doi:10.3799/dqkx.2016.130

湖南嘉禾大窝岭剖面吴家坪阶一长兴阶界线牙形石 生物地层及一次碳同位素负偏

叶 茜^{1,2},江海水^{1,2}*

中国地质大学生物地质与环境地质国家重点实验室,湖北武汉 430074
中国地质大学地球科学学院,湖北武汉 430074

摘要:吴家坪阶-长兴阶界线位于这两次生物大灭绝事件之间,科学界对该界线附近是否发生重大地质事件仍然知之甚少, 有关该时期的环境变化、碳循环的研究也不深入.嘉禾大窝岭剖面牙形石生物地层以及碳同位素变化的研究,为进一步探讨吴 家坪期-长兴期附近的生物及环境事件提供基础材料.晚二叠世时以深水盆地相沉积为主的大窝岭剖面位于湖南省嘉禾县袁 家镇附近.该剖面大隆组出露较好,岩性主要为硅质岩、硅质灰岩、灰岩以及泥岩.在大隆组中共识别出牙形石 1 属 3 种(含一 个未定种):Clarkina wangi,C. deflecta,C. sp.,并识别出牙形石 C. wangi 带和 C. changxingensis-C. deflecta 组合带.根据 C. wangi 的首现,将大窝岭剖面的吴家坪阶-长兴阶界线(Wuchiapingian-Changhsingian boundary,简称 WCB)置于第 11 层 底部.该剖面全岩无机碳同位素数据显示在 13~15 层发生了一次快速的负偏,从 2.18%负偏到-1.39%,负偏值近 3.50%,可 与浙江煤山及四川上寺等剖面进行很好的对比,揭示这次碳同位素负偏在华南区域上可具对比性. 关键词:吴家坪阶-长兴阶界线;牙形石;碳同位素;大窝岭剖面;地层学.

中图分类号: P53 文章编号: 1000-2383(2016)11-1883-10

Conodont Biostratigraphy and a Negative Excursion in Carbonate Carbon Isotopes across the Wuchiapingian-Changhsingian Boundary at the Dawoling Section, Hunan Province

收稿日期:2016-03-02

Ye Qian^{1,2}, Jiang Haishui^{1,2*}

1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China 2. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China

Abstract: The research of conodont biostratigraphy and carbon isotope change at the Dawoling section provides basic materials for the exploration of creatures and environment change in the Wuchiapingian-Changhsigian period. The Dawoling section at Yuanjia Town, Jiahe county, Hunan Province, recorded basinal deposition during the Late Permian. The Talung Formation is well-exposed and displays siliceous rock, siliceous limestone, limestone and claystone. Three conodont taxa (one is undetermined) of genus Clarkina; C. wangi, C. deflecta and C. sp. are identified, and these enable the tentative assignment of a C. wangi Zone overlain by a C. changxingensis-C. deflecta assemblage Zone. The Wuchiapingian-Changhsingian boundary (Wuchiapingian-Changhsingian boundary, WCB) is placed at the first occurrence (FO) of C. wangi at the base of bed 11 at this Dawoling section. A rapid negative shift from 2.18% to -1.39% in carbonate carbon isotope in beds 13–15 correlates well with the Changhsingian GSSP(Global Stratotype Section and Point) section at Meishan in Zhejiang and the Shangsi section of Sichuan. Therefore, this negative excursion could be a regionally correlation horizon in south China.

Key words: Wuchiapingian-Changhsingian boundary; conodont; carbon isotope; Dawoling section; stratigraphy.

基金项目:国家自然科学基金项目(Nos.41572324,41272044);中央高校基本科研业务费专项资金资助项目.

作者简介:叶茜(1993-),女,硕士研究生,地质学专业地层古生物方向.E-mail: 18064125680@163.com

^{*} 通讯作者:江海水, E-mail: jiangliuis@163.com

二叠系乐平统长兴阶底界全球层型剖面和点位 (global stratotype section and point,简称 GSSP)是 以浙江长兴煤山 D 剖面 4a-2 层底部牙形石 Clarkina wangi 的首现为标准建立的(Jin et al., 2006). Mei et al.(2004)和 Wang et al.(2006)报道了吴家 坪阶-长兴阶界线附近 C. longicuspidata-C. wangi 的牙形石演化序列,并通常伴生有牙形石 C. orientalis.除这 3 个种以外,还出现有牙形石 C. longicuspidata-C. wangi 的过渡型式和 C. wangi-C. subcarinata 的过渡型式(Jin et al., 2006; Wang et al., 2006).长兴阶底部牙形石的低分异度与长兴 阶顶部牙形石的高分异度(Jiang et al., 2007, 2011) 形成了鲜明的对比.

碳同位素变化为地层对比、古环境研究等提供 了重要的信息,近年来得到了广泛的研究(Krull et al., 2004; Cao et al., 2010; Korte and Kozur, 2010; Song et al., 2012; Shen et al., 2013; 乔培军 等,2015).乐平统的底界与顶界附近均发生有生物 灭绝事件,即瓜德鲁普世晚期生物灭绝事件和二叠 纪一三叠纪之交生物大灭绝事件(Bond et al., 2010; Shen et al., 2011; Chen and Benton, 2012). 与 此同时发生的碳同位素负偏也得到了较为广泛的研 究(Bond et al., 2010; Korte and Kozur, 2010). 吴家 坪阶-长兴阶界线位于这两次生物大灭绝事件之 间,科学界对该界线附近是否发生重大地质事件仍 然知之甚少,有关该时期的环境变化、碳循环的研究 也不深入.华南许多剖面的吴家坪阶一长兴阶界线 附近都发现有碳同位素的负偏(Shao et al., 2000; Liu et al., 2013; Shen et al., 2013; Wei et al., 2015),但是关于此次碳同位素负偏究竟反映的是全 球性碳循环还是区域性的碳同位素变化,目前尚存 争议(Shao et al., 2000; Shen et al., 2013; Wei et al.,2015).

本文对湖南嘉禾大窝岭剖面吴家坪阶-长兴阶 界线附近的牙形石生物地层以及全岩无机碳同位素 变化进行了初步研究,为进一步探讨该时期的生物 及环境事件提供基础资料.

1 区域地理位置以及地质背景

大窝岭剖面位于湖南省郴州市嘉禾县城东约 4 km 的袁家镇大窝岭村(图1)路旁,剖面出露较为 完整.该区二叠系出露较好,张毓秀(1981)曾报道过 该地区的双壳类,张志沛等(1993)首次建立了嘉禾 地区晚二叠世(乐平世)腕足动物序列.乐平世时大 窝岭剖面位于扬子板块与华夏板块之间的江南盆 地,该盆地在瓜德鲁普世晚期发生的急剧海退以及 随后吴家坪期早期的快速海侵事件,造成了该时期 底栖生物危机.相应的,瓜德鲁普世晚期大窝岭地区 由原本的深水盆地沉积变为由泥质灰岩和钙质页岩 组成为主的浅水沉积.吴家坪期早期开始发生大规 模的海侵事件,使得该地区在吴家坪期中期又恢复 深水盆地相沉积.此次海侵一直持续到吴家坪期晚 期,并在吴家坪期晚期发生了较为平缓的海退,长兴 期早期海侵继续发生(Wang and Jin,2000).

嘉禾县东部发育有一个 SN 走向的小向斜,即 袁家向斜(图 2),乐平世地层主要发育在此向斜的 两侧.研究区内乐平世地层从老到新可分为斗岭组、 小元冲组和大隆组,斗岭组岩性为深灰色泥岩夹泥 质灰岩透镜体;小元冲组岩性主要为黑色、黑褐色硅 质泥岩、硅质灰岩和硅质岩;大隆组则主要由硅质 岩、硅质灰岩和页岩等组成(张志沛等,1993).本文 研究的剖面位于袁家向斜西部的大窝岭村附近,主 要出露乐平统大隆组.剖面逐层描述如表 1.

2 样品采集与实验分析

研究人员在大窝岭剖面共采集 29 份牙形石样 品并进行室内处理,每份样品重 3.0~4.5 kg.首先将

图 1 湖南嘉禾大窝岭剖面交通位置

Fig.1 The location of the Dawoling section, Jiahe county, Hunan Province

Fig.2 Regional geology of the Dawoling section, Jiahe county, Hunan Province

表1 剖面描述

Table 1	Description	of	profiles
			p = 0 = 0 0

层号	描述
	上部覆盖
28	灰褐色-灰黑色灰岩与泥岩互层,可识别出 15 个旋回,每个旋回底部为灰岩,顶部为泥岩,产牙形石 C. sp.,厚 435 cm
27	灰褐色硅质泥岩(距顶部 40cm 处有 8cm 厚的灰岩),产牙形石 C. sp.,厚 220 cm
26	灰黑色薄层灰岩夹泥岩(顶底为灰岩,中间夹两层泥岩),厚 80 cm
25	黄褐色薄层泥岩,厚30 cm
24	灰褐色一灰黑色硅质泥岩与灰黑色薄层灰岩互层,厚 320 cm
23	灰黑色硅质岩(顶部有硅质灰岩),厚 40 cm
22	灰黑色灰岩,产牙形石 C. sp.,C. wangi,C. deflecta(图 3),厚 9 cm
21	灰黑色硅质岩,厚11 cm
20	灰白色粘土岩,厚6cm
19	灰黑色硅质岩夹硅质灰岩,产牙形石 C. sp., C. wangi, 厚 21 cm
18	黄褐色泥岩,厚5cm
17	灰黑色硅质岩夹硅质灰岩,厚14 cm
16	黄褐色泥岩,厚6 cm
15	灰黑色硅质岩,厚8cm
14	灰黑色灰岩,产牙形石 C. sp., C. wangi,厚 8 cm
13	灰黑色硅质岩夹硅质灰岩,产牙形石 C. wangi,双壳 Hunanopeten sp. 和菊石 Xenaspis carbonaricus, Xenaspis sp., Pseudot-
	irolites sp.(图 4),厚 20 cm
12	灰白色粘土岩,厚7 cm
11	灰黑色硅质岩夹硅质灰岩,含分形石C. sp.,C. wangi,厚 60 cm
10	灰黑色灰岩,厚15 cm
9	灰黑色硅质岩夹硅质灰岩,厚 19 cm
8	灰白色粘土岩,厚5 cm
7	灰黑色硅质岩夹硅质灰岩,厚 24 cm
6	灰黄色一黄色泥岩,厚3 cm
5	灰黑色硅质岩夹硅质灰岩,厚 44 cm
4	黄褐色泥岩,厚 33 cm
3	灰黑色硅质岩夹硅质灰岩,产菊石 Sinoceltites sp.(图 4),厚 34 cm
2	灰褐色泥岩,厚10 cm
1	灰黑色硅质岩,厚11 cm

图 3 大窝岭剖面产出的牙形石 Fig.3 Conodonts from the Dawoling section

1~8,10~11.*Clarkina wangi*(Zhang);1.HDC14_001,HDC-14;2.HDC14_002,HDC-14;3.HDC14_004,HDC-14;4.HDC14_009,HDC-14;5. HDC19_002,HDC-19;6.HDC22_003,HDC-22;7.HDC22_004,HDC-22;8.HDC22_006,HDC-22;9.*Clarkina deflecta*(Wang & Wang); HDC22_010,HDC-22.12~13.*Clarkina* sp.;10.HDC22_013,HDC-22;11.HDC22_024,HDC-22;12.HDC27_012,HDC-27;13.HDC28-9_010, HDC-28, 牙形石均为 P1 分子,口视

采集的样品碎成小块,然后进行酸解,灰岩样品采用10%的醋酸,硅质岩样品则使用5%的氢氟酸溶液进行酸解,将获得的样渣分离晾干后做重液分选(苑金玲等,2015),最后在显微镜下挑选出牙形石样品.其中7个样品有牙形石产出.

在该剖面共采集 49 件样品进行全岩无机碳、氧 同位素分析,样品为灰岩或者硅质灰岩,其中 25 层 以下采样密集(7.33 m 的地层中共采集碳同位素样 38 件,平均采样间距为 19.30 cm).为了减少后期各 种地质作用对样品同位素的影响,采样时尽量避开 方解石脉体以及风化作用较强的露头.岩石样品去 除风化表面后,使用微钻在新鲜面取粉末样品 2 mg 左右,烘干去除水分,在真空、室温条件下与浓度为 100%的磷酸反应 12 h,经液氮冷却分离后收集纯二 氧化碳气体,随后送至中国地质大学(武汉)生物地 质与环境地质国家重点实验室采用 MAT-253 质谱 仪测试并换算成 δ^{13} C(VPDB)、 δ^{13} O(VPDB).分析 控制标准样品采用 GBW04416(δ^{13} C = 1.61‰; δ^{13} O = -11.59% VPDB)或 GBW04417(δ^{13} C = $-6.06\%; \delta^{13}$ O = -24.12% VPDB). δ^{13} C 测试结果 的误差小于 0.10‰.分析结果见表 2.

样品评价:碳酸盐岩中原始氧同位素组成受水体 温度和盐度的影响,沉积后可以在成岩或者埋藏过程 中与热水发生同位素交换作用,使得 δ^{18} O值明显降 低.目前一般将 δ^{18} O<-5‰作为氧同位素发生一定 程度改变的临界值,而将 δ^{18} O>-10‰作为碳稳定同 位素数据有效判别标准.由表2可发现 δ^{18} O的值位 于-8.94‰~-4.35‰,且大多数集中于-8.00‰~

图 4 大窝岭剖面产出的菊石与双壳化石 Fig.4 Ammonoids and bivalve from the Dawoling section 1.Hunanopeten sp., HDC-13;2~4.Xenaspis carbonaricus, HDC-13;5~6.Xenaspis sp., HDC-13;7.Pseudotirolites? sp., HDC-13;8.Sinoceltites sp., HDC-3.除 8 比例尺为 2.5 cm, 其余均为 5 mm

-6.00%,由此可判断后期成岩改造作用较弱,此外 δ^{13} C和 δ^{18} O两者样本决定系数(R^2)值为 10^{-5} ,表明 两者相关性极差(图 5).综上可判断碳同位素数据没 有受到明显的成岩作用改造.

3 牙形石生物地层

湖南大窝岭剖面产出的牙形石属种较为单调, 共产出牙形石分子1属3种(含一个未定种),分别 为:C. wangi、C. deflecta、C. sp.(图7).虽然在本 剖面的第1层至第10层也进行了较为密集的牙形 石采样工作,但遗憾的是未发现牙形石分子,第11 层开始出现牙形石C. wangi,并伴生有C. sp.,牙 形石C. deflecta出现在本剖面的第22层,故将本 剖面的11~21层归为牙形石C. wangi带.第22层 往上,根据牙形石C. deflecta的出现,将其归为牙 形石 C. changxingensis-C. deflecta 组合带,由于 往上牙形石分布稀疏且种类单一,该带顶部暂且无 法确定.

C. wangi带:位于大窝岭第11~21层,以牙形石 C. wangi的首现为底界,以牙形石 C. deflecta 的首现为顶界,伴生有牙形石 C. sp..该带见于华南 浙江煤山,湖北甘溪、峡口,四川上寺,以及伊朗地区 等地区(Mutwakil et al.,2006; Wang et al.,2007; Shen and Mei,2010; Shen et al.,2010; 房强,2012; Yuan et al.,2014).C. wangi带最早是由 Mei et al. (2004)在煤山剖面建立的, Mei and Henderson (2001)将其定为 C. wangi-C. subcarinata带,这是 因为当时在华南以外的地区并未发现牙形石 C. wangi,而 C. wangi 在C. wangi-C. subcarinata带 下部占据主要地位.这种牙形石的演替规律后来在 伊朗的Zal剖面、Kuhe-Ali剖面也被发现(Hender-

	caro I I I						
样品编号	$\delta^{13}\mathrm{C}_{\mathrm{carb}}(\%_0)$	$\delta^{18}\mathrm{O}(\%)$	样品编号	$\delta^{13}\mathrm{C}_{\mathrm{carb}}(\%_0)$	$\delta^{18} O(\%_0)$		
DWL-01	1.92	-7.97	DWL-26	0.93	-8.03		
DWL-02	1.46	-8.11	DWL-27	2.35	-7.98		
DWL-03	1.55	-7.86	DWL-28	2.04	-7.07		
DWL-04	1.29	-7.88	DWL-29	2.11	-7.37		
DWL-05	0.24	-8.94	DWL-30	2.14	-7.74		
DWL-06	1.75	-8.06	DWL-31	2.50	-7.90		
DWL-07	1.48	-7.99	DWL-32	2.08	-6.99		
DWL-08	1.45	-7.96	DWL-33	2.42	-6.74		
DWL-09	0.23	-7.04	DWL-34	1.93	-7.20		
DWL-10	1.26	-7.57	DWL-35	2.01	-7.57		
DWL-11	0.71	-7.03	DWL-36	2.67	-6.16		
DWL-12	0.55	-6.03	DWL-37	2.49	-6.56		
DWL-13	0.71	-5.24	DWL-38	2.26	-5.75		
DWL-14	2.30	-7.62	DWL-39	1.59	-6.09		
DWL-15	1.66	-6.34	DWL-40	2.26	-6.76		
DWL-16	2.18	-7.86	DWL-41	2.59	-5.72		
DWL-17	0.40	-4.35	DWL-42	2.20	-6.15		
DWL-18	0.32	-5.26	DWL-43	2.62	-5.99		
DWL-19	0.47	-6.31	DWL-44	2.41	-5.15		
DWL-20	-1.39	-5.73	DWL-45	2.73	-5.63		
DWL-21	1.02	-6.77	DWL-46	2.79	-5.92		
DWL-22	-0.38	-6.86	DWL-47	2.31	-5.97		
DWL-23	2.02	-6.26	DWL-48	2.85	-5.35		
DWL-24	2.30	-8.01	DWL-49	2.53	-5.66		
DWL-25	1.28	-7.04					

表 2 湖南嘉禾大窝岭剖面无机碳同位素(δ¹³C_{carb})以及氧同位素(δ¹⁸Ο)分析结果

Table 2 The $\delta^{13}C_{carb}$ and $\delta^{18}O$ value of samples from the Daowoling section, Jiahe county, Hunan Province

Fig. 5 Crossplots showing the relationship between δ^{13} C and δ^{18} O from the Dawoling section, Jiahe county, Hunan Province

son et al., 2008), 因此 Mei and Henderson(2001) 定的牙形石 C. wangi-C. subcarinata 由下至上又 分别被划分为 C. wangi 带和 C. subcarinata 带 (Shen and Mei, 2010; Yuan et al., 2014)(图 6). Mutwakil et al.(2006)在湖北甘溪剖面建立牙形带 时,直接将 C. wangi 带之上定为 C. changxingensis 带,但据其文章中牙形石的分布可以发现,作者 建立的 C. wangi 带中上部出现有牙形石 C. subcarinata,因此 Mutwakil et al.(2006)所建立的 C. wangi 带实际上包含牙形石 C. wangi 带和 C. subcarinata 带.其下部的牙形石带则主要为 C. orientalis 带 (Shen and Mei, 2010; 房强, 2012)、C. longicuspidata 带(金玉玕等,2007),有学者将其定 为 C. longicuspidata-C. orientalis 组合带(张克信 等,2009), Wang et al.(2007)虽然在 C. wangi 带 之下建立了 3 个牙形石带,但是牙形石 C. longisupidata 的首现位置和 C. orientalis 的首现位置相 近,并一直向上延续至 C. wangi 带,因此这 3 个牙 形石带实质上相当于 C. longicuspidata 带(或者 C. longicuspidata-C. orientalis 组合带)(图 6).

C. changxingensis-C. deflecta 组合带:以本 剖面 22 层为底,顶部尚未确定.该带可见于四川上 寺以及罐子坝剖面(房强,2012).张克信等(2009)根 据牙形石 C. changxingensis 和牙形石 C. deflecta 的首现面在煤山剖面牙形石 C. wangi 带之上的 11~23 层建立牙形石 C. changxingensis-C. de-

		-		-			
	浙江煤山 (据Yuan <i>et al.</i> ,2014)	湖北峡口 (据Wang <i>et al.</i> , 2007)	湖北甘溪 (据Mutwakil et al.,2006)	四川上寺、 罐子坝剖面 (据房强, 2012)	伊朗Zal剖面 (据Shen and Mei, 2010)	湖南嘉禾 大窝岭剖面 (本文)	
长兴阶	C.changxingensis	C.changxingensis	C.changxingensis	C.changxingensis- C.deflecta	C.changxingensis	C.changxingensis- C.deflecta	
	C.subcarinata	C.subcarinata	changxingensis		C.subcarinata		
	C.wangi	C.wangi	C.wangi	C.wangi	C.wangi	C.wangi	
吴家坪阶	C.longicuspidata	C.iranica C. prechangxinge nsis-C.decrocarina C.orientalis		C.orientalis	C.orientalis		

图 6 吴家坪阶-长兴阶界线牙形石带对比

Fig.6 Correlation of conodont zonations across the Wuchiapingian-Changhsingian boundary

flecta 组合带.Yuan et al.(2014)采用样品居群的方 法重新厘定了煤山剖面的牙形石带,在 C. wangi 带之上由下而上分别建立了 C. subcarinata 带和 C. changxingensis 带,其中 C. subcarinata 带相当于 张克信建立的 C. changxingensis-C. de flecta 组合 带的下部,而 C. changxingensis 带则相当于该组合 带的上部(图 6).本剖面中未发现牙形石 C. subcarinata,无法建立 C. subcarinata 带,而且牙形石 C. de flecta 的分布延限较长,将 C. de flecta 单独 作为划带分子是不合适的.因此,本文将剖面 22 层 之上归入 C. changxingensis-C. de flecta 组合带, 该带顶部因缺少牙形石暂且不能确定.

综上,根据牙形石 C. wangi 在本剖面第 11 层 底部的出现,笔者暂将大窝岭剖面吴家坪阶-长兴 阶界线置于第 11 层的底部(图 7 中虚线所示).

4 碳同位素及其分析

大窝岭剖面碳酸盐岩全岩无机碳同位素 ($\delta^{13}C_{carb}$)分布范围在-1.39‰~2.85‰,平均值为 1.66‰.在本剖面第 1~13 层, $\delta^{13}C$ 值有一定的波 动,总体处于 0.23‰~1.98‰.第 13~15 层的碳同 位素值处于较低的区间,其中最低值为-1.39‰,这 表明此时发生了一次碳同位素负偏事件,虽然较为 短暂,但负偏值近 3.5‰.15 层之上 $\delta^{13}C$ 值又回升并 趋于稳定,大部分位于 2‰~3‰的范围内(图 7a, 表 1).

本文碳同位素数据研究是建立在牙形石生物地 层研究上的,将其与已有详细生物地层、碳同位素等 研究的浙江煤山 GSSP 剖面(Shen et al., 2013)进 行对比后可发现,大窝岭剖面 13 层到第 15 层发生 的碳同位素快速负偏,可与煤山剖面 C. wangi 首 现面之上的碳同位素负偏形成很好的对比,煤山剖 面的负偏值约为 3‰(图 7).在深水斜坡相的四川上 寺剖面,界线之上碳同位素发生了3%的负偏(Shen et al., 2013).在浅水相剖面也发现有碳同位素的负 偏,如广西合山剖面(Shen et al., 2013),但其负偏 程度略有差异.由此,WCB界线之上碳同位素的这 次负偏是在华南多条剖面均有报道,可以进行较好 的对比.前人研究表明,在WCB界线附近生物的多 样性以及丰度并没有明显的变化(Wang et al., 2014),而吴家坪期晚期到长兴期早期江南盆地发生 了平缓的海侵(Wang and Jin, 2000),由此,生物灭 绝或者由海退引起的陆源碎屑输入对碳酸盐岩的碳 同位素组成的影响可能不是导致此次负偏的原因. 有研究表明,火山活动会导致轻的 CO2 和甲烷释放 到大气中,这些轻碳进入海洋后使得海水中碳同位 素发生负偏(Hansen, 2006; Wignall et al., 2009).大 窝岭剖面的显著碳同位素负偏紧随发生在该剖面有 火山活动记录的第8层和第12层之上,可能与区域 上的火山活动相关.

图 7 华南大窝岭剖面和煤山剖面吴家坪阶一长兴阶界线牙形石分布以及无机碳同位素变化对比

Fig.7 Conodont distribution and carbonate carbon isotope values across the Wuchiapingian-Changhsingian boundary at the Dawoling and Meishan sections, South China

a.湖南大窝岭剖面;b.浙江煤山剖面,引自 Shen et al.(2013),阴影部分表示两剖面 C. wangi 首现面之上碳同位素负偏的对比,虚线表示吴家坪阶-长兴阶界线

5 结论

由此,通过对湖南大窝岭剖面牙形石生物地层的研究,笔者共识别出两个牙形石带,自下而上分别为:C. wangi带,C. changxingensis-C. deflecta 组合带.根据C. wangi的首现位置,大窝岭剖面的吴家坪阶-长兴阶界线被置于第11层底.全岩碳同位素分析表明,在该剖面的长兴阶底部(C. wangi 首

现面之上)的13~15 层发生了碳同位素的负偏,负 偏值近3.5%.这一负偏可与同时期的浙江煤山及四 川上寺等多个剖面进行对比,揭示长兴阶底部的这 次负偏在华南地区具有可对比性.

致谢:感谢齐琦、张木辉、王阳等在野外工作以 及室内处理过程中的帮助.感谢孙亚东在同位素知 识方面给与的指导.

References

- Bond, D.P.G., Wignall, P.B., Wang, W., et al., 2010. The Mid-Capitanian (Middle Permian) Mass Extinction and Carbon Isotope Record of South China. Palaeogeography Palaeoclimatology Palaeoecology, 292 (1-2): 282 -294.doi:10.1016/j.palaeo.2010.03.056
- Cao, C.Q., Yang, Y.C., Shen, S.Z., et al., 2010. Pattern of Delta C-13 (carb) and Implications for Geological Events During the Permian-Triassic Transition in South China. *Geological Journal*, 45(2-3):186-194.doi:10.1002/ gj.1220
- Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5 (6): 375 - 383. doi: 10. 1038/ngeo1475
- Fang, Q., 2012. The Conodont and Biostratigraphy in Guadalupian and Lopingian Series in Northeast Sichuan(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
- Hansen, H.J., 2006. Stable Isotopes of Carbon from Basaltic Rocks and Their Possible Relation to Atmospheric Isotope Excursions. *Lithos*, 92(1):105-116. doi:10.1016/ j.lithos.2006.03.029
- Henderson, C. M., Mei, S. L., Shen, S.Z., et al., 2008. Resolution of the Reported Upper Permian Conodont Occurrences from Northwestern Iran. *Permophiles*, (51):2-9.
- Jiang, H.S., Lai, X.L., Luo, G.M., et al., 2007. Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. *Global and Planetary Change*, 55(1-3):39-55. doi: 10.1016/j.gloplacha.2006.06.007
- Jiang, H.S., Lai, X.L., Yan, C.B., et al., 2011. Revised Conodont Zonation and Conodont Evolution across the Permian-Triassic Boundary at the Shangsi Section, Guangyuan, Sichuan, South China. *Global and Planetary Change*, 77(3-4):103-115.doi:10.1016/j.gloplacha. 2011.04.003
- Jin, Y.G., Wang, Y., Henderson, C.M., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of Changhsingian Stage (Upper Permian). Episodes, 29(3):175-182.
- Jin, Y. G., Wang, Y., Henderdon, C. M., et al., 2007. The Global Stratotype Section and Point (GSSP) for the base of the Changhsingian Stage (Upper Permian). *Journal of Stratigraphy*, 31(2):101-109 (in Chinese with English abstract).
- Korte, C., Kozur, H. W., 2010. Carbon-Isotope Stratigraphy across the Permian-Triassic Boundary: A Review. *Jour*-

nal of Asian Earth Sciences, 39(4):215-235.doi:10. 1016/j.jseaes.2010.01.005

- Krull, E. S., Lehrmann, D. J., Druke, D., et al., 2004. Stable Carbon Isotope Stratigraphy across the Permian-Triassic Boundary in Shallow Marine Carbonate Platforms, Nanpanjiang Basin, South China. Palaeogeography Palaeoclimatology Palaeoecology, 204 (3-4): 297-315.doi:10.1016/S0031-0182(03)00732-6
- Liu, X.C., Wang, W., Shen, S.Z., et al., 2013. Late Guadalupian to Lopingian (Permian) Carbon and Strontium Isotopic Chemostratigraphy in the Abadeh Section, Central Iran. Gondwana Research, 24 (1): 222 - 232. doi: 10. 1016/j.gr.2012.10.012
- Mei, S.L., Henderson, C.M., 2001. Evolution of Permian Conodont Provincialism and Its Significance in Global Correlation and Paleoclimate Implication. Palaeogeography Palaeoclimatology Palaeoecology, 170 (3-4): 237 – 260.doi:10.1016/S0031-0182(01)00258-9
- Mei, S. L., Henderson, C. M., Cao, C. Q., 2004. Condont Sample-Population Approach to Defining the Base of the Changhsingian Stage, Lopingian Series, Upper Permian.Geological Society London Special Publications, 230(1):105-121.doi:10.1144/GSL.SP.2004.230.01.06
- Mutwakil, N., Xia, W. C., Zhang, N., 2006. Late Permian (Changhsingian) Conodont Biozonation and the Basal Boundary, Ganxi Section, Western Hubei Province, South China. Canadian Journal of Earth Sciences, 43 (2):121-133.doi:10.1139/e05-097
- Qiao, P. J., Zhu, W., Shao, L., et al., 2015. Carbonate Stable Isotope Stratigraphy of Well Xike-1, Xisha Islands. *Earth Science*, 40(4):725-732(in Chinese with English abstract).
- Shao, L.Y., Zhang, P.F., Dou, J.W., et al., 2000. Carbon Isotope Compositions of the Late Permian Carbonate Rocks in Southern China: Their Variations between the Wujiaping and Changxing Formations. Palaeogeography Palaeoclimatology Palaeoecology, 161 (1 - 2): 179-192.doi:10.1016/S0031-0182(00)00122-X
- Shen, S.Z., Mei, S.L., 2010. Lopingian (Late Permian) High-Resolution Conodont Biostratigraphy in Iran with Comparison to South China Zonation. *Geological Journal*, 45 (2-3):135-161.doi:10.1002/gj.1231
- Shen,S.Z., Crowley, J.L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334(6061): 1367-1372.doi:10.1126/science.1213454
- Shen, S. Z., Cao, C. Q., Zhang, H., et al., 2013. High-Resolution δ^{13} C_{carb} Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China

and Iran. Earth and Planetary Science Letters, 375: (156-165).doi:10.1016/j.epsl.2013.05.020

- Song, H.J., Wignall, P.B., Tong, J.N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. *Earth* and Planetary Science Letters, 353-354:12-21. doi: 10.1016/j.epsl.2012.07.005
- Wang, G. Q., Xia, W. C., Zhang, N., et al., 2007. Reviewing Upper Wuchiapingian-Changhsingian Conodont Biozones and Vertical Changes of Biomicrofacies, Delta C-13(carb) and Delta O-18 Isotopes at Xiakou Section, Western Hubei Province, South China. Journal of China University of Geosciences, 18:434-436.
- Wang, Y., Jin, Y.G., 2000. Permian Palaeogeographic Evolution of the Jiangnan Basin, South China. Palaeogeography Palaeoclimatology Palaeoecology, 160 (1-2): 35-44.doi:10.1016/S0031-0182(00)00043-2
- Wang, Y., Shen, S. Z., Cao, C. Q., et al., 2006. The Wuchiapingian-Changhsingian Boundary (Upper Permian) at Meishan of Changxing County, South China. Journal of Asian Earth Sciences, 26(6):575-583. doi:10.1016/j. jseaes.2004.12.003
- Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End-Permian Mass Extinction. *Paleobiology*, 40 (1): 113 - 129. doi: 10. 1666/13022
- Wei, H. Y., Yu, H., Wang, J.G., et al., 2015. Carbon Isotopic Shift and Its Cause at the Wuchiapingian-Changhsingian Boundary in the Upper Permian at the Zhaojiaba Section, South China: Evidences from Multiple Geochemical Proxies. Journal of Asian Earth Sciences, 105 (1): 270-285.doi:http://dx.doi.org/10.1016/j.jseaes.2015. 01.011
- Wignall, P.B., Sun, Y.D., Bond, D.P., et al., 2009. Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China. Science, 324(5931): 1179 – 1182.doi:10.1126/science.1171956
- Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2014. Revised Conodont-Based Integrated High-Resolution Timescale for

the Changhsingian Stage and End-Permian Extinction Interval at the Meishan Sections, South China. *Lithos*, 204: 220-245.doi:10.1016/j.lithos.2014.03.026

- Yuan, J.L., Jiang, H.S., Wang D.C., 2015.LST—A New Inorganic Heavy Liquid Used in Conodont Separation. Geological Science and Technology Information, 34(5): 225-230(in Chinese with English abstract).
- Zhang, K.X., Lai, X.L., Tong, J.N., et al., 2009. Progresses on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang, South China. Acta Palaeontologica Sinica, 48(3): 474-486 (in Chinese with English abstract).
- Zhang, Y.X., 1981.Late Permian Bivalves from Yuanjia of Jiahe, Huan Province. Acta Palaeontologica Sinica, 20 (3):10 (in Chinese with English abstract).
- Zhang, Z.P., He, X. L., Zhu, M. L., et al., 1993. The Assemblage Characters of the Upper Permian Brachiopod in the Chen County-Jiahe Area, Southern Hunan Province. *Journal of China University of Mining & Technolo*gy, 22(3):39-49 (in Chinese with English abstract).

附中文参考文献

- 房强,2012.川东北瓜德鲁普统与乐平统牙形石(刺)动物群 及其生物地层研究(硕士学位论文).北京:中国地质 大学.
- 金玉玕,王玥,Henderson,C.M.,等,2007.二叠系长兴阶全球 界线层型剖面和点位.地层学杂志,31(2):101-109.
- 乔培军,朱伟林,邵磊,等,2015.西沙群岛西科1井碳酸盐 岩稳定同位素地层学.地球科学,40(4):725-732.
- 苑金玲,江海水,王达成,2015.新型无机重液 LST 在牙形石 分离中的使用.地质科技情报,34(5):225-230.
- 张克信,赖旭龙,童金南,等,2009.全球界线层型华南浙江长 兴煤山剖面牙形石序列研究进展.古生物学报,48(3): 474-486.
- 张毓秀,1981.湖南嘉禾袁家晚二叠世瓣鳃类.古生物学报,20 (3):10.
- 张志沛,何锡麟,朱梅丽,等,1993.湖南郴县-嘉禾地区晚二 叠世腕足动物组合特征.中国矿业大学学报,22(3): 39-49.