doi:10.3799/dqkx.2016.055

低温气体辅助煤层气压裂中的冷冲击机理

张 亮1,罗 炯2,崔国栋1,范志坤1,任韶然1,张建光1,杨 勇2,车 航2

中国石油大学石油工程学院,山东青岛 266580
中石油华北油田分公司,河北任丘 062550

摘要:液 № 等气体辅助煤层气压裂的常规机理已较为清楚,但其低温特征对煤层物性的影响以及对压裂效果的改善机理尚 未引起重视,缺乏理论认识.归纳总结了低温气体对煤岩的冷冲击作用机制,评价了地层水的结冰条件和低温气体的热物性, 通过室内实验和数值模拟等手段验证和预测了液 № 对煤岩及近井煤层的冷冲击效果,并进行了冷冲击机理应用潜力分析.研 究结果表明,煤层气压裂过程中注入 № 等低温气体对煤层进行冷冲击,可引起煤岩基质收缩和地层水结冰膨胀,使煤岩产生 大量微裂缝和力学强度降低(10%~30%),有利于实现冰晶暂堵和改善煤层气压裂效果.以沁水盆地樊庄区块 3 # 煤层为例, 当液 № 注入总量为 30~120 m³ 时,可在近井周围 3~5 m 内形成低温区(<-20 ℃),煤层孔隙度将平均增大约 1.5 倍,渗透 率增大 4 倍,还可造成煤岩的拉伸和挤压破坏.利用低温气体的冷冲击机理及其产生的冰晶暂堵可以作为改进煤层气和页岩 气压裂工艺的新方向.

关键词:煤层气;液 №;CO2 水合物;冷冲击;微裂缝;煤岩强度;煤矿.
中图分类号:P618.11
文章编号:1000-2383(2016)04-0664-11
收稿日期:2015-05-06

Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases

Zhang Liang¹, Luo Jiong², Cui Guodong¹, Fan Zhikun¹, Ren Shaoran¹, Zhang Jianguang¹, Yang Yong², Che Hang²

1.School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China2.Huabei Oilfield, PetroChina, Renqiu 062550, China

Abstract: The common mechanisms of coalbed fracturing assisted with cryogenic gases, such as liquid nitrogen, have been relatively clear, but the impact of low-temperature characteristics of cryogenic gases on coalbed physical properties and its mechanism of improving the fracturing performance have not yet attracted wide attentions, and lack of theoretical understanding. The mechanisms of cold shock of cryogenic gases to the coal rock are summarized first. Then based on the freezing condition of formation water and the thermal properties of cryogenic gases, the cold shock performance of liquid nitrogen to the coal rock was verified by laboratory experiments, and the behavoirs of the cooled coalbed around the wellbore after liquid nitrogen injection were predicted by numerical simulation method. Then the application potential of cold shock to the coal rock around wellbore, which will induce the coal matrix shrinking and the formation water freezing. A large number of new microcracks will generate in the coal rock. The mechanical strength of the coal bed fracturing. Taking the coalbed of layer 3 in the Fanzhuang block in the Qinshui basin as example, when a amount of liquid nitrogen with a volume of $30-120 \text{ m}^3$ is injected underground, a good cooling and shock performance in the coalbed will be obtained within 3-5 m around wellbore. The porosity of the nearby coalbed will increase 4 times. A stretching and squeezing damage may also occur in the coal rock around wellbore. The cold shock of cryogenic gases and its induced ice temporary blocking can be used for

基金项目:国家科技重大专项项目(No.2009ZX05062-012-011);中石油 2011 校企合作研究基金项目(No.2011-HB-X308);中央高校基本科研 业务费专项资金资助项目(Nos.13CX02052A,15CX05036A).

作者简介:张亮(1983-),男,博士,副教授,主要从事注气提高采收率、非常规能源开发、CO2资源化利用等方面的研究.E-mail:zhlupc@upc.edu.cn

the improvement of hydraulic fracturing techniques in coalbed methane and shale gas wells. Key words: coalbed methane; liquid nitrogen; CO₂ hydrate; cold shock; microcrack; coal rock strength; coal mine.

水力压裂是煤层气增产的主要措施.目前常用 的活性水压裂存在压裂液滤失严重、返排率低、压裂 裂缝短而复杂等问题(孙赞东等,2011),采用新型压 裂液和有效暂堵技术是改善压裂效果的关键.利用 液 N₂、液态 CO₂ 压裂或辅助压裂煤层气,具有增能 助排、降滤失、对地层伤害小等优点(才博等,2007; 焦中华等,2011),还可以充分利用气体的低温或超 低温特性,对煤层进行冷冲击和实现冰晶暂堵转向 压裂,即将冰晶作为一种无机无害可融解返排的暂 堵剂,实现压裂裂缝的暂堵转向,形成多条裂缝或缝 网,以提高煤层气产能(Wilson et al., 1995).20 世 纪 90 年代,在北美页岩气新井压裂和煤层气老井重 复压裂中,曾选用液 N₂ 作为压裂液,并在两个液 N₂ 段塞之间注入少许水,以期在井底高渗通道形成冰 堵(McDaniel et al., 1997; Grundmann et al., 1998; Gupta,2003);近年来,我国液 N₂、液态 CO₂ 压裂/ 辅助压裂工艺也从石油行业(李刚,2008;谢平等, 2009;郑义平等,2011)成功应用到安徽淮北(焦中华 等,2011)、河南焦作(http://www.pbnews.com. cn)、华北油田(http://www.oilhb.com)和陕西韩城 (http://www.zgsyb.com.cn)等煤层气压裂中.这些 现场实践都取得了不同程度的增产效果.低温液 Na 技术在土木、隧道、采矿等方面都有应用,且关于岩 石低温损伤特性的研究也很多,但目前液 N₂等低 温气体产生的冷效应对油气藏压裂改造的积极作用 才刚开始受到人们的关注(蔡承政等,2014).对于液 N₂ 辅助煤层气压裂,人们更多地还是关注其常规机 理,而对于液 N₂等低温气体注入煤层后产生的冷 冲击对煤岩物性的改变以及可能实现的冰晶暂堵转 向压裂机理提及较少,缺乏理论认识和现场验证.本 文对低温气体的冷冲击作用机理展开研究,在分析 评价地层水结冰条件和低温气体热物性的基础上, 通过室内实验和数值模拟等手段验证并预测了液 N₂ 对煤岩和近井煤层的冷冲击作用效果,并进行了 应用潜力分析,可为该工艺的现场应用和推广提供 理论基础.

1 冷冲击作用机理分析

1.1 冷冲击作用机制 压裂过程中,注入液 N₂ 或液态 CO₂ 等低温气

体会对煤层产生冷冲击,可以初步改善近井煤层的 裂缝系统和岩石力学性质,同时为后续冰晶暂堵转 向压裂提供一个冰晶或冰堵,形成和维持一定热力 学稳定时间的低温环境.由于煤岩具有较小的导热 系数和敏感的热胀冷缩特性,当近井煤层短时间内 与大量低温气体接触时,局部温度会迅速而大幅度 降低,导致煤岩基质剧烈收缩,煤岩孔隙度、渗透率 增大.当产生的收缩应力超过煤岩的抗拉强度时,会 在煤层内部形成许多微裂缝,煤岩甚至碎裂成小煤 块,若有煤岩颗粒脱落并填充至裂缝,可以起到支撑 剂的作用,防止裂缝闭合.此外,形成的低温环境还 可以使煤层裂缝中的地层水和注入的活性水结冰或 与注入的低温气体(如低温液态 CO₂)和原生甲烷 形成气体水合物而发生膨胀,在裂缝壁面上产生附 加应力,当附加应力超过煤岩的抗压强度时,还可造 成煤岩的挤压破坏,生成更多微裂缝.地层水结冰或 形成水合物也会堵塞煤层的高渗通道,起到降低压 裂液滤失和压裂转向的作用(Mack,1991;Wilson et al.,1995,1997;Tudor,1996;Wilson,2010).冷冲击 后煤层的抗拉抗压强度以及破裂压力都会有所降 低,有利于压裂裂缝延伸至更深地层.

1.2 地层水结冰条件

冷冲击产生的煤层低温环境应当满足地层水或 注入的活性水迅速结冰或形成冰晶,因此需要确定 地层水和活性水的结冰条件.水结冰主要受温度影 响,纯水在0℃时就可以结冰(图1;http://en.wikipedia.org/wiki/File: Phase_diagram_of_water. svg),但地层水矿化度(主要为 NaCl)以及活性水中 盐类(主要为 KCl)的存在,使得水结冰需要更低的

温度条件(图 2;任韶然,2008),如典型活性水压裂 液(KCl浓度为 1%~2%)的结冰温度约为-1℃, 10% KCl水溶液的冰点温度为-5℃,10% NaCl水 溶液的冰点温度更是低至-7℃.为了实现地层水和 活性水迅速结冰,冷冲击后的煤层环境温度还要具 有一定的过冷度.根据地层水矿化度和活性水浓度 的一般变化范围,至少将煤层温度冷却至-20~-30℃以下,保证 10℃以上的过冷度.

1.3 低温气体热物性

选择热力学性质优良的低温气体,对于保证煤 岩的冷冲击效果、塑造近井煤层低温环境至关重要. 可考虑的低温气体包括液 N_2 、液态 CO_2 和液态 CH_4 ,其基本物性参数及优缺点如表 1 所示,质量热 容及导热系数如图 3 所示.若定义-20 ℃以下至气 体冰点的温度范围为低温区,则 CO_2 的低温区范围 较窄,临界温度(31.1 ℃)在低温区之外,质量热容在 低温区内变化不大; N_2 和 CH_4 的低温区范围较广, 最低温度可至-180~-200 ℃以下,由于 N₂ 和 CH₄的临界温度位于低温区,临界温度附近表现出 较高的质量热容,使得气体在低温条件下具有较强 的吸热能力和冷却效果;在典型煤层破裂压力下 (16 MPa),当温度接近低温区底部时,CH4 的质量 热容最大,N2质量热容与CO2相当.对于气体导热 系数,温度越低,导热系数越大,液态导热系数大于 气态导热系数,3种气体在低温区底部的导热系数 相差不大.假设在理想状态下,低温气体与煤岩之间 的热交换无能量损失,低温气体的吸热量等于煤岩 的放热量,煤岩温度从 30 ℃冷却至-20 ℃,低温气 体温度从沸点上升至-20℃,则计算得到冷却单位 体积煤岩所需要的低温气体质量亦列在表 1,液态 CH₄的用量最小,其次为液 N₂和液态 CO₂.低温液 态气体的气化过程对煤岩降温具有较大贡献,但在 实际压裂过程中,若地表注入的低温液态气体在到 达井底前就已变成气态,气化潜热不发挥作用,则需 要消耗更多的低温气体才能达到预期的冷却效果.

1.4 低温气体的选择

液 N₂ 作为冷冲击介质的主要优势在于其具有 超低温特性,且安全可控,低温区范围较大.低温液 态 CO₂ 注入煤层后,可与煤层气形成竞争吸附,促 进 CH₄ 解析,提高煤层气采收率(唐书恒等,2006); CO₂ 还较易形成固体水合物,起到与冰晶暂堵一样 的效果(Wilson *et al.*,1995).如图 4 所示,虽然地层 水矿化度和活性水浓度对 CO₂ 水合物的形成条件 具有一定影响,但当压力在2~5 MPa以上时,温度

表1 低温气体热力学性质

]	Гa	bl	le	1	Summary of	of t	hermal	properties	of	cryogenic	gases
				-				Properties.	~ ~	, -, -,	0

	· · · · · · · · · · · · · · · · · · ·		
低温气体	N_2	$\rm CO_2$	CH_4
分子量	28.013	44.010	16.040
临界温度(℃)	-146.9	31.1	-82.6
临界压力(MPa)	3.396	7.372	4.599
三相点温度(℃)	-210.00	-56.50	-182.46
三相点压力(MPa)	0.012 5	0.518 0	0.011 7
沸点(℃)	-195.8(0.101 MPa)	-78.4(0.101 MPa) ^a	-161.5(0.101 MPa)
冰点(℃)	-210.00(0.012 5 MPa)	-56.50(0.518 0 MPa)	-182.46(0.011 7 MPa)
液态密度(kg/m ³)	810(−196 °C,0.10 MPa)	1 154(−50 °C,0.68 MPa)	423(-162 °C,0.10 MPa)
质量热容(kJ/(kg・℃))	$1.03^{b} \sim 1.72^{c}$	$1.09^{b} \sim 2.02^{c}$	$2.21^{b} \sim 3.92^{c}$
导热系数(W/(m・℃))	$0.025 5^{b} \sim 0.056 9^{c}$	$0.016 9^{b} \sim 0.108 1^{c}$	$0.033~7^{b} \sim 0.092~5^{c}$
气化潜热(kJ/kg)	198.6(5.56 kJ/mol)	$230.5 \sim 339.6(0 \sim -50 \ \text{°C})$	510.9(0.10 MPa)
低温气体用量 ^d (kg/m ³)	$193.22 \sim 351.40$	265.49~935.74	90.18~196.25
主要优缺点	超低温、安全可控、低温区范围 较大	置换甲烷、易形成水合物、低温 区范围较小	超低温、可形成水合物、易燃爆、 低温区范围较大

注:a.CO2的沸点是指干冰升华为气体的温度;b.0.1~1.0 MPa下平均质量热容和导热系数;c.16 MPa下平均质量热容和导热系数;d.前者为考虑气化潜热计算得到的结果,后者为不考虑气化潜热计算得到的结果;据张家荣,1987;黄建彬,2002.

图 3 低温气体的质量热容和导热系数

Fig.3 Heat capacity and thermal conductivity of cryogenic gases a.N₂ 质量热容;b.CO₂ 质量热容;c.CH₄ 质量热容;d.N₂ 导热系数;e.CO₂ 导热系数;f.CH₄ 导热系数;据 Aspen Hysys(2006)

Fig.4 CO₂ hydrate equilibrium curves a.NaCl 水溶液; b.KCl 水溶液; 据任韶然(2008)

只需在 0~10 ℃就能形成水合物, 而地层水和活性 水的结冰温度都需要达到 0 ℃以下.因此, 虽然液态 CO₂ 的低温区范围较窄, 冷冲击效果不理想, 但其 在高压注入的压裂过程中, 0 ℃以上就可形成固体 水合物的优势, 在一定程度上弥补了其最低温度不 如液 N₂ 和液态 CH₄ 的劣势. 对于液态 CH₄, 虽然预 期冷冲击效果较好, 还可形成水合物, 但从安全性考 虑, 甲烷属易燃易爆气体, 不适合现场使用. 通过以 上分析, 并鉴于现场应用情况, 可优先考虑液 N₂ 作 为冷冲击介质,其次为液态 CO2.

2 液 N₂ 对煤岩冷冲击效果实验验证

2.1 实验原理及步骤

为验证低温气体对煤岩的冷冲击效果,选用液 N₂ 对煤岩进行冷冲击实验.利用声波对煤岩孔隙和 裂缝的响应原理,根据波速和波幅的变化,分析判断 冷冲击前后煤岩强度和裂缝系统的变化.我国煤层

表 2 冷冲击前后煤样纵波波速变化

Table 2 Velocity change of P-wave in coal samples before and after cold shock

相样诧早	干燥煤样声速(m/s)		饱和水煤样声速(m/s)			声速衰	抗压强度下降	弹性模量下降	煤样取心
冰牛 细 与	冷冲击前	冷冲击后	冷冲击前	冷冲击后	干燥处理	减率(%)	幅度(%)	幅度(%)	方向
A1	1 739	1 545	2 509	1 741	1 580	9.14	14.70	10.53	平行于割理
A2	$2 \ 017$	1 804	2 312	1 888	1 833	9.12	16.81	12.09	平行于割理
A3	1 886	1773	2 328	$1\ 662$	1 693	10.25	17.58	12.66	垂直于割理
B1	$1 \ 364$	1 184	$1\ 471$	$1\ 164$	953	30.13	33.70	25.00	垂直于割理
B2	1 173	980	1 301	998	874	25.49	25.84	18.88	平行于割理
B3	$1\ 466$	1 289	1 572	1 298	$1 \ 089$	25.72	31.41	23.19	平行于割理

气产层主要为中高阶煤质,因此实验过程中采用2 种煤样,一种煤样取自沁水盆地东南部樊庄区块的 高阶无烟煤,即煤样 A1~A3(煤岩孔隙度小于 5%, 渗透率为 0.01×10⁻¹⁵~5.00×10⁻¹⁵ m²,弹性模量 为 3~4 GPa, 泊松比为 0.3~0.5), 另一种煤样取自 鄂尔多斯盆地内蒙古包头某煤矿的中阶烟煤(瘦 煤),即煤样 B1~B3(实验测得同一批煤样的孔隙度 为1.54%~8.22%,渗透率为0.15×10⁻¹⁵~6.18× 10⁻¹⁵ m², 弹性模量为 1.78~1.92 GPa, 泊松比为 0.40~0.45).将这些煤样加工成尺寸为 φ25 mm× 50 mm 的圆柱体,两端磨平,并在 45 ℃下烘干 24 h 备用.实验所用声波测试仪为扬州广陵专用超声设 备厂生产的 HF-F 智能超声波 PS 综合测试仪,该仪 器可以测量通过岩样两端面的纵波,并可对其首波 振幅衰减进行量化记录.具体实验步骤为:①利用超 声波测试仪测量干燥煤样的波速和波幅;②将煤样 在液 N₂ 中浸泡 10 min,煤样与液 N₂ 接触表面不再 有大量气泡产生,表明煤样已经冷却均匀,取出恢复 至常温后测量波速和波幅;③将煤样抽真空饱和水 后测量波速和波幅;④将饱和水煤样在液 N2 中浸 泡10 min,取出恢复常温后测量波速和波幅;⑤干燥 煤样,并再次测量波速和波幅.

2.2 实验结果及讨论

实验过程中测得通过煤样纵波波速的变化如表 2 所示.对比冷冲击前后煤样波速变化可知,煤样在 干燥条件及饱和水条件下的波速都有所降低,且后 者降低幅度普遍大于前者.对于煤样 A1~A3,两次 冷冲击后波速最终降低了 9.12%~10.25%,煤样 B1~B3 最终降低了 25.49%~30.13%.根据 Wyllie 公式 $1/V_p = (1-\varphi)/V_m + \varphi/V_f (V_p 为岩石 P 波速$ $度,m/s;V_m 为岩石骨架 P 波速度,m/s;V_f 为孔隙$ 流体 P 波速度,m/s),Wyllie*et al*.(1956,1958)分析认为,冷冲击后煤岩孔隙度增大,饱和水结冰膨胀对于增大煤岩孔隙体积有积极作用,声波在孔隙流体中的传播路径比例增加,而声波在 N₂、空气和水

图 6 试样 B1(a)和 B3(b)冷冲击前后效果对比 Fig.6 Comparison of cold shock performance between samples B1 (a) and B3 (b)

等孔隙流体中的传播速度比在煤岩基质中慢,因此 导致煤样波速降低,且不同类型煤样的降低幅度不 同,中阶烟煤大干高阶无烟煤,主要与煤岩物性及结 晶水含量有关.根据杨永杰等(2006)通过实验建立 的煤岩纵波波速与单轴抗压强度和弹性模量的关系 式 $\sigma_{cs} = 2.590 \ 7 e^{(0.001V_p)}$ 及 $E_{coal} = 625.66 e^{(0.000\ 7V_p)}$,笔 者计算得到冷冲击后煤样 A1~A3 的抗压强度降低 了 14.70%~17.58%,弹性模量降低了 10.53%~ 12.66%, 而煤样 B1 ~ B3 的抗压强度降低了 25.84%~33.70%, 弹性模量降低了 18.88%~ 25.00%,说明中阶烟煤比高阶无烟煤更容易受到液 N₂ 冷冲击作用的影响.而对于同一煤类不同煤样对 液 N₂ 冷冲击响应的差别,可能与煤样的物性及钻 取方向有关.由于煤岩存在割理,不同的取心方向造 成煤样沿轴线方向上的岩石物性不同,对液 N₂ 冷 冲击产生的响应也不同.从测试结果来看,垂直于割 理方向取心的煤样对冷冲击的响应要稍强于平行于 割理方向取心的煤样(如冷冲击作用后,垂直割理取 心煤样的声波衰减率和岩石力学性能下降幅度更 大),说明冷冲击作用将诱导煤岩在垂直割理方向上 产生更多的热应力裂缝.此外,应当注意,压裂裂缝 主要沿着最大主应力方向延伸(一般与割理方向一 致),因此,掌握平行于割理方向煤样的冷冲击响应

程度对于评价煤层气压裂更有意义.

如图 5,以煤样 A1 为例,可以观察到冷冲击前后 纵波波幅明显减小.根据声波对裂缝的响应原理,声 波经过裂缝时会在裂缝表面发生反射、折射以及散 射,声波能量发生耗散,波幅大幅度衰减,裂缝越多, 能量耗散越多,波幅衰减越厉害(边瑞雪等,1998;李 同林等,2000).因此可以判断,冷冲击作用后的煤岩 内部产生了大量热应力裂缝,而且在液 N₂ 浸泡过程 中,可以明显听到煤岩内部裂缝开启和延伸时发出的 噼啪声,同时还可以观察到煤屑颗粒从煤样表面脱 落,以及新裂缝在煤样表面的形成(图 6).由于沿天然 裂缝方向,冷冲击产生的收缩应力大于煤岩的抗拉强 度,导致煤样破裂,产生的新裂缝主要沿垂直于天然 裂缝方向开启,虽然在垂直于天然裂缝方向煤样也承 受收缩应力的作用,但由于天然裂缝吸收了大部分形 变,因此观察不到新裂缝的产生.

3 液 N₂ 对近井煤层冷冲击效果预测

3.1 数值模拟模型的建立

为评价液 N₂ 注入对近井煤层的冷冲击效果,根据沁水盆地东南部樊庄区块 3 # 煤层条件,采用 CMG 油藏数值模拟软件中的 STARS 热采模块建立双孔

模拟参数	取值	模拟参数	取值
煤层埋深(m)	550	煤岩热容(J/(m ³ ・℃))	1.75×106^{d}
煤层厚度(m)	5	煤岩导热系数(J/(m・min・℃))	16.8 ^e
煤层温度(℃)	30	盖底层热容(J/(m ³ ・℃))	$2.26 imes 10^{6}$ f
煤层原始压力(MPa)	4	盖底层导热系数(J/(m・min・℃))	180 ^g
基质孔隙度(%)	2.66ª	N₂ 热容(J/(mol・℃))	C_{N_2} = 36.302-0.047 6t+0.002 8t ² +1.68×10 ⁻⁵ t ³ , 其中 t 为温度,℃
割理孔隙度(%)	0.84ª	N₂ 导热系数(J/(m・min・℃))	3.414
基质渗透率(10 ⁻¹⁵ m ²)	0.001	模拟地层半径(m)	186
割理渗透率(10 ⁻¹⁵ m ²)	0.5,1*,5	井眼半径(m)	0.108 ^h
割理间距(m)	$2.5 imes 10^{-3}$	注入速度(Sm ³ /min) ^j	500,1 000 * ,2 000
煤岩密度(kg/m ³)	1 550 ^b	注入温度(℃)	-60, -80*, -100
煤岩孔隙压缩系数(kPa ⁻¹)	$6 \times 10^{-5 c}$	网格划分	$120 \times 1 \times 1$

表 3 液 N₂ 冷冲击煤岩数值模拟模型参数设置

Table 3 Parameter setting of numerical simulation model for cold shock by liquid nitrogen

注:a.设煤岩总孔隙度 3.5%,割理压缩比率 β (割理孔隙度/总孔隙度)一般为 0.11~0.37,取平均值为 0.24;b.煤岩密度一般为 1.136~ 1.783 t/m³;c.煤岩压缩系数一般为 1.8×10⁻⁴~2.2×10⁻³ MPa⁻¹,设孔隙度为 3.5%,则孔隙压缩系数为 5.1×10⁻³~ 63.0×10⁻³ MPa⁻¹,取 60.0×10⁻³ MPa⁻¹;d.煤岩质量热容一般随温度增大而增大,为 1.00~1.26 kJ/(kg \cdot C),取 1.13 kJ/(kg \cdot C);e.煤岩导热率为 0.173~1.335 W/ (m \cdot C),平均值为 0.220~0.330 W/(m \cdot C),取 0.280 W/(m \cdot C);f.砂岩质量热容一般为 0.837~1.315 kJ/(kg \cdot C),砂岩密度为 1.2~3.0 t/m³, 取平均值得到 2.26×10⁶ J/(m³ \cdot C);g.砂岩导热系数为 1.852~4.133 W/(m \cdot C),取平均值为 3.000 W/(m \cdot C);h.3-1/2"油管,5-1/2"套管,8-1/ 2"并眼;j.标况下 N₂ 密度为 1.25 kg/m³,根据现场经验,国外单并液 N₂ 注入速度一般为 0.5~2.0 m³/min(=324~1 296 Sm³/min),注入总量一般 为 20~55 m³(McDaniel *et al.*,1997;Grundmann *et al.*,1998),国内液 N₂ 注入总量为 73 m³(http://www.zgsyb.com.cn;http://www.oilhb.com),液 态 CO₂ 为 77 m³(焦中华等,2011).带 * 数值为基本模型参数设置.

图 7 近井煤层温度场分布

Fig.7 Temperature distribution in coalbed around wellbore after cold shock a.不同模拟时间(40 min 后停注);b.不同注入速度(40 min 时);c.不同注入温度(40 min 时);d.不同割理渗透率(40 min 时)

隙定压边界地质模型,进行煤层注液 N₂ 的数值模拟. 樊庄区块 3 # 煤层属于低孔低渗高阶煤储层,埋深为 $300 \sim 750 \text{ m}$,厚度为 4 $\sim 7 \text{ m}$,孔隙度小于 5%,渗透率 为 $0.01 \times 10^{-15} \sim 5.00 \times 10^{-15} \text{ m}^2$,含气量为 17.10 \sim 25.29 m³/t,割理密度为 15 ~ 25 条/5 cm.

模型参数设置如表 3 所示,假设煤层均质且为 圆柱形,中间一口注入井,井底流压无限制,N₂ 注入 速度为 500~2 000 Sm³/min(相当于 0.75~3 m³ 液 N₂/min),注入温度为-100~-60 °C(受模拟器模 拟温度限制,N₂ 最低注入温度为-100 °C),注入时 间为 40 min,之后关井 10 h(共模拟 640 min),N₂ 总 注入量为 25~100 t,约合液 N₂ 为 30~120 m³;考虑 煤层 与 盖底 层 间 的 热 交 换,N₂ 导 热 系 数 取 0.056 9 W/(m · °C)(16 MPa),质量热容采用关于 温度 t 的函数计算.为扩大近井煤层温降范围,现场 在注入液 N₂ 之前,一般先注入一定量的常温 N₂,将 近井煤层中的地层水赶至煤层深部,因此直接设置 初始孔隙流体为 N₂,以简化模拟过程.

3.2 近井煤层温度场分布

近井煤层注入低温 N₂ 后的温度场分布如图 7 所示.由图 7a 可知(模拟条件:割理渗透率为 1× 10⁻¹⁵ m²、注入速度为 1 000 Sm³/min、注入温度为 -80 ℃),低温 N₂ 注入后可在近井煤层迅速形成一 个温降漏斗,低于-20 ℃的区域,可以达到地层水 或活性水迅速结冰并形成冰堵的温度条件;随着 N₂ 注入,低温区半径不断扩大,注入结束时(40 min 时)达到 3.7 m;关井后,煤层温度逐渐上升,10 h后 (640 min 时)井底温度从-80 ℃上升至-50 ℃,低 温区半径仅减小至 3.3 m,说明冷冲击后近井煤层 能够在一定时间内保持较低的温度,可以为后续实 施冰晶暂堵转向压裂工艺提供足够长的时间窗口. 在其他条件保持不变的情况下,提高 N₂ 注入速度 可以有效扩大冷冲击范围,当注入速度为 2000 Sm³/min时,低温区半径可达 5.1 m(图 7b).注 入温度以及煤岩割理渗透率对低温区的范围影响不 大(图 7c,7d).通过以上分析笔者认为,在低温 N₂ 高压快速注入过程中,N₂ 注入总量(即相同注入时 间下的注入速度)是影响冷冲击后近井煤层低温区 范围的主要因素,注入温度是影响低温区达到最低 温度的主要因素.

3.3 近井煤层冷冲击效果

为分析液 N₂ 对近井煤层的冷冲击效果,需建 立温度与煤岩物性的关系.根据煤层气地质学知识 (傅雪海等,2007),温度下降产生的煤岩基质收缩应 力 $\sigma_{\text{thermal}} = \alpha_{\text{thermal}} E_{\text{coal}} \Delta T/(1-\nu)$, σ_{thermal} 为温降产 生的收缩应力, MPa; ν 为煤岩泊松比; ΔT 为温 降, \mathbb{C} , α_{thermal} 为煤岩线性膨胀系数, \mathbb{C}^{-1} ; E_{coal} 为煤 岩的弹性模量, MPa.割理中的地层水结冰产生的膨 胀应力 $\sigma_{\text{ice}} = \alpha_{\text{ice}} E_{\text{ice}} \Delta T/(1-\nu) = 1/3(\rho_{\text{water}}/\rho_{\text{ice}} - 1) E_{\text{ice}}/(1-\nu)$,则冷冲击后煤岩的有效应力变化为 $\Delta \sigma_{\text{eff}} = \sigma_{\text{thermal}} + \sigma_{\text{ice}}$.有效应力的变化将引起煤岩在 主应力方向的应变,为 $\varepsilon = (1-\nu)\Delta \sigma_{\text{eff}}/E_{\text{coal}}$, σ_{ice} 为

671

结冰产生的膨胀应力, MPa; $\triangle \sigma_{\text{eff}}$ 为冷冲击产生的 有效应力变化, MPa; α_{ice}为冰线性膨胀系数, ℃⁻¹; 冰体积膨胀系数一般为线性膨胀系数的3倍,因此 $\alpha_{ice} \triangle T \approx 1/3 (\rho_{water} / \rho_{ice} - 1); E_{ice}$ 为冰的弹性模量, MPa; ρ_{water} 为水密度,kg/m³; ρ_{ire} 为冰密度,kg/m³; ϵ 为有效应力变化引起的主应力方向应变,无量纲.由 于主应力方向的应变主要由煤岩割理和基质孔隙来 承担,因此冷冲击后煤岩的总孔隙度 $\varphi \approx \varphi_0 + 2\varepsilon$,割 理缝宽增大 $\triangle a = 50\epsilon/n \times \beta$, n 为割理条数, 条/5 cm;β为割理压缩比率,割理孔隙度/总孔隙 度,煤岩压缩主要由割理和基质孔隙承担.冷冲击后 煤岩的渗透率可根据 Levine (1996)的经验公式 $K_1 = 1.013 \times 10^9 (a_a + \triangle a)^3 / (12b\tau)$ 来计算,或采 用经典的 Kozeny-Carman 公式来计算,即 $K_2 = K_o (\varphi/\varphi_o)^3 [(1-\varphi_o)/(1-\varphi)]^2$ (Xu and Yu, 2008), φ 。为煤岩原始总孔隙度; φ 为冷冲击后煤岩 总孔隙度; K_{\circ} 为煤岩原始渗透率, 10^{-12} m²;K 为冷 冲击后煤岩渗透率,10⁻¹² m²;a。为原始割理裂缝宽 度,mm;△a 为冷冲击后割理缝宽增大值,mm;b 为 割理间距,mm;τ为曲折系数.进而可以得到冷冲击 后煤岩孔隙度和渗透率的增大倍数 $M_{\omega} = \varphi/\varphi_{\omega}$ 和 $M_{\rm K1} = K_1/K_{\circ}$ 或 $M_{\rm K2} = K_2/K_{\circ}$, M_{\circ} 为煤岩孔隙度 增大倍数;M_κ为煤岩渗透率增大倍数.若基质收缩 产生的净拉应力 $\sigma_{\text{net-pull}} = \sigma_{\text{thermal}} - \sigma_{\text{res}} - \sigma_{\text{ts}} > 0, 则可$ 能造成煤岩的拉伸破坏,若结冰膨胀产生的净压应 力 $\sigma_{\text{net-compress}} = \sigma_{\text{ice}} + \sigma_{\text{res}} - \sigma_{\text{cs}} > 0, 则煤岩可能遭受挤$ 压破坏.σ_{net pull}为基质收缩产生的净拉应力, MPa; $\sigma_{net-compress}$ 为冰膨胀产生的净压应力, MPa; σ_{res} 为煤层 原始有效应力, MPa; σ_{ts} 为煤岩抗拉强度, MPa; σ_{cs} 为煤岩抗压强度,MPa.

假设煤岩 $\alpha_{thermal} = 3.87 \times 10^{-5} \mathbb{C}^{-1}$ (Kelemen and Kwiatek, 2009), $\rho_{water} = 1$ 000 kg/m³, $\rho_{ice} =$ 900 kg/m³, $E_{coal} = 3.65 \times 10^3$ MPa, $E_{ice} = 660$ MPa, $\nu = 0.3, n = 20$ 条/5 cm, b = 2.5 mm, $\beta = 0.24, \varphi_o =$ $3.5\%, K_o = 1 \times 10^{-15}$ m², $a_o = 0.01$ mm, $\tau = 34$, $\sigma_{res} = 8.6$ MPa, $\sigma_{ts} = 2$ MPa, $\sigma_{cs} = 39$ MPa, 基于注入 温度 - 100 °C、注入速度 1 000 Sm³/min、注入时间 40 min 后近井煤层温度场, 计算得到近井煤层各应 力及孔隙度、渗透率变化分别如图 8 和图 9 所示.温 度下降导致的煤岩基质收缩应力($\sigma_{thermal}$)作用范围 在近井周围 5.5 m 以内,大小在 0~26.23 MPa,产生 的净拉应力($\sigma_{net-pull}$)最高可达 15.63 MPa,近井周围 3.68 m 以内的煤岩($\sigma_{net-pull} > 0$)可能会产生拉伸破 坏.近井周围 4.18 m 以内的煤层温度小于 0 °C,若此

Fig.9 Porosity and permeability change in coalbed around wellbore

区域内的地层水或注入的活性水结冰,将产生近 35 MPa的膨胀应力(σ_{ice})和4.6 MPa的净压应力 ($\sigma_{net-compress}$),可能导致煤岩的挤压破坏.在冷冲击作用 下,近井煤层的孔隙度将增大为原来的1.45~1.67 倍,渗透率增大为原来的3.16~4.89 倍.Levine(1996) 公式和 Kozeny-Carman 公式(Xu and Yu,2008)计算 得到的 M_{K1} 和 M_{K2} 几乎完全重合,证明了两公式在计 算煤岩渗透率方面都具有较好的可靠性.通过以上分 析,笔者认为近井煤层遭受液 N₂ 冷冲击后,完全可以 达到拉伸和挤压破坏的力学条件,并使煤岩孔隙度和 渗透率增大一定倍数,这些对改善煤层气压裂效果有 积极影响.

4 液 N₂ 冷冲击机理应用潜力分析

4.1 煤层适用条件分析

液 N₂ 冷冲击机理能否发挥作用对煤层条件具 有一定要求,不同煤体结构和地应力下的冷冲击效 果不同.按照煤岩破坏程度由小到大,分为原生煤、 碎裂煤、碎粉煤和糜棱煤 4 类煤体结构(苏现波等, 2002).原生煤和碎裂煤受构造运动破坏程度小,原 生层理和结构形态保存完整,煤体呈现为较大的块体,因此在冷冲击作用下煤岩产生拉伸破坏时,会形成许多新的微裂缝.而碎粉煤及糜棱煤的原生结构和层理破坏严重,煤岩已碎裂成很小的煤块或煤粉,因此对这类煤层进行冷冲击效果将不明显.

在对实际煤层进行冷冲击时,由于受到地应力 作用,尤其是在地应力较大的情况下,可能存在以下 问题:(1)在围压作用下,煤岩的抗压强度会增大3~ 8倍(杨永杰等,2006),地层水结冰膨胀可能不会造 成煤岩的挤压破坏(即使冷冲击作用后煤岩抗压强 度有所降低);(2)冷冲击产生的煤岩微裂缝,可能会 在地应力作用下闭合.但是值得注意的是,如果冷冲 击导致部分煤岩颗粒脱落,并有效填充在裂缝中,可 在一定程度上防止裂缝闭合,并保持一定的渗流能 力;即使微裂缝闭合,煤岩的力学性质也已发生变 化,破裂强度会有所降低,仍有利于压裂工艺的实 施.由于煤岩的抗拉强度远小于抗压强度,因此利用 冷冲击产生煤岩的局部拉伸破坏更容易实现.

煤层中产生热应力裂缝的条件与煤层的有效应 力、温度变化和煤岩物性有关.假设煤层的有效应力 梯度为 0.018 MPa/m,温度梯度为 0.027 ℃/m,煤 岩物性如 3.3 节,则将不同深度处煤层冷却至某一 温度所产生的净拉应力(σ_{netpul})如图 10 所示.将煤 层温度冷却至一30 ℃,埋深在 500 m 内的煤层满足 形成微裂缝的应力条件,若使 1 500 m 深处的煤层 也产生拉伸破坏,则需要将煤层温度冷却至 一100 ℃以下.因此,煤层埋藏越深,冷冲击产生微 裂缝所需要的冷却温度越低,而液 N₂ 在注入过程 中不可避免的会与周围地层进行热交换,到达井底 时温度会有所上升,这样就限定了进行冷冲击的煤 层埋藏不能太深.通过以上分析,笔者认为适合液 N₂ 冷冲击的煤层主要是中浅部的原生煤和碎裂煤, 冷冲击效果由具体的储层条件和注入工艺决定.

4.2 冷冲击工艺初步设想

利用液 N₂ 对近井煤层进行冷冲击,改善煤岩 物性以及形成低温区,为改进目前常用的煤层气压 裂工艺提供了契机,即可实现冰晶暂堵,用于未压裂 或井底存在天然裂缝的煤层气井的初次压裂,以及 已压裂但产能较低的煤层气井的重复压裂.具体步 骤如下:(1)首先注入常温 N₂ 将井筒和近井煤层中 的地层水驱至较远地带,避免井筒及井底结冰,以便 后续注入液 N₂ 能够到达煤层深处;(2)然后注入液 N₂ 对近井煤层进行冷冲击改善煤岩物性,或者进行 小型压裂,并形成低温煤层环境;(3)接着注入常温

N₂并伴注或喷射一定量活性水,活性水随着常温 N₂进入近井煤层孔隙、天然裂缝或人工裂缝等优势 通道中,在一定深度处遇冷形成冰晶并产生暂堵; (4)随后注入压裂液(如常规水基压裂液或者液 N₂)、支撑剂等进行初次或重复压裂,形成新裂缝; (5)压裂完成后,随着近井煤层温度回升,冰晶融化, 压裂液在高压 N₂的膨胀力作用下顺利返排.需要注 意的是,注入的液 N₂要足够多,以确保近井煤层形 成的低温区能使孔隙中的地层水和活性水迅速结冰 并产生暂堵,并在后续压裂液注入过程中保持较长 时间的稳定性.此外,为保证水基压裂液和支撑剂的 顺利注入,可在压裂液注入之前伴注一个防冻液段 塞(如乙二醇),并向油套环空中持续注入常温 N₂, 以防止压裂液在井筒以及井底附近结冰.

为验证液 N₂ 辅助煤层气压裂过程中的冷冲击 作用机理,需制定相应的现场监测方案,主要包括井 底温度监测、微地震监测、返排物观察等.通过井底 温度监测,可以获得液 N₂ 到达煤层的实际温度,判 断液 N₂ 是否有足够低的温度对煤层进行冷冲击, 以及获得煤层维持低温的时间;通过微地震监测,可 以识别煤层中热应力裂缝的开启以及发展方向,确 定冷冲击的有效范围;通过观察返排物,如煤粉颗粒 的大小、含量以及是否夹杂冰晶等,可以判断煤层中 冷冲击作用是否产生煤岩热应力破坏及地下孔隙中 的结冰状态等.

5 结论

(1)液 N₂的超低温特性具有理想的冷冲击效 果,虽然液态 CO₂ 低温区范围较窄,但较易形成水 合物,煤层温度在0℃左右甚至更高时,同样有望实 现冰晶暂堵.当煤层温度降至-30~-20℃,可保证煤层内冰晶或冰堵的快速形成以及稳定.

(2)实验结果表明,液 N₂的冷冲击作用可以明 显改善煤岩的裂缝系统,产生垂直于天然裂缝方向 的微裂缝,并导致煤岩颗粒脱落以及强度降低,煤岩 的抗压强度可降低 14.0%以上(14.7%~ 33.7%), 弹性模量降低 10.0%以上(10.5%~25.0%).

(3)冷冲击效果预测结果表明,对于沁水盆地樊 庄区块3#煤层,当液N₂注入速度在0.75~ 3.00 m³/min,注入总量在30~120 m³时,可对近井 周围3~5m内的煤层起到良好降温效果,且低温稳 定时间较长,煤岩基质收缩和地层水结冰膨胀可导 致煤岩孔隙度平均增大1.5倍,渗透率增大4倍,近 井煤岩可能遭受拉伸和挤压破坏.

(4)在液 N₂ 或液 N₂ 辅助煤层气压裂过程中,应 加强对冷冲击效果的验证,如热应力裂缝的识别和监 测等.利用液 N₂ 的超低温特性对近井煤层进行冷冲 击和冰晶暂堵转向压裂,可作为煤层气和页岩气压裂 工艺的改革方向,应当给予足够重视和充分利用.

References

- Aspen Hysys, M.B., 2006. Optimize Hydrocarbon Processes. Aspen Technology, Inc., Boston.
- Bian, R.X., Deng, S.G., Fan, Y.R., et al., 1998. Relation between Acoustic Amplitude and Fracture Properties. *Well Logging Technology*, 22(5): 327-331 (in Chinese with English abstract).
- Cai, B., Wang, X., Jiang, T.X., et al., 2007. Application of Hydraulic CO₂ Fracturing Technique in Coalbed Gas Fracturing. *Natural Gas Technology*, 1(5): 40-42(in Chinese with English abstract).
- Cai, C. Z., Li, G. S., Huang, Z. W., et al., 2014. Experiment Study of Rock Porous Structure Damage under Cryogenic Nitrogen Freezing. *Rock and Soil Mechanics*, 35 (4):965-971 (in Chinese with English abstract).
- Fu, X. H., Qin, Y., Wei, C. T., 2007. Coalbed Methane Geology.China University of Mining and Technology Press, Xuzhou (in Chinese).
- Grundmann, S.R., Rodvelt, G.D., Dial, G.A., 1998. Cryogenic Nitrogen as a Hydraulic Fracturing Fluid in the Devonian Shale. SPE 51067, SPE Eastern Regional Meeting, Pittsburgh.doi:10.2118/51067-MS
- Gupta, D. V. S., 2003. Field Application of Unconventional Foam Technology: Extension of Liquid CO₂ Technology.SPE 84119, SPE Annual Technical Conference and Exhibition, Denver.doi:10.2118/84119-MS

- Huang, J. B., 2002. Manual of Industrial Gases. Chemical Industry Press, Beijing (in Chinese).
- Jiao, Z. H., Ni, X. M., Jia, B., 2011. Application of Carbon Dioxide Energy Accumulation Fracturing to Coal Bed Methane Vertical Well. *Coal Engineering*, (2):48-50 (in Chinese with English abstract).
- Kelemen, S. R., Kwiatek, L. M., 2009. Physical Properties of Selected Block Argonne Premium Bituminous Coal Related to CO₂, CH₄, and N₂ Adsorption. *International Journal of Coal Geology*, 77(2):2-9. doi:10.1016/j. coal.2008.05.020
- Levine, J. R., 1996. Model Study of the Influence of Matrix Shrinkage on Absolute Permeability of Coalbed Reservoirs. Geological Society Special Publication, 109(1): 197-212.doi:10.1144/GSL.SP.1996.109.01.14
- Li, G., 2008. Optimized Research and Application on Liquid Nitrogen Amount and Mixing Gas Method. *Journal of Mineralogy and Petrology*, 28(2):118-120 (in Chinese with English abstract).
- Li, T. L., Wu, X. M., Tu, H. Z., 2000. The Measurement and Analysis and Application on the Mechanical Property of Coal Seam. *Geology and Prospecting*, 36(2):85-88 (in Chinese with English abstract).
- Mack, D. J., 1991. Fracturing Process Using Carbon Dioxide and Nitrogen. US Patent 5069283.
- McDaniel, B. W., Grundmann, S. R., Kendrick, W. D., et al., 1997.Field Applications of Cryogenic Nitrogen as a Hydraulic Fracturing Fluid.SPE 38623,SPE Annual Technical Conference and Exhibition, San Antoniodoi: 10. 2523/38623-MS
- Ren,S.R.,2008.Software of SD Gas Hydrate Prediction and Analysis (SDSHY) (Dissertation).China University of Petroleum,Dongying (in Chinese).
- Sun, Z. D., Jia, C. Z., Li, X. F., et al., 2011. Unconventional Oil & Gas Exploration and Development.Petroleum Industry Press, Beijing (in Chinese).
- Su, X.B., Feng, Y.L., Chen, J.F., 2002. The Classification of Fractures in Coal.Coal Geology & Exploration, 30(4): 21-24 (in Chinese with English abstract).
- Tang, S.H., Ma, C.X., Ye, J.P., et al., 2006. A Modeling Experiment of Enhancing Coalbed Methane Recovery by Carbon Dioxide Injection. Journal of China University of Mining & Technology, 35(5):607-611,616 (in Chinese with English abstract).
- Tudor, R., 1996. Nitrogen/Carbon Dioxide Combination Fracture Treatment. US Patent 5558160.
- Wilson, D.R., 2010. Method of Stimulating a Coalbed Methane Well. US Patent 7757770.

- Wilson, D.R., Siebert, R. M., Lively, P., 1995. Cryogenic Coal Bed Gas Well Stimulation Method. US Patent 5464061.
- Wilson, D.R., Siebert, R.M., Lively, P., 1997. Cryogenic Well Stimulation Method. US Patent 5653287.
- Wyllie, M., Gregory, A., Gardner, G., 1956. Elastic Wave Velocities in Heterogeneous and Porous Media. *Geophysics*, 21(1):41-70.doi:10.1190/1.1438217
- Wyllie, M., Gregory, A., Gardner, G., 1958. An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media. *Geophysics*, 23(3):459-493. doi: 10.1190/1.1438493
- Xie, P., Hou, G.D., Han, J.J., 2009. Application of CO₂ Fracturing Technology in Sulige Gas Field. *Block Oil & Gas Field*, 16 (5):104-106 (in Chinese with English abstract).
- Xu, P., Yu, B. M., 2008. Developing a New Form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry. Advances in Water Resources, 31: 74 - 81. doi: 10.1016/j. advwatres.2007.06.003
- Yang, Y. J., Song, Y., Chen, S. J., et al., 2006. Experimental Study on Strength Discreteness and Triaxial Compression of Coal.*Rock and Soil Mechanics*, 27(10):1763-1766 (in Chinese with English abstract).
- Zhang, J. R., 1987. Manual of Thermophysical Properties of Material Commonly Used in Engineering. New Era Publishing House, Beijing (in Chinese).
- Zheng, Y.P., Ran, Z. H., Qiao, D. Y., et al., 2011. Application of Aqueous Foam Fracturing Liquid with Liquid Nitrogen Injection Technology in Su 77 Well Field. *Xinjiang Oil&*. *Gas*,7(2):59-62 (in Chinese with English abstract).

附中文参考文献

边瑞雪,邓少贵,范宜仁,等,1998.地层纵横波幅度与裂缝倾

角及张开度的关系.测井技术,22(5):327-331.

- 才博,王欣,蒋廷学,等,2007.液态 CO₂ 压裂技术在煤层气压 裂中的应用.天然气技术,1(5):40-42.
- 蔡承政,李根生,黄中伟,等,2014.液 N₂ 冻结条件下岩石孔 隙结构损伤试验研究.岩土力学,35(4):965-971.
- 傅雪海,秦勇,韦重韬,2007.煤层气地质学.徐州:中国矿业大 学出版社.
- 黄建彬,2002.工业气体手册.北京:化学工业出版社.
- 焦中华, 倪小明, 贾炳, 2011. CO₂ 增能压裂在煤层气垂直井 中的应用.煤炭工程, (2):48-50.
- 李刚,2008.川西致密气藏压裂液 N₂助排剂优化研究及应 用.矿物岩石,28(2):118-120.
- 李同林,乌效鸣,屠厚泽,2000.煤岩力学性质测试分析与应 用.地质与勘探,36(2):85-88.
- 任韶然,2008.SD 气体水合物预测和分析软件(SDSHY)(硕 士学位论文).东营:中国石油大学.
- 孙赞东,贾承造,李相方,等,2011.非常规油气勘探与开发.北 京:石油工业出版社.
- 苏现波,冯艳丽,陈江峰,2002.煤中裂隙的分类.煤田地质与 勘探,30(4):21-24.
- 唐书恒,马彩霞,叶建平,等,2006.注二氧化碳提高煤层甲烷 采收率的实验模拟.中国矿业大学学报,35(5):607-611,616.
- 谢平,侯光东,韩静静,2009.CO2 压裂技术在苏里格气田的 应用.断块油气田,16(5):104-106.
- 杨永杰,宋扬,陈绍杰,等,2006.煤岩强度离散性及三轴压缩 试验研究.岩土力学,27(10):1763-1766.
- 张家荣,1987.工程常用物质的热物理性质手册.北京:新时代 出版社.
- 郑义平,冉照辉,乔东宇,等,2011.液 N₂ 伴注水基泡沫压裂 液技术在苏 77 井区的应用.新疆石油天然气,7(2): 59-62.