 学显微镜下,常见石英包含有少量锆石,在其周缘有 时可见有放射性裂纹,石英普遍见有针状出溶体,表 明后期可能存在减压作用过程.锆石阴极发光成像 显示,锆石多具有核一边结构,且边部无韵律结构, 显示为变质成因锆石的结构特征(图 2b).斜长石为 他形一半自形粒状,粒径为 0.4~1.0 mm,聚片双晶 普遍存在.斜方辉石呈他形不规则粒状,粒径为 0.4~1.0 mm,正高突起,淡绿一淡红多色性,二轴晶

表1 腾冲芒棒新生代粗面安山岩主量元素(%)分析结果

Table 1 Major elements of Cenozoic trachyandensites in Mangbang, Tengchong

样品号	采样位置	岩石类型	${\rm SiO}_2$	${\rm TiO}_2$	Al_2O_3	Fe_2O_3	FeO *	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	$\rm H_2O^+$	CO_2	总计
TC-25-2	芒棒	粗面安山岩	56.80	1.18	16.40	3.39	3.53	0.09	4.16	6.26	3.50	2.99	0.37	0.95	0.06	99.68
MB-3	芒棒	粗面安山岩	56.90	1.18	16.60	3.18	3.72	0.09	4.04	6.26	3.52	3.03	0.37	0.82	0.04	99.75

表 2 腾冲芒棒新生代粗面安山岩微量元素分析结果(10-6)

Table 2 Trace element of Cenozoic trachyandensites in Mangbang, Tengchong

样品号	采样位置	岩石类型	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Ba	Rb	Sr	Y
TC-25-2	芒棒	粗面安山岩	61.4	115	12.3	44.6	7.66	1.68	6.35	0.89	4.89	0.92	2.64	0.36	2.36	0.34	755	82.4	536	26.5
MB-3	芒棒	粗面安山岩	63.4	119	12.6	46.5	7.74	1.8	6.46	0.91	5.02	0.93	2.72	0.38	2.33	0.35	787	86.1	5 5 5 6	27.2
样品号	采样位置	岩石类型	Zr	Nb	Th	Pb	Ga	Zn	Cu	Ni	V	Cr	Hf	Cs	Sc	Ta	Со	Li	Be	U
TC-25-2	芒棒	粗面安山岩	256	24.4	17	23	18.9	78.4	20.4	28.1	118	67.2	6.13	0.42	16	1.31	26.7	10.4	2.07	1.86
MB-3	芒棒	粗面安山岩	269	24.7	17.7	19.8	19.6	78.7	17.4	28	121	63.5	6.38	0.5	16.3	1.34	25.4	11.1	1.97	1.92

表 3 腾冲芒棒新生代粗面安山岩及麻粒岩包体矿物电子探针成分分析(%)结果

Table 3 EMPA results of minerals of trachyandensites and granulite xenoliths in Mangbang, Tengchong

样品号	岩石类型	矿物名称	Na_2O	MgO	Al_2O_3	$_3$ SiO ₂	CaO	P_2O_5	K_2O	${\rm TiO}_2$	NiO	FeO *	MnO	Cr_2O_3	Total	Mg♯	Wo/An	En/Ab	Es/Or
	紫苏辉石	0.02	21.05	1.01	53.66	0.95	0.01	0.00	0.16	0.03	22.27	0.43	0.06	99.65	62.73	2.00	61.48	36.52	
TC MD 1	长英质麻	普通辉石	0.12	14.28	0.93	53.66	20.91	0.38	0.03	0.39	0.04	8.95	0.21	0.14	100.03	73.99	43.77	41.61	14.63
IC-MB-I	粒岩包体	拉长石	5.27	0.09	26.84	56.95	9.69	0.23	0.53	0.06	0.01	0.18	0.00	0.01	99.85		49.60	48.78	1.62
		拉长石	5.18	0.04	26.86	57.78	9.90	0.07	0.70	0.04	0.00	0.13	0.02	0.06	100.78		50.25	47.63	2.11
		紫苏辉石	0.00	21.15	1.57	52.13	0.78	0.00	0.00	0.19	0.00	22.90	0.51	0.00	99.23	61.80	1.61	60.80	37.59
		紫苏辉石	0.00	21.18	1.40	52.29	0.65	0.00	0.00	0.04	0.00	22.99	0.54	0.02	99.11	61.69	1.34	60.86	37.79
	以甘氏皮	紫苏辉石	0.00	20.47	1.19	52.17	0.71	0.00	0.00	0.12	0.00	24.24	0.54	0.00	99.44	59.77	1.47	58.89	39.64
MB-DS-1	长央原林 約	拉长石	5.42	0.03	26.98	55.11	9.91	0.00	0.66	0.00	0.00	0.18	0.00	0.04	98.32		49.28	48.77	1.95
<u>Υν</u> .	也有也评	拉长石	5.34	0.02	26.96	55.63	9.76	0.00	1.10	0.00	0.00	0.10	0.00	0.00	98.91		48.61	48.13	3.26
		拉长石	4.95	0.02	27.99	53.71	10.84	0.00	0.51	0.00	0.00	0.15	0.00	0.00	98.17		53.93	44.56	1.51
		拉长石	4.24	0.03	29.23	52.25	12.01	0.00	0.37	0.00	0.00	0.23	0.00	0.00	98.37		60.32	38.57	1.11
		紫苏辉石	0.01	19.87	1.81	52.34	0.74	0.01	0.00	0.10	0.00	24.05	0.67	0.07	99.66	58.04	1.54	57.15	41.31
	」二辉麻粒 岩包体	紫苏辉石	0.02	20.12	1.24	52.37	0.65	0.00	0.00	0.11	0.00	24.64	0.67	0.03	99.84	58.66	1.35	57.87	40.78
MB-DS-1		紫苏辉石	0.02	20.30	1.18	53.30	0.70	0.00	0.00	0.02	0.00	23.67	0.63	0.09	99.90	58.22	1.43	57.39	41.19
		普通辉石	0.48	13.01	2.15	52.97	20.01	0.45	0.00	0.11	0.00	10.45	0.33	0.00	99.93	64.11	41.48	37.52	21.00
		普通辉石	0.38	12.54	2.13	52.57	20.88	0.00	0.00	0.10	0.02	10.15	0.27	0.13	99.16	65.41	43.92	36.68	19.39
		古铜辉石	0.02	26.08	2.80	53.36	1.63	0.00	0.00	0.45	0.01	15.27	0.33	0.01	99.97	75.37	3.28	72.90	23.82
TC-25-2	粗面安山岩	普通辉石	0.41	15.82	3.82	51.78	19.11	0.21	0.00	0.83	0.00	7.10	0.18	0.26	99.53	77.25	40.15	46.23	13.62
		拉长石	3.84	0.10	29.57	53.36	12.55	0.17	0.36	0.10	0.04	0.40	0.00	0.00	100.49		63.66	35.25	1.08
		古铜辉石	0.04	26.37	1.87	53.99	1.60	0.02	0.00	0.05	0.00	13.53	0.32	0.04	97.82	75.69	3.19	73.27	23.54
MB-3 粗ī	粗面安山岩	普通辉石	0.47	14.07	3.72	50.22	18.88	0.01	0.00	0.67	0.00	9.49	0.22	0.04	97.79	73.63	41.53	43.05	15.42
		拉长石	4.14	0.08	27.45	53.29	11.69	0.35	0.43	0.03	0.00	0.50	0.00	0.00	97.95		60.13	38.55	1.32
		贵橄榄石	0.02	43.72	0.02	39.91	0.18	0.00	0.00	0.02	0.18	14.76	0.23	0.04	99.07	82.82			
TC-24	粗面安山岩	贵橄榄石	0.00	43.49	0.01	39.94	0.16	0.03	0.00	0.00	0.18	14.80	0.21	0.00	98.82	82.34			
		普通辉石	0.46	11.68	5.06	47.77	21.40	0.31	0.00	2.70	0.00	8.98	0.15	0.04	98.55	68.30	47.35	35.96	16.69

负光性.单斜辉石呈他形短柱状,粒径 0.3~0.8 mm 左右,淡绿色,二轴晶负光性(图 2c,2d),电子探针 分析表明,单斜辉石为普通辉石,而斜方辉石为紫苏 辉石,在巴塔查扬斜方辉石成因判别图上,斜方辉石 落入变质成因区(张儒瑗和从柏林,1985),也反映出 该类包体经历了麻粒岩相变质作用. 二辉麻粒岩包体,灰黑一绿黑色,块状构造,中 细粒粒柱状变晶结构,矿物颗粒具有弱定向特征,主 要矿物有:斜方辉石(55%±)和单斜辉石(45%±) (图 2e).光学显微镜下,斜方辉石呈他形不规则粒 状,粒径为 0.2~0.6 mm,正高突起,淡绿一淡红多 色性,二轴晶负光性.单斜辉石呈他形短柱状,粒径

图 2 长英质麻粒岩包体和二辉麻粒岩包体宏观特征与微观特征

Fig.2 Macro and micro characteristics of felsic granulite and two-pyroxene granulite xenoliths a.长英质麻粒岩包体手标本特征;b.长英质麻粒岩包体显微薄片中变质锆石阴极发光特征;c,d.长英质麻粒岩包体中单斜辉石和斜方辉石特征(单偏光下);e.二辉麻粒岩包体手标本特征;f.二辉麻粒岩包体中单斜辉石和斜方辉石特征(单偏光下)

0.2~0.6 mm,淡绿色,二轴晶负光性(图 2f).电子探 针分析表明,单斜辉石为普通辉石,斜方辉石为紫苏 辉石均系变质成因(张儒瑗和从柏林,1985),表明该 类包体也经历了麻粒岩相变质作用.

2.3 粗面安山岩特征

2.3.1 岩相学特征 包体的寄主岩为新生代新近 纪的粗面安山岩,具有块状构造、斑状结构、杏仁结 构;斑晶占 20%~25%,基质占 75%~80%.斑晶主 要为:斜长石(10%±)、斜方辉石(5%~10%)、单斜 辉石(5%~10%)和橄榄石(<5%).斜长石斑晶较 大,粒径为 0.4~1.0 mm,自形程度较高,多呈板柱 状,双晶发育;橄榄石和辉石粒径相对较小,为 0.3~ 0.6 mm,部分橄榄石具有伊丁石化现象;斑晶中有 少量聚合斑晶矿物的集合体,呈聚斑结构,主要由斜 长石,辉石和橄榄石组成.光学显微镜下观察,斑晶 未见有变形双晶、扭折带、变形纹等明显的变形现 象.因此,推断斑晶应属火山岩浆结晶作用的产物, 而非地幔岩捕虏晶.电子探针分析表明,辉石斑晶中 的单斜辉石为普通辉石,斜方辉石为古铜辉石,在巴 塔查扬斜方辉石成因判别图上,斜方辉石落入岩浆 成因区(张儒瑗和从柏林,1985).橄榄石斑晶为贵橄 榄石, $F_o=100 \text{ Mg}/(\text{Mg}+\text{Fe}^{2+})=85, 介于典型的$ $地幔岩橄榄石捕虏晶(一般 <math>F_o>90$)和岩浆结晶橄 榄石(一般 $F_o<80$), CaO=(0.16%~0.18%)> 0.1%,也显示为岩浆成因的特征(唐雪莲,2005;苏 本勋等,2006).但最近的研究表明,这类橄榄石斑晶 也可能是来源于地幔岩的橄榄石捕虏晶,后期受到 寄主岩浆作用改造形成的(汤艳杰等,2004;张宏福 等,2004),这暗示寄主岩浆的起源可能深达上地幔 顶部.粗面安山岩的基质则主要为斜长石(25%~ 35%)、辉石(10%~15%)以及隐晶质和针柱状微 晶体.

2.3.2 地球化学特征 根据寄主火山岩粗面安山 岩的岩石地球化学成分(表1和表2)、火山岩中主 要矿物组合和结构特征,以及在 Middlemost(1989) 火山岩全碱 一硅(TAS)和 Winchester and Floyd (1977)火山岩化学成分分类图解的投图,这些寄主 火山岩均落入粗面安山岩范围.因此,包体寄主火山 岩属粗面安山岩(安粗岩).

粗面安山岩的 SiO₂ = 56.8% ~ 56.9%, Na₂O+ K₂O=6.49% ~ 6.55%, 显示出富碱中性-基性火 山岩的特征, 其中 K₂O = 2.99% ~ 3.03%, K₂O/ Na₂O=0.86~0.86, 高于正常钙碱系列玄武岩, 在 Middlemost(1989)岩石系列 K₂O-SiO₂ 图解中落入 高钾钙碱性岩石. Al₂O₃ 含量较高, 介于 16.4% ~ 16.6%, Al₂O₃/CaO=2.62~2.73, 高于地幔岩和球 粒陨石的比值(1.0~1.2); TiO₂ 含量 1.18%, 低于 大陆裂谷碱性玄武岩 TiO₂ 平均值(2.2%), 高于岛 弧区钙碱岩性火山岩(0.58% ~ 0.85%)的特征, 显 示这套高钾钙碱性火山岩,既有板内火山岩性质, 又 具有弧火山性质的双重特征,这与本区新生代时构 造背景由俯冲-碰撞构造环境转化为板内构造环境 是一致的(邓晋福等, 1996).

稀土元素总量 Σ REE 介于 261.4×10⁻⁶ ~ 270.1×10⁻⁶, LREE/HREE=12.94~13.14, 轻稀土 强烈富集.稀土元素球粒陨石标准化配分型式, 表现 为强烈右倾平滑的轻稀土富集配分型式, 轻稀土部 分斜率陡, 而重稀土部分曲线缓倾近水平, 显示有幔 源岩浆物质加入的特征. δ Eu=0.72~0.76, 具有微 弱负 Eu 异常, 暗示岩浆源区可能并未出现熔体一 斜长石的平衡, 缺乏斜长石的分离结晶作用, 具有较 高的岩浆起源压力. 微量元素总体表现为富 Th、Ba, 亏损 Nb、Ta 和 Ti, 强烈富集大离子亲石元素, 亏损 相容元素, 而不相容元素的富集则表明地壳物质在 源区中占有重要地位, 这与大洋玄武岩、裂谷火山岩 特征具有明显区别, 而与板内火山熔岩和岛弧高钾 玄武岩的不相容元素配分型式更为接近和相似.

寄主火山岩粗面安山岩的上述主量和微量元素 地球化学特征表明,粗面安山岩地球化学特征介于 板内火山岩(强烈富集 LREE、高 LILE 和高 HFSE)和陆弧及后碰撞弧型富钾火山岩(中等富集 LREE,富 LILE、相对贫 HFSE)之间,而与大洋弧 富钾火山岩(LREE、LILE、HFSE 含量均较低)有明 显差异.这表明,腾冲新生代新近纪火山岩粗面安山 岩应属俯冲一碰撞造山后的伸展垮塌一拆沉板内构 造环境形成的高钾钙碱性火山岩.

3 包体及寄主岩平衡温度和压力

本次研究选取了芒棒乡大石头山具有代表性的 3 块麻粒岩包体和 3 块寄主粗面安山岩样品进行了 矿物电子探针的分析(表 3),并进行了平衡温度、压 力的估算,其中 TC-MB-1、MB-DS-1 和 MB-DS-11 样品为麻粒岩包体,TC-25-2、MB-3 和 TC-24 样品 为寄主岩粗面安山岩.电子探针成分分析大部分在 中国地质科学院矿产资源研究所电子探针实验室完 成,仪器为 JEOL JXA8800R型,加速电压 15 kV, 探针电流 20 nA,束斑 5 µm;少量电子探针分析在中 国科学院地质与地球物理研究所电子探针实验室完 成,仪器为 CAMECA SX-51 型电子探针仪,工作条 件为加速电压 15 kV,电子束流 20 nA,束斑直径 5 µm,采用多点测定(表 3).

根据前人平衡地质温度和压力计算经验(徐义 刚,1993;方同辉和马鸿文,1997;黄小龙等,2002;吴春明,2009;吴春明和陈泓旭,2013),平衡地质温度 计算采用 Wood and Banno(1973)、Brey and Kohler (1990)和 Taylor(1998)的 Cpx-Opx 矿物组合地质 温度计,而平衡地质压力计算则采用 Ellis(1980)的 Pl-Cpx 矿物组合地质压力计.

3.1 温度计算

本文以 Wood and Banno(1973)、Brey and Kohler(1990)和 Taylor(1998)的二辉石地质温度 计为主对麻粒岩包体及寄主岩粗面安山岩的平衡温 度进行了估算(表 4),且对不同地质温度计的计算 结果进行综合对比分析.

从表 4 不同地质温度计平衡温度的结果可以看 出,Wood and Banno(1973)和 Taylor(1998)的二辉 石地质温度计估算结果较为接近,但是对于温度计 的估算结果而言均存在较大的误差范围,因此我们 可以认为 3 种地质温度计的估算结果均在误差范围 之内.其中长英质麻粒岩包体的温度为 869~ 969 ℃,二辉麻粒岩包体的温度为 841~972 ℃,均 达到高温下地壳麻粒岩相变质的温度范围.寄主岩 粗面安山岩斑晶的结晶温度则为1 008~1 059 ℃,

表 4 粗面安山岩及麻粒岩包体二辉石地质温度计平衡温度(℃)

Table 4 Two pyroxene geothermometer equilibrium temperature of trachyandensites and granulite xenoliths

样品号	岩石类型	Wood and Banno(1973)	Brey and Kohler(1990)	Taylor(1998)
TC-MB-1	长英质麻粒岩包体	947	869	969
MB-DS-11	二辉麻粒岩包体	890~919	841~887	$916 \sim 972$
MB-3	粗面安山岩	1 015	1 042	1 008
TC-25-2	粗面安山岩	1 059	1 052	1 055

这与于红梅等(2010)对黑空山粗安岩计算的熔岩斑 晶结晶温度(998~1 108 ℃)是一致的,显示麻粒岩 相变质岩的平衡温度明显低于粗面安山岩喷出结晶 的平衡温度,这表明麻粒岩包体经历了高温麻粒岩 相变质作用,而粗面安山岩可能形成和起源于温度 更高、深度更深的下地壳深部或上地幔顶部.

3.2 压力计算

本文采用 Ellis(1980)的斜长石一单斜辉石地 质压力计对麻粒岩包体进行了平衡压力计算.由于 目前准确计算岩浆起源深度和压力难度较大,故本 文对寄主岩粗面安山岩的平衡压力计算,也采用 Ellis(1980)斜长石一单斜辉石地质压力计对寄主岩 的压力进行了大致估算.尽管 Ellis(1980)的斜长石 一单斜辉石的地质压力计更适合变质岩石平衡压力 的估算,用于岩浆岩平衡压力的估算还只能是一种 尝试,但从理论上讲只要是在地质温压计适用范围 的温度压力平衡矿物组合应该都可以进行温压大致 估算.

从表 5 的平衡压力估算可以看出,长英质麻粒 岩包体麻粒岩相变质的压力为 0.94~1.00 GPa, 而 粗面安山岩斑晶结晶平衡压力为 1.26~1.33 GPa. 根据下地壳和上地幔平均地压梯度 0.034 GPa • km⁻¹(胡宝群等,2003)和长英质麻粒岩相变质压力 与粗面安山岩斑晶结晶平衡压力,计算得麻粒岩形 成深度为 27.65~29.41 km 的下地壳, 而粗面安山 岩岩浆形成来源的深度则为 37.06~39.12 km 的下 地壳底部一上地幔顶部.粗面安山岩岩浆形成来源 深度与腾冲地块深部地球物理所获得的该区下地壳 深部莫霍不连续面主要分布深度为 30~50 km 的 研究成果是吻合的(Lei et al., 2009).此外,如果以 玄武岩 $Mg^{\#} = 100 (Mg/Mg + Fe^{2+})$ 作为识别原生 玄武岩浆形成深度的一个重要标志来估算其起源深 度,一般认为原生玄武岩浆的Mg[#]应为65~75,其 起源深度为60~70 km,而研究区新生代粗面安山 岩一粗面玄武岩的 Mg[#]=56.3~57.0,大体上符合 演化程度较低的近似原生岩浆的性质,但所获得的 压力和深度值应明显小于该深度.因此,粗面安山岩

表 5 粗面安山岩及麻粒岩包体单斜辉石一斜长石地质压 力计平衡压力及形成深度

 Table 5 Cpx-Pl geobarometer equilibrium pressure and formation depth of trachyandensites and granulite xenoliths

样品号	岩石类型	压力(GPa)	深度(km)
TC-MB-1	长英质麻粒岩包体	0.94~1.00	27.65~29.41
MB-3	粗面安山岩	1.26	37.06
TC-25-2	粗面安山岩	1.33	39.12

注:压力数据来源于 Ellis,1980.

岩浆形成结晶深度为 37.06~39.12 km 也是在合理 深度范围,这一深度比于红梅等(2010)对黑空山粗 安岩岩浆房底部辉石岩堆积体计算的最大深度 30 km略大.这同样说明,高温麻粒岩相变质与新生 代粗面安山岩岩浆形成结晶的温度和压力明显不 同,麻粒岩形成于下地壳,而粗面安山岩应形成于更 深的下地壳底部一上地幔顶部,麻粒岩与粗面安山 岩两者的形成深度相差大约10 km.

长英质麻粒岩、二辉麻粒岩包体与粗面安山岩 的形成温度和压力明显不同,这表明,代表本区下地 壳的高温麻粒岩与形成起源于下地壳底部的新生代 粗面安山岩形成于不同深度,它们是不同构造一变 质一岩浆热事件的产物.这一结果与于红梅等 (2010)最近对腾冲地块中部黑空山粗安岩中镁铁 质一超镁铁质包体(主要为辉长岩、辉石岩,及少量 二辉橄榄岩类)研究所得出的辉长岩、辉石岩包体形 成于岩浆房内部的结论不同,说明腾冲地块新生代 火山岩中的包体既有岩浆房底部早期形成的堆积结 晶岩浆岩包体,也有形成于下地壳的麻粒岩包体.

4 麻粒岩包体 EBSD 显微组构分析

电子背散射衍射(EBSD)是一种对实验样品表 面进行测量的技术,可以获取样品表面几个纳米级 深度范围内晶体结构的三维信息(曹淑云和刘俊来, 2006;徐海军等,2007),本次研究选取了二辉麻粒岩 包体样品(MB-DS-11)进行了电子背散射衍射 (EBSD)变形显微组构分析的初步研究,测试分析在

第 39 卷

中国地质大学(武汉)地质过程与矿产资源国家重点 实验室的环境扫描电镜实验室完成.EBSD分析系 统是丹麦 HKL 技术有限公司制造的 Nordlys-II & Channel 5.0;工作条件:20 kV 加速电压,21 mm 左右的工作距离,样品倾斜 70°,有效束流~5 nA.测 量采用人机交互模式,手动控制分析的精度,为满足 统计要求,对矿物颗粒收集 90~200 个颗粒的晶体 取向数据.

首先对切制的二辉麻粒岩包体样品定向薄片进 行高精度机械抛光,并喷镀 2~5 nm 厚的碳膜,然 后对高精度抛光二辉麻粒岩薄片中主要矿物单斜辉 石和斜方辉石进行原位微区显微结构分析,最后通 过 EBSD 系统配套软件—HKL 公司开发的 Channel 5.0,对所测试的单斜辉石和斜方辉石数据采用 等面积下半球投影,得到矿物优选方位极点密度等 面积图.电子背散射衍射(EBSD)分析给出了测试分 析样品单斜辉石和斜方辉石 3 个方位极图:(100)、 (010)和(001)(图 3).样品采用的定向构造系统为: X 轴为平行面理和线理(定向线方向),Y 轴平行面 理、垂直线理,Z 轴垂直面理.

图 3a 和 3b 分别表示的是单斜辉石和斜方辉石 在辉石麻粒岩包体中的显微组构.从图 3 中,可以看 出 Cpx 和 Opx 均有明显的晶格优选方位,表明在大 陆下地壳构造变形变质环境中,它们主要经历了位 错滑移和位错攀移为主的晶内塑性变形作用过程.

从图 3a 中,我们可以看出 Cpx 以[001]轴具有 很强的结晶学优选方位,其在面理面(即 XY 面)上 近线理方向(即 X 轴)形成强极密;(100)面可见不 完整的大圆环带,在近于平行 Z 轴的方向可见较为 明显的点集密;在(010)面,我们也可以看出近于平 行 Z 轴的方向具有明显的点集密.上述分析结果表 明,Cpx 的变形滑移系为(100)[001]和(010)[001], 其中变形滑移系(100)[001],属于典型高温滑移系 (Hier-Majumder *et al.*,2005),这也从侧面证明该 地区存在高温麻粒岩相变质.

从图 3b 中我们可以看出,Opx 以[001]轴具有 很强的晶格结晶优选方位,其在面理面(即 XY 面) 上近平行线理方向(即 X 轴)形成强极密;(010)面 可见近于垂直 X 轴的不完整的大圆环带.这表明 Opx 的变形主滑移系为(010)[001].

综合上述分析结果,可以得出二辉麻粒岩包体具 有明显的晶格优选方位(LPO),表明在下地壳变形环 境中麻粒岩包体发生了明显位错蠕变变形,经历了高 温塑性变形变质作用(Martelat *et al.*,1999).因此,麻 粒岩包体与寄主火山岩不具有同源性和同时性的特 征,属于不同构造一变质一岩浆作用过程的产物,而 且高温麻粒岩相变质作用的发生时间应早于寄主岩 粗面安山岩岩浆形成喷发的时代.

图 3 二辉麻粒岩中单斜辉石和斜方辉石晶格优选方位极点密度

Fig.3 Pole diagram of LPOs of clinopyroxene and orthopyroxene in two-pyroxene granulite a.二辉麻粒岩中单斜辉石晶格优选方位极点密度图(等面积下半球投影);b.二辉麻粒岩中斜方辉石晶格优选方位极点密度图(等面积下半

球投影)

5 讨论及成因

腾冲地块东部芒棒一带新生代新近纪火山岩粗 面安山岩及其所含麻粒岩包体岩相学、矿物学成分、 平衡温度压力特征,以及变形变质显微组构、变形机 制的初步研究结果表明,粗面安山岩、高温长英质麻 粒岩和二辉麻粒岩包体,以及花岗岩包体的形成没有 明显的成因关系,而是不同构造一变质一岩浆热事件 的产物.尽管目前还没有直接获得高温麻粒岩相包体 的变质年龄,但根据本次和前人研究成果,我们仍然 可以对腾冲地块东部新生代火山岩中高温麻粒岩的 成因、时代及其构造地质意义做进一步的讨论.

5.1 高温麻粒岩相变质的时代

前人的研究表明,腾冲地块中新生代经历了两期 不同性质的重要构造一变质一岩浆热事件,即燕山期 早白垩世和喜马拉雅期晚白垩世一新生代构造岩浆 活动,它们分别与中特提斯怒江洋和新特提斯密支那 洋的俯冲消失一碰撞有密切关系(Searle, 1988; Yin and Harrison, 2000; 莫宣学等, 2003; Chung et al., 2005:莫盲学和潘桂棠,2006:Mo et al.,2007).腾冲地 块东部新生代火山岩中的高温长英质麻粒岩和二辉 麻粒岩的形成时代,是与中生代燕山期早白垩世的俯 冲一碰撞事件有关,还是与喜马拉雅期晚白垩世一新 生代的俯冲-碰撞造山作用事件有关,无疑是一个非 常重要的问题.研究表明,腾冲地块西缘与印度板块 (缅甸地块)新生代发生俯冲一碰撞的密支那缝合带 东侧那帮地区存在有高压麻粒岩相变质作用事件,其 高压麻粒岩相变质峰期的时代为 74~76 Ma(季建清 等,1998,2000;钟大赉等,1999),腾冲地块北部邻区 南迦巴瓦地区高压麻粒岩相峰期变质的时代则为 45~69 Ma(丁林和钟大赉,1999).目前为止,腾冲地块 及其周缘尚未发现有更早麻粒岩相变质事件的证据. 其次,尽管腾冲地块中生代燕山期早白垩世构造一变 质一岩浆活动也与俯冲一碰撞有关,而且属高温型过 铝一强过铝花岗岩构造岩浆活动(杨启军等,2006), 也有可能在中下地壳形成高温麻粒岩;然而腾冲地块 晚白垩世-新生代俯冲-碰撞造成的构造-变质-岩浆活动,特别是新生代火山岩浆活动、高地热异常 更可能与喜马拉雅期俯冲一碰撞造山后的伸展垮塌、 拆沉或板片断离所导致的地幔物质上涌减压熔融亥 武质岩浆底侵作用有关(樊棋诚和刘若新,1996;金振 民和高山,1996;高山和金振民,1997).但对于新生代 携带到地表的麻粒岩,即使可能存在有中生代燕山期 早白垩世的高温麻粒岩相变质作用,晚白垩世-新生

代的构造一变质一岩浆活动也将使其难以完整保留 早期的变质地质作用事件记录,而且密支那洋向东的 俯冲消亡、早新生代印度板块(缅甸地块)与腾冲地块 发生俯冲一碰撞后的拆沉或板片断离,所导致的地幔 物质上涌减压熔融玄武质岩浆底侵的构造一变质一 岩浆活动(董方浏等,2006;蓝江波等,2007;杨启军 等,2009),可以更合理地解释在空间上腾冲地块西部 下地壳以形成高压麻粒岩为特征,东部下地壳形成高 温麻粒岩及伴随的部分熔融火山岩浆活动和高地热 异常区,即空间上可能表现为"西部高压-东部高温 变质"俯冲一碰撞造山双变质带的特征.这也与深部 地球物理所推断的新生代印度板块(缅甸地块)向东 俯冲于腾冲地块之下,并发生拆沉或板片断离形成玄 武质岩浆上涌底侵的结果是一致的(Huang and Zhao,2006;Lei et al.,2009).因此,我们推测本区新生 代新近纪火山岩中高温麻粒岩变质的时代很可能发 生于晚白垩世-始新世之间.

5.2 高温麻粒岩包体发现的成因构造意义

腾冲地块晚白垩世-新生代开始出现大量高钾 钙碱性-钾玄岩质花岗岩岩浆的侵入和中-基性火 山岩的喷发,但对新生代高钾钙碱性玄武岩一粗面 玄武岩一玄武质粗安岩一粗安岩的成因及构造环境 主要有2种不同看法:腾冲新生代火山活动是印度 板块向东下插俯冲一碰撞后形成的滞后于构造消减 作用的岛弧型火山岩(从柏林等,1994);火山活动与 印度板块早期的向东的俯冲、碰撞无关,而是陆内 壳一幔相互作用导致的岩浆起源(王瑜,1999).腾冲 新生代火山岩中下地壳麻粒岩包体的发现表明,可 能在新生代火山喷发之前的晚白垩世一始新世下地 壳发生了强烈的高温麻粒岩相变质作用,这与印度 板块晚白垩世一始新世向东俯冲一碰撞后导致的伸 展垮塌拆沉和板片断离,地幔物质上涌减压熔融玄 武质岩浆底侵形成的高温麻粒岩相构造-变质-岩 浆活动有密切关系(蓝江波等,2007),正是这一构 造一变质一岩浆作用过程使得新生代高钾钙碱性玄 武岩一粗面玄武岩一玄武质粗安岩一粗安岩火山岩 浆活动,以及晚白垩世以后的花岗岩岩浆活动,其形 成构造环境均表现出兼具俯冲一碰撞岛弧和板内构 造环境的双重特征,而这一双重构造环境特征正反 映出俯冲板片断离后的陆内地壳与受到俯冲板片改 造后地幔相互作用的双重特征.因此,腾冲地块东部 新生代粗面安山岩中高温麻粒岩包体的发现暗示, 新生代火山岩岩浆活动应与印度板块和腾冲地块俯 冲一碰撞后的伸展垮塌一拆沉和板片断离、地幔物

质上涌减压熔融、玄武质岩浆底侵所造成的陆内 壳一幔相互作用密切相关.

6 结论

(1)腾冲地块东部芒棒乡新生代新近纪火山岩 粗面安山岩中麻粒岩包体主要为长英质麻粒岩和二 辉麻粒岩包体,麻粒岩和寄主火山岩粗面安山岩温 度和压力估算表明,麻粒岩相变质平衡温度和压力 为:841~972℃,0.94~1.00 GPa,表明其为经历了 高温麻粒岩相变质,深度约为 27.65~29.41 km 的 下地壳;而粗面安山岩温度和压力为:1 008~ 1 059℃,1.26~1.33 GPa,起源于下地壳深部 37.06~39.06 km 处.高温麻粒岩相变质作用时代推 测可能介于晚白垩世和始新世之间.

(2)二辉麻粒岩的电子背散射衍射(EBSD)显微 组构分析研究表明,斜方辉石(紫苏辉石)和单斜辉 石均具有明显的晶格优选方位(LPO).斜方辉石和 单斜辉石主滑移系分别为:(010)[001]和(100) [001]、(010)[001],表明在大陆下地壳变形变质环 境中,它们经历了位错滑移和位错攀移为主的晶内 高温塑性变形和麻粒岩相变质作用.

(3)腾冲地块东部新生代火山岩粗面安山岩中 高温麻粒岩的发现表明,新生代火山岩浆活动可能 与印度板块(缅甸地块)和腾冲地块俯冲一碰撞造山 后的伸展垮塌一拆沉和板片断离,上地幔物质上涌 减压熔融产生玄武质岩浆底侵,导致下地壳发生高 温麻粒岩相变质及火山岩浆作用有密切关系.

致谢:感谢吴春明及匿名审稿专家提出的许多 宝贵意见!感谢刘嘉麒院士和王永锋副教授在本文 完成过程中给予的建议和帮助,野外工作得到云南 有色地质局李志群高级工程师的大力帮助,在此一 并表示感谢!

References

- Brey, G. P., Kohler, T., 1990. Geothermobarometry in Four-Phase Lherzolites II.New Thermobarometers, and Practical Assessment of Existing Thermobarometers. *Journal of Petrology*, 31(6):1353-1378. doi: 10.1093/petrology/31.6.1353
- Cao, S.Y., Liu, J.L., 2006. Modern Techniques for the Analysis of Rock Microstructure: EBSD and Its Application. Advances in Earth Science, 21(10): 1091 - 1096 (in Chinese with English abstract).

- Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. *Earth-Science Reviews*, 68(3-4): 173-196. doi: 10.1016/j.earscirev.2004.05.001
- Cong, B.L., Chen, Q.Y., Zhang, R.Y., et al., 1994. The Genetic of Cenozoic Volcanic Rocks in Tengchong, Yunnan Province, China. Science in China (Series B), 24(4): 441-448 (in Chinese).
- Deng, J. F., Zhao, H. L., Mo, X. X., et al., 1996. Continental Roots-Plume Tectonics of China—Key to the Continental Dynamics. Geological Publishing House, Beijing (in Chinese).
- Ding, L., Zhong, D.L., 1999. The Metamorphic Characteristics and Tectonic Implications of High-Pressure Granulite Facies in Tibet Namjagbarwa, China. Science in China (Series D), 29(5); 385-397 (in Chinese).
- Dong, F.L., Hou, Z.Q., Gao, Y.F., et al., 2006. Cenozoic Granitoid in Tengchong, Western Yunnan: Genesis Type and Implication for Tectonics. Acta Petrologica Sinica, 22(4):927-937 (in Chinese with English abstract).
- Ellis, D. J., 1980. Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica: P-T Conditions of Metamorphism, Implications for Garnet-Cordierite Equilibria and the Evolution of the Deep Crust. Contributions to Mineralogy and Petrology, 74(2):201-210. doi:10.1007/BF01132005
- Fan, Q.C., Liu, R.X., 1996. The High Temperature Granulite Xenoliths from Basalts in Hannuoba. *Chinese Science Bulletin*, 41(3):235-238 (in Chinese).
- Fang, T. H., Ma, H. W., 1997. Optimal Geothermobarometer for Constructing Paleogeothermal. *Geological Science* and Technology Information, 16(4):93-100 (in Chinese with English abstract).
- Gao, S., Jin, Z. M., 1997. Delamination and Its Geodynamical Significance for the Crust-Mantle Evolution. Geological Science and Technology Information, 16(1):1-9 (in Chinese with English abstract).
- Hier-Majumder, S., Mei, S. H., Kohlstedt, D. L., 2005. Water Weakening of Clinopyroxenite in Diffusion Creep. Journal of Geophysical Research: Solid Earth, 110: (B7). doi:10.1029/2004JB003414
- Hu,B.Q., Wang, F.Z., Sun, Z.X., et al., 2003. The Pressure Gradient in the Lithosphere. *Earth Science Frontiers*, 10 (3):129-133 (in Chinese with English abstract).
- Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research : Solid Earth, 111: (B9).

doi:10.1029/2005JB004066

- Huang, X. L., Xu, Y. G., Wang, R. C., et al., 2002. The Nüshan Granulite Xenoliths from Anhui Province, China: Mineralogical Characteristics, the Lower Crustal Geotherm and Their Implications for Genesis. Acta Petrologica Sinica, 18 (3):383-391 (in Chinese with English abstract).
- Ji, J. Q., Zhong, D. L., Ding, L., et al., 1998. Study on Metamorphism of Granulite-Facies Metamorphic Rocks Discovered in the Nabang Area on the Border between China and Burma. Acta Petrologica Sinica, 14 (2): 163-175 (in Chinese with English abstract).
- Ji,J.Q., Zhong, D.L., Sang, H.Q., et al., 2000. Dating of Two Metamorphic Events on the Basalt Granulite from the Nabang Area on the Border of China and Burma. Acta Petrologica Sinica, 16(2): 227-232 (in Chinese with English abstract).
- Jiang, C.S., 1998. Distribution Characteristics of Tengchong Volcano in the Cenozoic Era. *Journal of Seismological Research*, 21 (4):309-319 (in Chinese with English abstract).
- Jin, Z. M., Gao, S., 1996. Underplating and Its Geodynamical Significances for the Evolution of Crust-Mantle Boundary.Geological Science and Technology Information, 15 (2):1-7 (in Chinese with English abstract).
- Kong, H., Jin, Z. M., Lin, Y.X., 2000. Petrology and Chronology of Granulite Xenolith in Daoxian County, Hunan Province. Journal of Changchun University of Science and Technology, 30(2): 115 - 119 (in Chinese with English abstract).
- Lan, J. B., Xu, Y. G., Yang, Q. J., et al., 2007. ~ 40Ma OIBtype Mafic Magmatism in the Gaoligong Belt:Results of Break-off between Subducting Tethyan Slab and Indian Plate? Acta Petrologica Sinica, 23(6):1334-1346 (in Chinese with English abstract).
- Lei, J.S., Zhao, D.P., Su, Y.J., 2009. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. *Journal of Geophysical Research*: Solid Earth, 114: (B5).doi:10.1029/2008JB005881
- Li, L. M., Liu, X. W., Xie, Z. J., 2011. Deformation Mechanism and Rheological Property of Granulite in the Continental Lower Crust: A Review. Advances in Earth Science, 26(3):275-285 (in Chinese with English abstract).
- Li, Y. Z., 1995. The Geological Characters of Cenozoic Volcanic Rocks, Some Patterns of Cenozoic Volcanism and Their Petrological Interpretation in Eastern China. *Journal of Mineralogy and Petrology*, 15(3):1-7 (in Chinese with English abstract).
- Lu, Y. F., 2004. GeoKit-A Geochemical Toolkit for Mi-

crosoft Excel.*Geochimica*, 33(5):459-464 (in Chinese with English abstract).

- Martelat, J.E., Schulmann, K., Lardeaux, J.M., et al., 1999.Granulite Microfabrics and Deformation Mechanisms in Southern Madagascar. *Journal of Structural Geology*, 21(6): 671-687.doi:10.1016/S0191-814(99)00052-8
- Middlemost, E. A. K., 1989. Iron Oxidation Ratios, Norms and the Classification of Volcanic Rocks. *Chemical Ge*ology, 77(1): 19-26. doi: 10.1016/0009-2541(89) 90011-9
- Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96 (1-2): 225 242. doi: 10.1016/j. lithos.2006.10.005
- Mo, X.X., Pan, G. T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau: Constrained by Tectono-Magmatic Events. *Earth Science Frontiers*, 13 (6):43-51 (in Chinese with English abstract).
- Mo.X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. *Earth Science Frontiers*, 10(3):135-148 (in Chinese with English abstract).
- Mo,X.X., Zhao, Z.D., Zhu, D.C., et al., 2009. On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet: Petrological and Geochemical Constraints. Earth Science—Journal of China University of Geosciences, 34(1):17-27 (in Chinese with English abstract).
- Searle, M. P., 1988. Structural Evolution and Sequence of Thrusting in the High Himalayan, Tibetan-Tethys and Indus Suture Zones of Zanskar and Ladakh, Western Himalaya: Reply. Journal of Structural Geology, 10: 130-132.
- Su, B.X., Zhang, H.F., Xiao, Y., et al., 2006. The Characteristic of Olivine Xenocrysts Entrained in Cenozoic Volcanic Rocks and Its Geological Significance in Dangchang, Western Qinling. *Progress in Natural Science*, 16(11): 1428-1435 (in Chinese).
- Tang, X. L., 2005. The Physical & Chemical Characteristics and Genetic Model of Gem Peridot in Damaping, Hebei Province. Yunnan Geology, 24(2):218-224 (in Chinese with English abstract).
- Tang, Y.J., Zhang, H.F., Ying, J.F., 2004. High-Mg Olivine Xenocrysts Entrained in Cenozoic Basalts in Central Taihang Mountains: Relicts of Old Lithospheric Mantle. Acta Petrologica Sinica, 20(5): 1243-1252 (in Chinese with English abstract).
- Tapponnier, P., Molnar, P., 1976. Slip-Line Field Theory and Large Scale Continental Tectonics. *Nature*, 264 (25):

319-324.

- Tapponnier, P., Peltzer, G., Le Dain, A.Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. *Geology*, 10(12): 611-616.doi:10.1130/0091-7613(1982)10<611: PE-TIAN>2.0.CO;2
- Taylor, W.R., 1998. An Experimental Test of Some Geothermometer and Geobarometer Formulations for Upper Mantle Peridotites with Application to the Thermobarometry of Fertile Lherzolites and Garnet Websterite. Neues Jahrbuch Für Mineralogie Abhandlungen, 172: 381-408.
- Wang, Y., 1999. Tectonic Settings of Late Cenozoic Volcanism in Tibet and Tengchong Area, China. Geological Review, 45(Suppl.): 905-913 (in Chinese with English abstract).
- Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. *Chemical Ge*ology, 20: 325 - 343. doi: 10.1016/0009 - 2541 (77) 90057-2
- Wood, B. J., Banno, S., 1973. Garnet-Orthopyroxene and Orthopyroxene-Clinopyroxene Relationships in Simple and Complex Systems. *Contributions to Mineralogy and Petrology*, 42(2):109-124.doi:10.1007/BF00371501
- Wu, C. M., 2009. On the Validity of the Geobarometers in Mantle Rocks. Acta Petrologica Sinica, 25(9): 2089 – 2112 (in Chinese with English abstract).
- Wu, C. M., Chen, H. X., 2013. Estimation of Minimum or Maximum Pressure or Temperature Conditions in Metamorphic Rocks. Acta Petrologica Sinica, 29 (5): 1499-1510 (in Chinese with English abstract).
- Xu, H.J., Jin, S. Y., Zhen, B.R., 2007. New Technique of Petrofabric: Electron Backscatter Diffraction (EBSD). Geoscience, 21(2):213-225 (in Chinese with English abstract).
- Xu, Y.G., 1993.Geothermometers Applicable to the Mantle Xenoliths.*Acta Petrologica Sinica*, 9(2):167-180 (in Chinese with English abstract).
- Yang, Q.J., Xu, Y.G., Huang, X.L., et al., 2006. Geochronology and Geochemistry of Granites in the Gaoligong Tectonic Belt, Western Yunnan: Tectonic Implication. Acta Petrologica Sinica, 22(4):817-834 (in Chinese with English abstract).
- Yang, Q.J., Xu, Y.G., Huang, X.L., et al., 2009. Geochronology and Geochemistry of Granites in the Tengliang Area, Western Yunnan: Tectonic Implication. Acta Petrologica Sinica, 25(5): 1092 - 1104 (in Chinese with English abstract).

- Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280.doi:10.1146/ annurev.earth.28.1.211
- Yu, H. M., Lin, C. Y., Shi, L. B., et al., 2010. Characteristics and Origin of Mafic and Ultramafic Xenoliths in Trachyandesite Lavas from Heikongshan Volcano, Tengchong, Yunnan Province, China. Science China : Earth Science, 53: 1295 – 1306.doi:10.1007/s11430-010-4044-6
- Yu, J.H., Xu, X.S., Zhou, X.M., 2002. The Geochemical Studies of South China Coastal Mafic Granulite Xenoliths and Its Lower Crustal Composition. Science in China (Series D), 32(5); 383-393 (in Chinese).
- Zhai, M.G., Liu, W.J., 2001. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 17(1): 28 – 38 (in Chinese with English abstract).
- Zhang, H. F., Ying, J. F., Xu, P., et al., 2004. North China Mantle Olivine Xenocrysts in Mesozoic Basalt: The Revelation for Replacement Process of Lithospheric Mantle. Chinese Science Bulletin, 49(8): 784-789 (in Chinese).
- Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene. *Earth Science*— Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract).
- Zhang, R. Y., Cong, B.L., 1985. The Geotherm and constituent of Uppermost Mantle Deriver from Xenoliths in Xenoliths in Southeastern China. Acta Petrologica Sinica, 1(4):34-49 (in Chinese with English abstract).
- Zhang, H.Z., Zhang, H.F., 2001, Some New Progresses and Geological Significance in Studying Continental Lower Crust Granulite Xenoliths, Progress in Precambrian Research, 24 (4):247-256 (in Chinese with English abstract).
- Zhong, D. L., Ji, J. Q., Hu, S. L., 1999. Neo-Tethyan Subduction Time: The Evidence Come from the ⁴⁰ Ar/³⁹ Ar Microarea Age of Deterioration Oceanic Crust Fragments. *Chinese Science Bulletin*, 44(16):1782-1785 (in Chinese).
- Zhou, X. M., Chen, T. H., 1984. Petrogenetic Aspects of Crclinopyroxene and Al-Clinopyroxene-Bearing Ultramafic Inclusions in Basaltic Rocks from Southeastern Coastal Provinces of China. Acta Geologica Sinica, 58(3):238-251 (in Chinese with English abstract).

附中文参考文献

曹淑云,刘俊来,2006.岩石显微构造分析现代技术—— EBSD技术及应用.地球科学进展,21(10):1091-1096.

- 从柏林,陈秋媛,张儒瑗,等,1994.中国滇西腾冲新生代火山 岩的成因.中国科学(B辑),24(4):441-448.
- 邓晋福,赵海玲,莫宣学,等,1996.中国大陆根一柱构造一 大陆动力学的钥匙.北京:地质出版社.
- 丁林,钟大赉,1999.西藏南迦巴瓦峰地区高压麻粒岩相变质 作用特征及其构造地质意义.中国科学(D辑),29(5): 385-397.
- 董方浏,侯增谦,高永丰,等,2006.滇西腾冲新生代花岗岩: 成因类型与构造意义.岩石学报,22(4):927-937.
- 樊祺诚,刘若新,1996.汉诺坝玄武岩中高温麻粒岩捕掳体.科 学通报,41(3):235-238.
- 方同辉,马鸿文,1997.建立古地温曲线的理想地质温压计.地 质科技情报,16(4):93-100.
- 高山,金振民,1997.拆沉作用及其壳一幔演化动力学意义.地 质科技情报,16(1):1-9.
- 胡宝群,王方正,孙占学,等,2003.岩石圈中的地压梯度.地学 前缘,10(3):129-133.
- 黄小龙,徐义刚,王汝成,等,2002.安徽女山麻粒岩包体:矿 物学特征-下地壳地温曲线及其成因意义.岩石学报, 18(3):383-391.
- 季建清,钟大赉,丁林,等,1998.中缅边界那邦变质基性岩的 两期变质作用及其构造意义.岩石学报,14(2): 163-175.
- 季建清,钟大赉,桑海清,等,2000.滇西南那邦变质基性岩两 其变质作用的⁴⁰ Ar/³⁹ Ar 年代学研究.岩石学报,16(2): 227-232.
- 姜朝松,1998.腾冲新生代火山分布特征.地震研究,21(4): 309-319.
- 金振民,高山,1996.底侵作用 (underplating) 及其壳一幔演 化动力学意义.地质科技情报,15(2):1-7.
- 孔华,金振民,林源贤,2000.道县玄武岩中麻粒岩包体的岩 石学及年代学.长春科技大学学报,30(2):115-119.
- 蓝江波,徐义刚,杨启军,等,2007.滇西高黎贡带~40 Ma OIB 型基性岩浆活动:消减特提斯洋片与印度板块断 离的产物.岩石学报,23(6):1334-1346.
- 李丽敏,刘祥文,谢战军,2011.大陆下地壳麻粒岩的流变学 研究进展.地球科学进展,26(3):275-285.
- 李有柱,1995.中国东部新生代火山岩的地质特征及火山作 用发育的某些共同规律.矿物岩石,15(3):1-7.
- 路远发,2004.GeoKit:一个用 VAB 构建的地球化学工具软件包.地球化学,33(5):459-464.
- 莫宣学,潘桂棠,2006.从特提斯到青藏高原形成:构造一岩 浆事件的约束.地学前缘,13(6):43-51.
- 莫宣学,赵志丹,邓晋福,等,2003.印度-亚洲大陆主碰撞过 程的火山作用响应.地学前缘,10(3):135-148.
- 莫宣学,赵志丹,朱弟成,等,2009.西藏南部印度-亚洲碰撞 带岩石圈:岩石学-地球化学约束.地球科学----中国 地质大学学报,34(1):17-27.

- 苏本勋,张宏福,肖燕,等,2006.西秦岭宕昌好梯新生代火山 岩中橄榄石捕虏晶的特征及其地质意义.自然科学进 展,16(11):1428-1435.
- 唐雪莲,2005.河北大麻坪宝石级橄榄石物理化学性质及成因.云南地质,24(2):218-224.
- 汤艳杰,张宏福,英基丰,2004.太行山中段新生代玄武岩中 高镁橄榄石捕虏晶:残留古老岩石圈地幔样品.岩石学 报,20(5):1243-1252.
- 王瑜,1999.西藏及腾冲地区晚新生代火山作用的构造背景. 地质论评,45(增刊):905-913.
- 吴春明,2009.地幔岩矿物压力计评述.岩石学报,25(9): 2089-2112.
- 吴春明,陈泓旭,2013.变质作用温度与压力极限值的估算方 法.岩石学报,29(5):1499-1510.
- 徐海军,金淑燕,郑伯让,2007.岩石组构学研究的最新技 术——电子背散射衍射(EBSD).现代地质,21(2): 213-225.
- 徐义刚,1993.适用于幔源包体的地质温度计.岩石学报,9 (2):167-180.
- 杨启军,徐义刚,黄小龙,等,2006.高黎贡构造带花岗岩的年 代学和地球化学及其构造意义.岩石学报,22(4): 817-834.
- 杨启军,徐义刚,黄小龙,等,2009.滇西腾冲-梁河地区花岗 岩的年代学、地球化学及其构造意义.岩石学报,25(5): 1092-1104.
- 于红梅,林传勇,史兰斌,等,2010.腾冲黑空山粗安岩中镁铁 质一超镁铁质包体的特征及成因初探.中国科学:地球 科学,40(12):1697-1709.
- 于津海,徐夕生,周新民,2002.华南沿海基性麻粒岩捕虏体的地球化学研究和下地壳组成.中国科学(D辑),32 (5):383-393.
- 翟明国,刘文军,2001.麻粒岩的形成及其对大陆地壳演化的 贡献.岩石学报,17(1):28-38.
- 张宏福,英基丰,徐平,等,2004.华北中生代玄武岩中地幔橄 榄石捕虏晶:对岩石圈地幔置换过程的启示.科学通 报,49(8):784-789.
- 张克信,王国灿,陈奋宁,等,2007.青藏高原古近纪-新近纪 隆升与沉积盆地分布耦合.地球科学——中国地质大 学学报,32(5):583-597.
- 张儒瑗,从柏林,1985.中国东南部从捕虏体推导的地温和上 地幔组成.岩石学报,1(4):34-49.
- 张海祖,张宏飞,2001.下地壳麻粒岩包体研究进展及其意义. 前寒武纪研究进展,24(4):247-256.
- 钟大赉,季建清,胡世玲,1999.新特提斯洋俯冲时间:变质洋 壳残片⁴⁰ Ar/³⁹ Ar 微区年龄.科学通报,44(16): 1782-1785.
- 周新民,陈图华,1984.我国东南沿海新生代玄武岩中两类超 镁铁岩包体的成因.地质学报,58(3):238-251.