doi:10.3799/dqkx.2016.066

基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀

方 旸1,谢淑云1*,何治亮2,刘 银1,鲍征宇1,沃玉进2,张殿伟2

1.中国地质大学地球科学学院,湖北武汉 430074
2.中国石油化工股份有限公司石油勘探开发研究院,北京 100083

摘要:为了更好地认识鲕粒灰岩及鲕粒云岩的溶蚀机制,并指导油气勘探,通过岩石薄片溶蚀模拟实验,结合环境扫描观察和 能谱分析进行原位微观形貌观察和分析,并采用分形与多重分形对能谱面扫描图像进行分析.实验结果显示,硫酸介质下鲕粒 灰岩溶蚀从结构缺陷点(解理或裂隙)开始,钙含量高的点溶蚀速率快,而钙含量低的点和含硅部分溶蚀慢或不溶蚀,从而形 成凹凸不平的溶蚀坑孔隙空间;而鲕粒云岩在硫酸介质中的溶蚀从白云石晶体间裂隙开始,这是因为颗粒及颗粒间有大量微 裂隙.相同条件下,鲕粒云岩的溶蚀丢失质量比鲕粒灰岩多出约 80%,这表明硫酸介质对白云岩具有更强的溶蚀能力.通过对 溶蚀微观形貌的观察发现,硫酸对鲕粒白云岩结构的破坏作用而形成的颗粒状表面,更有利于溶蚀作用的深入进行,进而发 育优质孔隙.此外,分形与多重分形分析结果表明,碳酸盐岩薄片表面的 Ca、Mg、Si 含量分布的非均质性的差异控制着溶蚀反 应,成分差异大、元素含量非均质性强能促进溶解反应的进行.

关键词:碳酸盐岩储层;岩石薄片;差异溶蚀;多重分形;地球化学.

中图分类号: P599 **文章编号:** 1000-2383(2016)05-0779-13 **收稿日期:** 2015-11-12

Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates

Fang Yang¹, Xie Shuyun^{1*}, He Zhiliang², Liu Yin¹, Bao Zhengyu¹, Wo Yujin², Zhang Dianwei²

1. School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 2. Research Institute of Exploration & Production, SINOPEC, Beijing 100083, China

Abstract: To explore the law of carbonate dissolution evolution to facilitate oil and gas exploration, the dissolution process and kinetic mechanisms of oolitic limestone and oolitic dolomite in sulfuric acid medium under normal temperatures are discussed in the paper. Insitu micromorphology of the reaction surface was observed by environmental scanning electron microscope (ESEM) and the elemental distribution was analyzed by fractal and multifractal theory using the X-ray mapping capabilities of the ESEM. The different dissolutions observed in the experiment indicate that the dissolution of the mineral starts at points of structure defects (as cleavage or fracture), and that the dissolution rate of oolitic limestone at the point with high Ca content is faster than that with low Ca or high Si content, which results in an uneven corrosion pits and pore spaces formed on the reaction surface. Moreover, the sulfuric acid cracks the ooid dolomite into granular and intergranular fractures and pore space in or between particles. Analysis of the weight loss by dissolution of thin section shows that the weight loss of oolitic dolomite, It is found by micromorphology observation that the granular surface of oolitic dolomite, It is found by micromorphology observation that the granular surface of oolitic dolomite to deepening of dissolution, which further improves development of pore space and connectivity. The fractal and multifractal analyses indicate that the dissolution process is controlled by differences between the element distribution heterogeneity of Ca, Mg and Si. Additionally, large difference of composition, strong heterogeneity of element distribution can promote the dissolution reaction.

Key words: carbonate reservoir; thin section; dissolution difference; multifractal; geochemistry.

基金项目:国家重大专项项目(No.2008ZX05005);国家重点基础研究发展计划(973计划)项目(No.2012CB214802);中国石油化工股份有限公司项目(No.P14038).

作者简介:方场(1988-),男,硕士研究生,主要从事碳酸盐岩储层溶解动力学的研究工作.E-mail: fangy123jnby@gmail.com * 通讯作者:谢淑云,E-mail: tinaxie@cug.edu.cn

0 引言

碳酸盐岩油气田是全球油气最重要的组成部分, 其常规油气储量约占世界的 60%,产量约占 50%(罗 平等,2008).目前我国在海相碳酸盐岩储层中的油气 勘探取得了一系列成果,在四川盆地发现了罗家寨、 普光、渡口河、铁山坡、滚子坪等大中型天然气田和金 珠坪、七里北、正坝南等气藏;在塔里木盆地发现有塔 河、田河油气田等.因此,碳酸盐岩古溶蚀储集层及其 成岩圈闭可能成为最有利的储油空间,碳酸盐岩已成 为油气勘探的重点领域(Moore,2001;金之均,2005; 贾承造等,2007;钱海涛等,2014;赵爽等,2015).

在地质历史时期中,碳酸盐岩在成岩、埋藏、抬 升的阶段分别受到了不同的温度、压力、不同性质孔 隙流体等因素的影响(蒋小琼等, 2008),在这些阶 段所发生的压实、溶蚀、沉淀以及孔一洞一缝的系统 时空演化制约着碳酸盐岩储层的发育及演变,从而 对碳酸盐岩储集性能产生重要的影响(Moore, 2001;康玉柱,2007;黄文辉等,2012).早期的碳酸盐 岩溶蚀研究主要通过固体质量和溶液成分的变化来 观测反应的进行并建立动力学模型.后随着分析技 术的发展,扫描电子显微镜(scanning electron microscope,简称 SEM)、原子力显微镜、垂直扫描干涉 仪等显微技术方法的发展,以及 X 射线光电子能谱 (X-ray photoelectron spectroscopy)、俄歇电子能谱 (auger spectroscopy)等表面化学结构分析技术,对 矿物一流体的相互作用的研究从先前的全溶液测量 扩展到了对矿物表面微观特征变化的观察.

近年来,随着油气勘探工作的需要,国内碳酸盐 岩溶蚀实验取得了大量的成果.前人通过自主研发 的 SYS-1 型碳酸盐岩溶蚀速率测定仪研究了不同 酸性流体在不同温度下对碳酸盐岩的改造作用,提 出了"溶蚀窗"的概念(范明等,2007,2011;蒋小琼 等,2008);研究人员基于恒温水浴、旋转盘、高温高 压釜等装置并结合扫描电镜(SEM)和能谱分析探 讨了不同成分碳酸盐岩溶蚀机理(崔振昂等,2007; 张天付等,2009;黄康俊等,2011);杨云坤等(2014) 基于高温高压金刚石压腔进行了碳酸盐岩粉末的原 位溶蚀实验研究.这些研究成果一定程度上加深了 对碳酸盐岩储层孔隙演化规律的认识,但由于碳酸 盐岩储层演化的复杂性,结合实际勘探的需要还存 在众多问题.如硫酸盐热还原反应(thermochemical sulfate reduction,简称 TSR)对四川盆地优质碳酸 盐岩储层是否存在改造作用、改造程度有多强以及

为何优质储层均为白云岩等问题,不同学者就有不同认识(朱光有等,2006;黄思静等,2007).

本文基于碳酸盐岩薄片与硫酸在常温常压下的 反应,模拟硫酸盐还原反应产物 H₂S向上迁移过程 中遇富氧流体氧化形成稀硫酸,在浅埋藏或近地表 低温低压环境下、长时间作用使碳酸盐岩发生溶蚀 和沉淀的过程.运用光学显微镜、背散射扫描电镜观 察及 EDS 能谱分析,原位观察了碳酸盐岩在硫酸介 质下微观形貌变化及差异性溶蚀过程,分析其溶蚀 机理,力图为解释四川盆地优质储层的形成机理,预 测碳酸盐岩储层孔隙空间演化分布,进而为油气勘 探提供一定理论依据.

1 理论背景

1.1 碳酸盐岩溶蚀机制

碳酸盐岩溶解作用,实际上就是在一定热力学 条件中流体中的极性分子对组成矿物晶体粒子的吸 引,碳酸盐矿物晶格中的离子脱离原来的位置而向 流体中转移的过程.这一过程涉及气、液、固态三相 复杂体系,因此其溶解的过程受到很多地质因素的 影响,如矿物的结构、表面缺陷、反应表面积、吸附配 位体、pH 值、温度、压力、流体性质等(Brantley *et al.*,2008).

前人研究表明(Plummer *et al.*,1978;Busenberg and Plummer,1982;Plummer and Busenberg, 1982),在远离平衡时,流体中碳酸盐岩的溶解机制可用以下 3 个反应表示:

 $MCO_{3(s)} + H_2O_{(aq)} \leftrightarrow M^{2+}_{(aq)} + HCO^{-}_{3(aq)} + OH^{-}_{(aq)}, \qquad (1)$

$$MCO_{3(s)} + H_2CO^0_{3(aq)} \rightarrow M^{2+}_{(aq)} + 2HCO^-_{3(aq)}$$
, (2)

$$MCO_{3(s)} + H^{+}_{(aq)} \rightarrow M^{2+}_{(aq)} + HCO^{-}_{3(aq)}$$
, (3)

其中:M 代表阳离子(Ca、Mg、Fe、Mn等);反应式 (1)为岩石矿物表面的水合作用;反应式(2)为岩石 矿物表面的碳酸化作用;反应式(3)为氢离子质子化 作用.在酸性流体中,碳酸盐岩的溶蚀作用主要受反 应式(3)控制.这些反应中存在一系列不同的物理化 学过程,这些过程可以分解为不同的反应步骤.对于 矿物溶解过程,其固一液界面反应至少包括以下步 骤(Morse and Arvidson,2002):(1)溶液中反应物 粒子扩散至固体表面;(2)反应物粒子吸附于固体表 面;(3)反应物粒子在固体表面运移至活性位置;(4) 反应物粒子与固体矿物各自形成水合离子,并发生 反应,生成新物质;(5)反应产物在固体表面运移脱 离反应位置;(6)反应产物解吸附至固体表面溶液 中;(7)产物从固体表面溶液扩散至整个溶液中.碳 酸盐岩溶蚀的进行,有赖于上述7个步骤连续不断 的循环作用,且其中最慢的步骤控制了整个反应过 程的速率,即控制了矿物溶解的速率.

Lasaga and Blum(1986)指出,对于大多数矿物 表面都存在大量相交的线缺陷.当矿物与流体反应 时,并非所有矿物总表面都会参与到矿物与流体的 溶解过程,而是那些具有各种位错且包含有由位错 引起晶格畸变产生的过剩应力能的区域.当矿物接 触到流体时,这些高应力表面为溶解的发生提供了 良好的场所.当发生溶解时,会造成这些过剩的能量 释放以及能量的重新获得.因此,在位错位置的四周 将产生一个微孔,这就使得有额外的表面参与到与 流体的反应中去.随着溶解作用的进一步进行,微孔 逐渐变大,这个逐渐增大的区域将导致更多能量的 流失.因此,笔者认为溶蚀微孔及宏观孔的形成与这 些进程的热力学特征以及在系统中自由能从矿物向 流体过渡过程中的总体变化相关.本文拟通过原位 观察探讨表面溶蚀机理.

1.2 多重分形几何

地球化学元素在不同尺度上具有自相似的分布 特征,这从区域分布数据及微观尺度上(如单个矿物 表面的元素含量面分布特征)均得到了证实(Zhang *et al.*,2001;谢淑云等,2009).Halsey(1986)提出了 矩分析方法计算多重分形测度的多重分形谱函数, 运用 Xie and Bao(2004)关于元素含量在空间上的 分形与多重分形分析方法,假设在边长为 ϵ 的正方 形网格内,元素的含量 x_i 满足分配函数(Partitionfunction):

$$X_{q}(\varepsilon) = \sum_{n(\varepsilon)} U_{i}^{q} = \sum_{n(\varepsilon)} ((x_{i}\varepsilon^{2}))^{q} \propto \varepsilon^{\tau(q)} , \quad (4)$$

其中:统计矩阶数 q 为任意数,通过双对数坐标上作 图可以求出质量指数 $\tau(q)$,而多重分形维数谱函数 $f(a) = qa(q) - \tau(q)$,其中 $a(q) = \partial \tau(q) / \partial q$.当q =0时,f(a)达到最大值,对应于盒子维数 D0;q = 1即对应信息维 D1;q = 2时就是关联维 D2.维数就是 为了确定几何对象中一个点的位置所需要的独立坐 标的数目,或者说独立方向的数目.欧氏几何中的维 数是拓扑维.一个 D 维几何对象的每个独立方向, 都增加为原来的 l 倍,结果得到 N 个原来的对象: LD = N.两边取对数,则 $D = \ln N / \ln L$,欧氏几何定 义的拓扑维 D 都是整数.但对其不加以取整数限 制,这样得到的维数称为分维, $D = \ln N / \ln L$;与分 维定义有关的函数关系是幂数关系,简称幂律 (power law).研究分形与分维问题时,最经常用到 的是双对数坐标.

上述关系式构成了多重分形的理论核心,*a*、 *f*(*a*)、*q*、*Dq*作为独立参数都可以描述多重分形的 内部结构,根据实际情况决定用哪一组参数.

Xie and Bao(2004)通过模拟和实例研究,计算 了描述多重分形频谱的相关参数,并将其应用于金 属与油气地球化学场中地球化学指标的分布特征研 究及其对金属矿产与油气资源潜力评价等方面; Cheng(2014)通过计算模拟进一步讨论了不同的分 形与多重分形参数(multifractalindices)的数学意义 及其应用,对进一步理解非对称多重分形频谱的分 布意义具有重要的意义.Zhang et al.(2001)挑选来 自不同热液硫化物矿床和不同分带部位的黄铁矿晶 体,通过 EDS 能谱分析,运用分形和多重分形分析 方法(包括盒子维、P-A 分形模型等)探讨了主要成 矿矿物表面元素含量局部贫化与富集的不规则分布 特征与不同阶段热液作用的关系.

2 样品与反应介质选择

2.1 样品的选择

油气勘探中,一般以志留系为分界,将南方海相 地层分为 T-S(上组合)和 S-Z(下组合)两大油气勘 探区.多年来,人们在四川盆地上组合中取得重大突 破,发现以普光气田为代表的一系列油气藏,而下组 合仅在 1964 年发现威远震旦系气藏(马永生等, 2012).研究证明南方震旦系陡山沱组、下寒武统牛 蹄塘组、上奥陶统五峰组一下志留统龙马溪组底部 的黑色页岩均具有良好的生烃潜力(腾格尔等, 2006).因此,南方海相地层下组合被认为是寻找大 中型油气藏的重要勘探区(金顺爱和李德生,2005; 马永生等,2012).

下寒武统牛蹄塘组页岩与清虚洞组碳酸盐岩是 很好的生储组合,而灯影组白云岩一直是南方震旦 系广泛发育的一个重要储层.本次实验选取鲕粒灰 岩(RX-3)及鲕粒云岩(DP-1)开展薄片溶蚀实验,样 品分别采自重庆秀山溶溪剖面清虚洞组底部和张家 界大坪剖面灯影组二段.

2.2 采样点地质概况

采样剖面位于四川盆地东南缘及湘鄂西地区, 现今构造上秀山溶溪剖面位于宜都一鹤峰复向斜西 南缘,大平剖面位于江南古陆西南(图1所示).

图 1 剖面位置及地质构造简图 Fig.1 The areal structure of the study area and section places 据腾格尔(2006)略作修改

地理上秀山溶溪剖面位于重庆市秀山土家族苗族自治县.该剖面可以见到完整的震旦系、寒武系、 奥陶系和志留系.其中寒武系剖面的三统基本齐全, 其中下寒武统与下伏震旦系呈假整合接触关系,早 寒武世地层发育不完全,缺失早寒武世早期的梅树 村阶及部分筇竹寺阶地层,但寒武系顶、底界线清 楚,碳酸盐岩石十分发育,含矿层位多,矿产丰富.下 寒武统清虚洞组底部灰色厚层状鲕粒灰岩,层理发 育,见平行层理和交错层理,下部灰色薄层状细晶灰 岩,中部灰色厚层豹皮状灰岩,顶为云岩(四川省地 质矿产局,1991).

大平剖面位于湖南省张家界市永定区,国家著名 风景区天门山景区周围.大坪剖面可见震旦系、寒武 系和奧陶系,上震旦统灯二段底部主要发育灰黑色薄 层燧石条带(团块)泥一粉晶云岩,向上变为中层状细 粉晶云岩到粗晶云岩,中部发育灰色厚层鲕粒云岩, 鲕粒云岩中夹砂屑条带,向上变为粉晶云岩,顶部为 深灰色中薄层泥晶云岩(项礼文等,1999).

2.3 酸性介质的选择

碳酸盐岩地层中能产生溶蚀作用的流体主要包括 H₂S、CO₂ 及有机酸.CO₂ 的溶蚀能力已有大量

研究 (Plummer *et al.*, 1978; Pokrovsky *et al.*, 2005;范明等,2007).有机酸是有地层中有机质演化 产生的,其对碳酸盐岩储层的改造作用亦早为人们 所认知 (Meshri, 1989; Saigal and Bjorlykk, 1992; Nedkvitne *et al.*, 1993; 陈景山等, 2007; Tribollet *et al.*,2009),而 H₂S 对碳酸盐岩的改造作用还存 在一定分歧.

研究表明,地层中 H₂S 来源于硫酸盐的还原作 用,包括硫酸盐热化学还原反应(TSR)(Cross *et al.*,2004)和硫酸盐微生物还原反应(bacterial sulfate reduction,简称 BSR)(Machel,2001).朱光 有等(2006)认为,热硫酸盐还原反应(TSR)产物 (CO₂、H₂S和 H₂O)对碳酸盐岩的溶蚀作用,是四 川盆地深部碳酸盐岩优质储层形成的重要方式.但 黄思静(2007)指出,CO₂和 H₂S作为气体均为中性 分子,其必须溶于水后水溶液才具备溶蚀能力,但 CO₂和 H₂S的溶解度随温度的升高而减小,而发生 硫酸盐热化学还原的最低温度为127 °C,此时 CO₂ 和 H₂S的溶解度仅有常温下的 1/8.因此,深埋藏条 件下 H₂S和 CO₂ 未必具有很强的溶蚀能力.张建勇 等(2008)曾以模拟实验证明,高温高压条件下含 H₂S和CO₂流体对碳酸盐岩具有一定的溶蚀能力, 且该流体对灰岩的溶蚀能力强于白云岩.而四川盆 地已发现的优质储层为云质地层,则在地质历史时 期储层改造过程中必然还有其他作用机制.

 H_2S 或 HS⁻在向上运动过程中遇含氧流体易 被氧化成硫酸和亚硫酸.显然,这两种含氧酸的溶蚀 能力要强于含 H_2S 和 CO₂流体.在不考虑氧化还原 性质方面,亚硫酸仅酸度比硫酸酸度低,其余化学性 质相似.因此本实验选用硫酸模拟地层中 H_2S 或 HS⁻被氧化形成含氧酸对碳酸盐岩的溶蚀作用.

3 溶蚀实验

3.1 前期处理

所采样品粉碎 200 目后送中国地质大学(武汉) 材料与化学学院 XRD 研究室,采用德国 Bruker AXS D8-Focus X 射线衍射仪分析岩石矿物成分, 结果如表 1 所示, RX-1 和 DP-1 分别为鲕粒云岩和 鲕粒灰岩, 均含极少量石英, RX-1 样品中方解石含 量达 79.72%, 还含有少量粘土矿物; DP-1 主要由白 云石组成, 其含量达 96.12%. 实验用薄片制作方法 与探针片制作方法一致,采用大小为46 mm×

表1 矿物成分分析结果

Table 1 Data of XRD analysis results

样品编号	方解石(%)	自云石(%)	石英(%)	伊利石(%)
RX-1	79.72	—	6.77	13.51
DP-1	—	96.12	3.88	—

图 2 薄片外观照片 Fig.2 Photo of the thin-section 红色线为背部记号笔所划以便前后对比研究

27 mm的载玻片,并保证岩片厚度为 60~70 μm 以 便溶蚀实验的开展,制作好的薄片如图 2 所示.

3.2 实验流程

环境扫描电镜微观结构观察及能谱成分分析往 往需在样品表面镀金或镀碳,会对样品表面造成不 可逆的损伤.溶蚀实验前,详细观察薄片,每个样品 选取两个相似鲕粒作为研究对象,一个直接喷金做 扫描电镜形貌观察及能谱成分分析,一个溶蚀后镀 金做扫描电镜形貌观察及能谱成分分析,以便作溶 蚀实验前后对比,其显微照片如图 3 所示.观察发 现,鲕粒灰岩主要由泥晶方解石组成,鲕粒平均大小 为 120 μm;鲕粒云岩由于强烈的白云岩化,鲕粒结 构已不可见,仅残留黑色的有机质,全岩由自形一半 自行的白云石组成,颗粒大小为 5~25 μm.

本实验在常温(25 ℃)下,将薄片放入 300 mL 硫酸溶液中浸泡溶蚀,硫酸溶液以 98%的浓硫酸及 去离子水配置.实验前先在光学显微镜下拍照记录

图 3 成分分析对比样单偏光及背散射扫描电镜显微照片

Fig.3 Plane-polarized lightimage and SEM image of contrast samples of component analysis

a.鲕粒灰岩样(RX-3)单偏光照片;b.图 a 中对应区域扫面电镜照片;c.鲕粒云岩样(DP-1)单偏光照片;d.图 c 中对应区域扫面电镜照片

图 4 鲕粒灰岩(RX-3)溶蚀各阶段单偏光照片 Fig. 4 Plane-polarized light images of oolitic limestone (RX-3) at different experiment procedures a.溶蚀前原貌;b.溶蚀1h后;c.溶蚀2h后表面覆盖沉淀物;d.超 声清洗沉淀物后的照片

图 5 鲕粒云岩 DP-1 溶蚀各阶段单偏光照片 Fig.4 Plane-polarized light images of ooliticdolomite (DP-1) at different experiment procedures

a.溶蚀前原貌;b.溶蚀1h后;c.溶蚀2h后表面覆盖沉淀物;d.超 声清洗沉淀物后的照片

原始形貌(图 4a,5a).考虑到实验为静态,为减少与 实际地质环境的差别,每次浸泡均在烧杯中加入1 L 硫酸溶液,保证酸液相对岩片过量,溶蚀在远离平衡 条件下进行.浸泡前,用电子天平称取薄片质量 (表 2),实验分两步完成:

(1)将薄片放入 0.05 mol/L H₂SO₄(pH=3)溶液 中浸泡 1 h.取出后使用去离子水浸洗,烘干,称取薄 片质量并在光学显微镜下观察拍照(图 4b,5b),通过 质量对比及光学显微镜观察发现样品表面变化不大;

(2)为加快实验进度,将样品继续放入 0.5 mol/LH₂SO₄(pH=0)溶液中浸泡2h后取出. 再次取出后使用去离子水清洗,烘干并称取质量(表 2),并用光学显微镜观察拍照(图4c,5c).观察发现, 两样品薄片表面覆盖了一层针状沉淀物,在沉淀上 镀金做扫面电镜分析(图6).

用超声振荡清洗仪洗去沉淀物后再次用称取质量(表 2),用光学显微镜观察拍照(图 4d,5d),并在 薄片表面喷金进行扫描电镜以及能谱分析(图 7, 8),此分析在中国地质大学(武汉)材料与化学学院 扫描电镜室完成.

4 结果与讨论

4.1 硫酸钙生成与孔隙演化

薄片从酸液中取出后,笔者首先观察到明显的 针状沉淀(图 6),通过能谱分析发现,其主要成分为 Ca、S和O,沉淀物呈针状或放射状集合体粘附在溶 蚀反应面上,少数呈板状,推断其为CaSO4.因此,本 实验中所发生反应可用下式表示:

 $Ca_x Mg_y (CO_3)_{(x+y)(s)} + H_2 SO_{4(aq)} → H_2 CO_{3(aq)} + Mg_{(aq)}^{2+} + CaSO_{4(s)}$, (5) 其中: $Ca_x Mg_y (CO_3)_{(x+y)(s)}$ 代表了自然界碳酸盐岩 主要化学成分.3个主要生成物中, $H_2 CO_3$ 的存在形 式依赖于环境条件,因为 CO₂ 溶解度随温度升高而 降低,随压力升高而增加;MgSO₄ 易溶于水,在酸性 流体中以离子状态存在;CaSO₄ 晶体能量低,可以 为水所直接溶解,在有盐离子存在的地层水中溶解 度更高,与碳酸盐岩需要流体中极性的分子作用才 能溶解相比,CaSO₄ 更易于溶蚀,自然条件下,其以 石膏(CaSO₄ • 2H₂O)或硬石膏(CaSO₄)形式存在

表 2 各阶段薄片质量(g)

Table 2 Mass (g) of thinsection	at different experiment procedures
---------------------------------	------------------------------------

样品	初始质量	浸泡1h质量	浸泡3h(含沉淀)质量	去除沉淀质量	沉淀质量	净溶蚀量
RX-3-1	4.090 7	4.080 3	4.047 3	3.986 5	0.060 8	0.104 2
DP-1-1	4.200 3	4.181 7	4.101 3	4.014 5	0.086 8	0.185 8

(卢耀如和张凤娥,2007).

如图 6 所示,沉淀物覆盖于碳酸盐岩表面,能有效 阻隔酸液与碳酸盐岩表面的接触,从而抑制碳酸盐岩 的进一步溶蚀.考虑到本实验是静态环境,但硫酸溶液 相对岩片过剩,可以推断,在封闭一半封闭条件下,岩 石孔隙中稀硫酸介质与岩石反应,产物逐渐积累,加之 与外界无物质交换,生成的硫酸钙粘附于孔隙表面或 充填在孔隙空间且逐渐累积,抑制了进一步溶蚀的发 生,将不利于优质储层的进一步发育.但同时,由于硫酸 钙的溶解能力显著高于碳酸盐,一旦环境改变为开放 条件,硫酸钙将逐渐被溶解带出并释放孔隙空间,因 此,其对孔隙空间的占据亦有利于孔隙的保存,若一直 处于开放条件下,则碳酸盐岩的溶蚀作用可持续进行.

4.2 溶蚀量差异分析

成分的不同造成了溶蚀速率的差异,最终表现 为溶蚀量的差异.通过样品减重分析可发现(表 2), 相同时间内硫酸溶液对鲕粒云岩的溶蚀量为 0.1858g,大于对鲕粒灰岩的溶蚀量 0.1042g.卢耀 如和张凤娥(2007)研究认为,SO4²⁻等强酸性的侵 蚀溶解作用,主要表现为矿物的分解,白云石、白云 岩成分中的 MgCa(CO3)2 被分解为 CaCO3 和 MgCO3,由于 MgCO3具有比 CaCO3 较大的溶解 度,致使水溶液中溶解了更多量的 MgCO3.这种强 酸的侵蚀溶解,可以不需要 CO2 参与,这也就打破 了碳酸对白云岩的溶解度低于方解石这一规律.所 以,SO4²⁻对白云岩具有较大溶蚀量.

硫酸对白云岩具有相对灰岩更强的溶蚀能力, 不同于张建勇等(2008)实验结果中含 H₂S 和 CO₂ 流体对灰岩的溶蚀量大于白云岩.硫酸对白云岩的 溶蚀能力更强,显然更有利于储层改造,这与四川盆 地优质储层以白云岩为主的现状是相符的.

4.3 形貌观察与分析

清洗掉薄片表面沉淀后,通过光学显微镜观察

发现,鲕粒灰岩溶蚀后表面呈明显的块斑状,这是差 异溶蚀(选择性溶蚀)的结果,易溶组分先被溶蚀而 难溶组分残留原位.如溶蚀作用能持续进行,易溶蚀 部分持续被溶走而形成空洞,实际中经常观察到的 空心鲕即是差异溶蚀的结果.对比溶蚀前后的鲕粒 照片,发现颜色较深的鲕粒核部及皮层溶蚀相对较 弱;鲕粒云岩则如松散的糖粒状颗粒,无法观察到矿 物结构,这种现象可能是溶蚀反应先从颗粒间开始, 并逐步溶蚀打碎了白云石颗粒间胶结物的粘结,而 使白云石呈颗粒状零散分布.

微观形貌上(图 7),鲕粒灰岩总体表现为溶蚀 坑及突起,放大观察可以发现其表面为片状或鳞片 状;而鲕粒云岩样品表面为白云石"砂粒",未溶蚀的 石英质成分块状残留原位,白云石颗粒形状不规则、 大小不一,颗粒上出现微裂缝及溶蚀孔洞.

从微观形貌上看,硫酸溶液确实能对鲕粒灰岩 及鲕粒云岩溶蚀并产生孔隙空间,起到一定的改造 作用.鲕粒灰岩的孔隙空间主要指差异溶蚀的发生 而形成溶蚀坑,鲕粒云岩的孔隙空间主要指"散落" 的白云石"砂粒"间未被充填的空间.显而易见,虽然 鲕粒灰岩因差异溶蚀而形成高低起伏的形貌,但其 结构未被完全破坏,晶体间仍紧密结合,因此溶蚀反 应如要继续向内溶蚀必须逐层向内剥蚀;而鲕粒云 岩由于原始结构被破坏,白云石颗粒零散分布,酸液 能更容易侵入内部并发生溶蚀反应,继续裂解白云 岩结构.因此,笔者认为鲕粒云岩比鲕粒灰岩更容易 被酸液改造,形成优质储层.

4.4 原位能谱分析

4.4.1 元素分布特征分析 Duguid *et al*.(2010)在 研究巴哈马碳酸盐岩台地鲕粒滩鲕粒时发现,新鲜 鲕粒有一层 Mg/Ca 值非常高的非晶质碳酸钙外衣, 其内为文石质的鲕粒皮层,且外部皮层较内部皮层 具有较高的 Mg/Ca 值.本实验中,鲕粒灰岩皮质层

图 7 薄片溶蚀后扫描电镜照片

Fig.7 SEM images of thin sections after dissolution

a,b,c.鲕粒灰岩(RX-3)照片,其中 b 为 a 中红色圆形区域放大,c 为 b 中红色圆形区域放大;d,e,f.粒云岩(DP-1)照片,其中 e 为 d 中红色方框区域放大,f 为 e 中红色方框区域放大

基本由泥晶方解石组成,含有少量伊利石及石英杂质.未溶蚀样品的能谱点分析表明,Mg/Ca值重复地升高降低,对比鲕粒光学显微照片可知,颜色较深的核心及鲕粒皮质层部分具有高的Mg/Ca值,颜色较浅的皮质层具有低的Mg/Ca值,因此总体上Mg/Ca值呈重复升高降低趋势.结合溶蚀前后,可以发现具有较高Mg/Ca值的核心及皮层溶蚀较弱, 而低Mg/Ca值的皮层溶蚀较强.

图 8a 为溶蚀后反应面元素面扫描图像.元素的 含量与能谱面扫描图像中该元素的响应点密集度和 色度有关,同一图像内越密集、色度越强的区域,相 应元素的含量越高.鲕粒灰岩样因其矿物组成主要 为方解石和伊利石、含少量石英,其元素含量最高的 是 Ca,其次是 Si, Mg 含量极低.Si 的响应点主要分 布在溶蚀坑周围的突起部, Mg 响应点较少且分布 无规律,突起部 Ca 相对含量明显少于坑底 Ca 相对 含量.这说明鲕粒灰岩中较纯的方解石(高 Ca 含量 的区)易于溶蚀,含硅的石英、伊利石杂质难以溶蚀 而残留原位,随着溶蚀作用的进行,这种不同部位溶 蚀速率的快慢差异最终形成突起——溶蚀坑的表面 形貌.

鲕粒云岩样矿物组成为白云石和石英,元素中 Ca含量最高,其次是 Mg 和 Si.其中 Si 的高响应点 主要集中在石英含量较高的右下部(图 8b).对比未 溶蚀样品的能谱分析,笔者发现 Ca/Mg 初始值约为 1.11,溶蚀后Ca/Mg值为1.50,甚至更高.这说明白

图 8 鲕粒灰岩(RX-3)(a)和鲕粒云岩(DP-1)(b)样品扫描电镜微观形貌照片及能谱面扫描图像 Fig.8 SEM image and element X-ray mappings of ooliticlimestone(RX-3)(a) and ooliticdolomite (DP-1)(b) sample 云岩溶蚀过程中 Mg 的释放速率要快于 Ca 的释放 速率,主要是去 Mg 的过程.

4.4.2 薄片表面元素含量的多重分形分布在 MATLAB平台下,将元素能谱面扫描照片(图 8a, 8b)数字化成具有 256 个灰度值的黑白图像,根据灰 度值转换成等高线图,转换成矢量数据.根据其矢量 图,计算不同响应信号的强弱和不同响应点元素含 量的相对高低程度,进而可以讨论元素在空间上的 分布特征.

这里以步长为 1、最小值为-10、最大值为 10 设定矩 q 的范围,计算了图 8a 和 8b 中各元素的多 重分形频谱(图 9),对应参数在表 3 中列出.从图 9 中可以看出,对图 8a 和 8b 中的每幅照片中元素的 响应点,元素含量在微观尺度上的分布不均一、具有 连续多重分形特征,其多重分形频谱宽且连续, Δa 和 $\Delta f(a)$ 值均较大,显示为典型的右偏多重分形频 谱,即多重分形频谱曲线左侧相对残缺、而右侧相对 完整, $\Delta \alpha_{\rm L} < \Delta \alpha_{\rm R}$,这预示着在溶蚀前后,元素含量较 低的点分布相对离散且呈多数、而较高含量点较少 且分布相对集中(Cheng,2014;Xie and Bao,2004).

从溶蚀前和溶蚀后响应点的分布来看,这种高 低含量的分布差异性在溶蚀前后亦有明显变化,对 应不同元素显示不同规律:

(1)从图 8a 和 8b 中 Ca 元素的分布来看,整体

依然呈右偏多重分形分布.反应前,相对于鲕粒灰岩 样品 RX-3, 鲕粒云岩样品 DP-1 的 Ca 元素分布的 多重分形频谱略宽、且左右两侧跨度的 Δα、Δα₁ 和 $\Delta \alpha_{\rm R}$ 均大于鲕粒灰岩样品 RX-3 的对应值,这表明, 鲕粒云岩样品元素含量在空间上分布的奇异性更 高,这种较高的奇异性差异本身更易促进鲕粒云岩 样品 DP-1 表面 Ca 的溶解.反应后,鲕粒云岩样品 DP-1 表面 Ca 元素分布的多重分形频谱左右两侧均 有增宽,鲕粒灰岩样品 RX-3 只有左侧增宽而右侧 基本保持不变,显示反应后两个样品表面 Ca 含量 相对高的奇异点增多、而鲕粒云岩样品 DP-1 含量 较低的点分布更加离散,这些新形成的高奇异点将 更有利于溶蚀作用的发生;对比来说,这种奇异性的 增幅亦存在差异,鲕粒灰岩样品 RX-3 表面 Ca 元素 的多重分形频谱左右两侧的增宽幅度小于鲕粒云岩 样品 DP-1, 鲕粒云岩样品 DP-1 具有更大的增量值 $\Delta \alpha_{E-m}, \Delta \alpha_{LE-m} \neq \Delta \alpha_{RE-m}$ (表 3),这正表明,鲕粒 云岩样品 DP-1 表面 Ca 的溶解更易形成高奇异性, 进一步促进溶蚀作用的进行.

(2)分析薄片表面 Mg 元素的分布可以看出,反 应前,虽然鲕粒云岩样品 DP-1 表面 Mg 的分布奇异 性总体较鲕粒灰岩样品 RX-3 略高,Δα 值分别为 1.427 4和 1.239 1,但其主要由较多的低响应点控 制,其Δα,分别为0.2250和0.3865,预示着DP-1

Fig.9 Multifractal spectrum curves for different elements

表 3 能谱面扫描元素分布分形参数

Table 3 Fractal parameters describing the distribution characteristics of element X-ray mappings

	未溶蚀		溶蚀后			A	Δ
$\Delta \alpha \Delta \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \Delta \alpha \Delta \Delta \Delta \Delta \Delta \Delta \alpha \Delta \Delta$	$\Delta f(\alpha) \qquad \Delta \alpha_{\rm L}$	$\Delta \alpha_{\rm R}$ $\Delta \alpha$	$\Delta f(\alpha) = \Delta \alpha_L$	$\Delta \alpha_{\rm R}$	Δα 后一 前	$\Delta \alpha L = m$	$\Delta \alpha R = m$
DP-1 1.311 0 2.	2.208 5 0.172 6 1	1.138 4 1.489 4	2.121 5 0.294 2	1.1952	0.178 4	0.056 9	0.121 6
Ca RX-3 1.200 2 2.	2.280 9 0.094 9 1	1.105 2 1.305 9	2.073 9 0.201 6	1.104 4	0.105 8	-0.0009	0.106 6
DP-1 1.427 4 2.	2.224 0 0.225 0 1	1.202 4 1.525 6	2.176 9 0.349 2	1.1764	0.098 2	-0.0260	0.124 2
^{Mg} RX-3 1.239 1 1.	.470 1 0.386 5 0	0.8527 1.0499	1.192 0 0.340 6	0.709 3	-0.1893	-0.1434	-0.0459
DP-1 1.726 3 1.	.881 0 0.540 9 1	1.185 4 1.361 6	1.604 5 0.364 7	0.996 9	-0.3647	-0.1885	-0.1762
SI RX-3 1.483 2 1.	.913 8 0.417 3 1	1.065 9 1.251 2	1.435 1 0.404 5	0.846 8	-0.2320	-0.2191	-0.012 9

注: $\Delta \alpha$.分形谱线的宽度; $\Delta f(\alpha)$.分形谱线的高度; $\Delta \alpha_L$, $\Delta \alpha_R$.分形谱线左半部分与右半部分的宽度.

表面代表 Mg 高含量部分的左侧多重分形频谱较 窄,而低含量部分相对均一.但溶蚀反应后,DP-1 表 面代表 Mg 高含量部分的左侧多重分形频谱明显增 宽,显示其奇异性增大,预示着鲕粒云岩 DP-1 裂 隙、成分等方面的差异,在反应过程中更易使 Mg 元 素形成局部奇异性,有利于更进一步促进其溶蚀,在 成分上形成更大的差异,以致易形成新的差异溶蚀.

综上所述,随着溶蚀作用的进行,SO4²⁻易促进 鲕粒白云岩的溶蚀,这与鲕粒云岩具有较大溶蚀量 相符.

(3)分析 Si 元素的表面分布特征,笔者发现反 应前后,DP-1 表面 Si 的多重分形频谱均较 RX-3 宽,但二者反应后均有明显变窄,这不同于前述 Ca、 Mg 元素的演变模式;而多重分形频谱的减少导致 $\Delta \alpha_{\text{E}-\hat{m}}, \Delta \alpha_{\text{LE}-\hat{m}}}$ 和 $\Delta \alpha_{\text{RE}-\hat{m}}$ (表 3)呈负数,且 DP-1 的减小幅度明显大于 RX-3,可能预示着 Si 含量的 高奇异性亦有利于促进鲕粒云岩 DP-1 的溶解,且 随着溶蚀作用的进行,Si 的影响逐渐减少,这可能 也与两样品中 Si 质成分较少有一定的关联.

5 结论

(1)通过溶蚀面形貌观察及能谱分析,笔者认为 碳酸盐岩的溶蚀由结构和成分两方面共同控制,不 同的矿物组成结构控制溶蚀孔隙空间,化学成分则 控制溶蚀速率:即溶蚀先从结构缺陷点开始,对于灰 岩纯碳酸钙溶蚀速率快,而含杂质部分溶蚀慢或不 溶蚀,最终形成凹凸不平的溶蚀坑孔隙空间;对于鲕 粒云岩,硫酸溶液以晶间裂隙为突破口将其"裂解" 为颗粒状,颗粒及颗粒间有大量裂隙和孔隙空间.说 明硫酸溶液对碳酸盐岩孔隙发育确有改造作用.

(2)实验中观察到 CaSO4 的沉淀,封闭条件下 该沉淀粘附于反应面上,随反应进行逐渐积累并占 据孔隙空间,抑制溶蚀的深入进行,不利于孔隙进一 步发育.但由于硫酸钙较碳酸盐易于溶解,一旦地层 抬升体系处于开放环境沉淀,就会逐渐溶解并释放 孔隙空间.因此,该沉淀一定程度上是有利于孔隙保 存的.

(3)实验结果显示,常温下相同时间内,硫酸溶 液对鲕粒云岩的溶蚀量高出鲕粒灰岩约80%,显示 出对云岩更强的溶蚀能力.微观形貌观察也表明,硫 酸对鲕粒云岩的"裂解"作用而形成的颗粒状表面, 更有利于溶蚀作用的深入进行,易于孔隙空间的进 一步发育和连通性的改善.总而言之,还原硫酸盐作 用的次生产物硫酸对碳酸盐岩特别是云岩储层具有 改良作用,这可能为四川盆地优质储层为云质地层 提出了新的解释.

(4)本文通过分形与多重分形分析方法,运用环 境扫描电镜能谱进行溶蚀前后反应表面的微区成分 的非均质性分析,研究表明,薄片表面的 Ca、Mg、Si 含量分布的非均质性的差异控制着溶蚀作用的进 程,鲕粒灰岩 RX-3 的 Mg 含量极低,溶蚀反应表面 Ca、Mg 的非均质性较小,相对有更高 Mg 含量的鲕 粒云岩 DP-1 溶蚀反应表面 Ca 和 Mg 的非均质性 均较大,成分差异大、元素含量非均质性强能促进溶 解反应的进行.这一结果运用非线性分析手段和微 区原位分析,定量而形象地讨论了物质组分差异溶 蚀的动力学机理,为碳酸盐岩溶蚀动力学机理解释 提供了新的思路.

References

- Brantley, S. L., Kubicki, J. D., White, A. F., 2008. Kinetics of Mineral Dissolution. Kinetics of Water-Rock Interaction. Springer, Berlin.
- Bureau of Geology and Mineral Resources of Sichuan Province,1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing, 70-92(in Chinese).
- Busenberg, E., Plummer, L.N., 1982. The Kinetics of Dissolution of Dolomite in CO₂-H₂O Systems at 1.5-Degrees C

to 65-Degrees C and O-atm to 1-atm $p(CO_2)$. American Journal of Science, 282(1): 45 - 78. doi: 10.2475/ ajs.282.1.45

- Chen, J.S., Li, Z., Wang, Z.Y., et al., 2007. Paleokarstification and Reservoir Distribution of Ordovician Carbonates in Tarim Basin. Acta Sedimentologica Sinica, 25 (6): 858-868(in Chinese with English abstract).
- Cheng, Q., 2014. Generalized Binomial Multiplicative Cascade Processes and Asymmetrical Multifractal Distributions. Nonlinear Processes in Geophysics, 21(2): 477-487. doi:10.5194/npg-21-477-2014
- Cross, M. M., Manning, D. A. C., Bottrell, S. H., et al., 2004. Thermochemical Sulphate Reduction (TSR): Experimental Determination of Reaction Kinetics and Implications of the Observed Reaction Rates for Petroleum Reservoirs. Organic Geochemistry, 35 (4): 393 - 404. doi:10.1016/j.orggeochem.2004.01.005
- Cui, Z. A, Bao, Z. Y., Zhang, T. F., et al., 2007. Experiment Study on Carbonate Rock Dissolution in Buried Condition. Journal of Oil and Gas Technology, 29(3):204-207 (in Chinese).
- Duguid, S. M. A., Kyser, T. K., James, N. P., et al., 2010. Microbes and Ooids. *Journal of Sedimentary Research*, 80 (3):236-251.doi:10.2110/jsr.2010.027
- Fan, M., He, Z. L., Li, Z. M., et al., 2011. Dissolution Window of Carbonate Rocks and Its Geological Significance. *Oil & Gas Geology*, 32(4):499-505 (in Chinese with English abstract).
- Fan, M., Jiang, X. Q., Liu, W. X., et al., 2007. Dissolution of Carbonate Rocks in CO₂ Solution under the Different Temperatures. Acta Sedimentologica Sinica, 25 (6): 825-830(in Chinese with English abstract).
- Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1986. Fractal Measures and Their Singularities: The Characterization of Strange Sets. *Physical Review A*, 33(2): 1141-1151.doi;10.1103/PhysRevA.33.1141
- Huang, K. J., Wang, W., Bao, Z. Y., et al., 2011. Dissolution and Alteration of Feixianguan Formation in the Sichuan Basin by Organic Acid Fluids under Burial Condition: Kinetic Dissolution Experiments. *Geochimica*, 40 (3): 289-300 (in Chinese with English abstract).
- Huang, S. J., Qing, H., Hu, Z. W., et al., 2007. Influence of Sulfate Reduction on Diagenesis of Feixianguan Carbonate in Triassic, NE Sichuan Basin of China. Acta Sedimentologica Sinica, 25(6): 815 - 824 (in Chinese with English abstract).
- Huang, W. H., Wang, A. J., Wan, H., et al., 2012. Discussion on Characteristics of the Cambrian-Ordovician Carbon-

ate Rocks Reservoirs and Origin of Dolostones in Tarim Basin. *Journal of Palaeogeography*, 14(2): 197-208 (in Chinese with English abstract).

- Jia, C.Z., Li, B.L., Zhang, X. Y., et al., 2007. The Formation and Evolution of Marine Basin in China. *Chinese Science Bulletin*, 52(Suppl.1):1-8(in Chinese).
- Jiang, X.Q., Wang, S.Y., Fan, M., et al., 2008. Study of Simulation Experiment for Carbonate Rocks Dissolution in Burial Diagenetic Environment, *Petroleum Geology & Experiment*, 30(6):643-646(in Chinese with English abstract).
- Jin, S.A., Li, D.S., 2005. Geological Exploration and Research of China Marine Oil and Gas: Visit Desheng Li Academicians. Marine Origin Petoleum Geology, 10(2):1-8 (in Chinese).
- Jin,Z.J., 2005. Particularity of Petroleum Exploration on Marine Carbonate Strata in China Sedimentary Basins. *Earth Science Frontiers*, 12(3):15-22(in Chinese with English abstract).
- Kang, Y.Z., 2007. Reservoir Rock Characteristics of Paleozoic Marine Facies Carbonate Rock in the Tarim Basin. Petroleum Geology & Experiment, 29(3): 217-223 (in Chinese with English abstract).
- Lasaga, A.C., Blum, A.E., 1986. Surface Chemistry, Etch Pits and Mineral-Water Reactions. *Geochimica et Cosmochimica Acta*, 50(10):2363-2379.doi:10.1016/0016-7037(86)90088-8
- Lu, Y. R., Zhang, F. E., 2007. Sulphate Rock Karst and Sulphate-Carbonate Rocks Compound Karst: Development Mechanism and Engineering Effect Research. Higher Education Press, Beijing, 142 - 151 (in Chinese).
- Luo, P., Zhang, J., Liu, W., et al., 2008. Characteristics of Marine Carbonate Hydrocarbon Reservoirs in China. *Earth Science Frontiers*, 15(1):36-50(in Chinese with English abstract).
- Ma, Y.S., Guo, X.S., Guo, T.L., et al., 2005. Discovery of the Large-Scale Puguang Gas Field in the Sichuan Basin and Its Enlightenment for Hydrocarbon Prospecting. *Geological Review*, 51(4):477-480(in Chinese with English abstract).
- Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights. Sedimentary Geology, 140 (1-2): 143-175. doi:10.1016/s0037-0738(00)00176-7
- Meshri, I. D., 1989. On Prediction of Reservoir Quality through Chemical Modeling: Abstract. AAPG Bulletin, 71(11): 1436 - 1439. doi: 10.1306/703ca14e - 1707 -11d7-8645000102c1865d

第 41 卷

- Moore, C. H., 2001. Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework: Developments in Sedimentology. Elsevier Science. Sara Burgerhartstraat 25 P. O. Box211, 1000 AE Amsterdam, Netherlands.
- Morse, J. W., Arvidson, R. S., 2002. The Dissolution Kinetics of Major Sedimentary Carbonate Minerals. *Earth-Science Reviews*, 58 (1 - 2): 51 - 84. doi: 10.1016/ s0012-8252(01)00083-6
- Nedkvitne, T., Karlsen, D. A., Bjørlykke, K., et al., 1993. Relationship between Reservoir Diagenetic Evolution and Petroleum Emplacement in the Ula Field, North Sea. *Marine and Petroleum Geology*, 10(3):255-270.doi: 10.1016/0264-8172(93)90108-5
- Plummer, L. N., Busenberg, E., 1982. The Solubilities of Calcite, Aragonite and Vaterite in CO₂-H₂O Solutions between 0 and 90 ℃, and an Evaluation of the Aqueous Model for the System CaCO₃-CO₂-H₂O.*Geochimica et Cosmochimica Acta*, 46(6):1011-1040. doi:10.1016/ 0016-7037(82)90056-4
- Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., 1978. The Kinetics of Calcite Dissolution in CO₂-Water Systems at 5 Degrees to 60 Degrees C and 0.0 to 1.0 atm CO₂. *American Journal of Science*, 278(2):179-216. doi: 10.2475/ajs.278.2.179
- Pokrovsky, O.S., Golubev, S. V., Schott, J., 2005. Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 °C and 0 to 50 atm pCO₂. Chemical Geology, 217 (3 - 4): 239-255.doi:10.1016/j.chemgeo.2004.12.012
- Qian, H. T., Sun, Q., Wang, S.J., 2014. Effects of Geo-Stress on Carbonate Dissolution and Karst Evolution. *Earth Science*, 39(7): 896-904 (in Chinese with English abstract).
- Saigal,G.C.,Bjorlykk,K.,1992. The Effects of Oil Emplacement on Diagenetic Processes: Examples from the Fulmar Reservoir Sandstones, Central North Sea: Geologic Note (1). AAPG Bulletin, 76(7): 1024-1033.doi:10.1306/bdff8966-1718-11d7-8645000102c1865d
- Tenger, Gao, C. L., Hu, K., et al., 2006. High-Quality Source Rocks in the Lower Combination in Southeast Upper-Yangtze Area and Their Hydrocarbon Generating Potential. *Petroleum Geology & Experiment*, 28 (4): 359-365(in Chinese with English abstract).
- Tribollet, A., Godinot, C., Atkinson, M., et al., 2009. Effects of Elevated pCO₂ on Dissolution of Coral Carbonates by Microbial Euendoliths. *Global Biogeochemical Cycles*, 23(3): GB3008.doi:10.1029/2008gb003286
- Xiang, L. W., Zhu, Z. L., Li, S. J., et al., 1999. China Strati-

graphic Canon: Cambrian System. Geological Publishing House, Beijing, 41-42 (in Chinese).

- Xie, S. Y., Bao, Z.Y., 2004. Fractal and Multifractal Properties of Geochemical Fields. *Mathematical Geology*, 36(7): 847-864.doi:10.1023/b:matg.0000041182.70233.47
- Xie, S.Y., Cheng, Q.M., Li, Z. H., et al., 2009. Assessing Microstructures of Ore-Minerals by Multifractal. *Earth Science*, 34(2):263-269(in Chinese with English abstract).
- Yang, Y. K., Liu, B., Qin, S., et al., 2014. Re-Recognition of Deep Carbonate Dissolution Based on the Observation of In-Situ Simulation Experiment. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(2): 316-322 (in Chinese with English abstract).
- Zhang, J. Y., Liu, W. H., Fan, M., et al., 2008. Whether TSR Products can Meliorate Reservoir Property of Carbonate Rock or Not: An Evidence from Experimental Geology. *Marine Origin Petroleum Geology*, 13(2):57-61(in Chinese with English abstract).
- Zhang, T.F., Bao, Z.Y., Ma, M., et al., 2009. Dissolution Kinetic Characteristics and Morphology Evolution of Oolitic Limestone. Acta Sedimentologica Sinica, 27 (6):1033-1042(in Chinese with English abstract).
- Zhang, Z.R., Mao, H. H., Cheng, Q.M., 2001. Fractal Geometry of Element Distribution on Mineral Surfaces. Math. Geol., 33:217-228.
- Zhao, S., Zhao, D. J., Liu, L., et al., 2015. Diagenetic Characteristics of Quaternary Reef-Carbonates from Well Xike-1, Xisha Islands, the South China Sea. *Earth Sci*ence, 40 (4): 711 - 717 (in Chinese with English abstract).
- Zhu,G.Y.,Zhang,S.C., Liang, Y.B., et al., 2006. Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR: An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin. Acta Petrologica Sinica, 22 (8):2182-2194(in Chinese with English abstract).

附中文参考文献

- 陈景山,李忠,王振宇,等,2007.塔里木盆地奥陶系碳酸盐岩 古岩溶作用与储层分布.沉积学报,25(6):858-868.
- 崔振昂,鲍征宇,张天付,等,2007.埋藏条件下碳酸盐岩溶解 动力学实验研究.石油天然气学报,29(3):204-207.
- 范明,何治亮,李志明,等,2011.碳酸盐岩溶蚀窗的形成及地 质意义.石油与天然气地质,32(4):499-505.
- 范明,蒋小琼,刘伟新,等,2007.不同温度条件下 CO₂ 水溶液 对碳酸盐岩的溶蚀作用.沉积学报,25(6):825-830.
- 黄康俊,王炜,鲍征宇,等,2011.埋藏有机酸性流体对四川盆 地东北部飞仙关组储层的溶蚀改造作用:溶解动力学 实验研究.地球化学,40(3):289-300.

- 黄思静,Hairuo,Qing,胡作维,等,2007.四川盆地东北部三 叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影 响.沉积学报,25(6):815-824.
- 黄文辉,王安甲,万欢,等,2012.塔里木盆地寒武一奥陶系碳酸盐岩储集特征与白云岩成因探讨.古地理学报,14 (2):197-208.
- 贾承造,李本亮,张兴阳,等,2007.中国海相盆地的形成与演 化.科学通报,52(S1):1-8.
- 蒋小琼,王恕一,范明,等,2008.埋藏成岩环境碳酸盐岩溶蚀 作用模拟实验研究.石油实验地质,30(6):643-646.
- 金顺爱,李德生,2005.中国海相油气地质勘探与研究——访 李德生院士.海相油气地质,10(2):1-8.
- 金之均,2005.中国海相碳酸盐岩层系油气勘探特殊性问题. 地学前缘,12(3):15-22.
- 康玉柱,2007.塔里木盆地古生代海相碳酸盐岩储集岩特征. 石油实验地质,29(3):217-223.
- 卢耀如,张凤娥,2007.硫酸盐岩岩溶及硫酸盐岩与碳酸盐岩 符合岩溶:发育机理与工程效应研究.北京:高等教育 出版社,142-151.
- 罗平,张静,刘伟,等,2008.中国海相碳酸盐岩油气储层基本 特征.地学前缘,15(1):36-50.
- 马永生,郭旭升,郭形楼,等,2005.四川盆地普光大型气田的 发现与勘探启示.地质论评,51(4):477-480.

钱海涛,孙强,王思敬,2014.地应力对碳酸盐岩溶解和岩溶

发育的影响.地球科学,39(7):896-904.

- 四川省地质矿产局,1991.四川省区域地质志:寒武系.北京: 地质出版社,70-92.
- 腾格尔,高长林,胡凯,等,2006.上扬子东南缘下组合优质烃 源岩发育及生烃潜力.石油实验地质,28(4):359-365.
- 项礼文,朱兆玲,李善姬,等,1999.中国地层典:寒武系.北京: 地质出版社,41-42.
- 谢淑云,成秋明,李增华,等,2009.矿物微观结构的多重分形. 地球科学,34(2):263-269.
- 杨云坤,刘波,秦善,等,2014.基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识.北京大学学报:自然科学版,50(2):316-322.
- 张建勇,刘文汇,范明,等,2008.TSR产物对碳酸盐岩储层是 否具有改良作用──实验地质学的依据.海相油气地 质,13(2):57-61.
- 张天付,鲍征宇,马明,等,2009.鲕粒灰岩的溶解动力学特征 和微观形貌的发育演化.沉积学报,27(6):1033-1042.
- 赵爽,张道军,刘立,等,2015.南海西沙海域西科1井第四系 生物礁-碳酸盐岩成岩作用特征.地球科学,40(4): 711-717.
- 朱光有,张水昌,梁英波,等,2006.TSR 对深部碳酸盐岩储层 的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成 的重要方式.岩石学报,22(8):2182-2194.