doi:10.3799/dqkx.2017.032

塔里木盆地巴楚地区上泥盆统一下石炭统沉积一 物源记录及其构造演化

郭春涛^{1,2,3},高 剑^{2,4},李 忠^{2*},张 磊¹

1.大同大学煤炭工程学院,山西大同 037003

2.中国科学院地质与地球物理研究所,北京 100029

3.中国石油天然气股份公司大庆油田博士后科研工作站,黑龙江大庆 163453

4.北京市地热研究院,北京 100143

摘要:泥盆纪一石炭纪是南天山洋一塔里木盆地北部陆缘构造演化的关键时期.选取塔里木盆地巴楚地区上泥盆统一下石炭 统露头剖面,在沉积体系、碎屑组分、重矿物组合分析基础上,重点通过LA-ICP-MS分析砂岩样品.结果表明,上泥盆统一下石 炭统砂岩碎屑颗粒以单晶石英为主,(变质)结晶岩岩屑极少,物源构造属性主要指示陆块物源区;重矿物组合以锆石、电气石 和 TiO2 矿物等稳定重矿物为主,反映相对远距离的源汇体系和稳定的构造背景;2个年代学样品具有类似的碎屑锆石 U-Pb 年龄组成和 Hf 同位素特征,主要反映了 383~479 Ma、710~932 Ma、1752~1936 Ma、2419~2597 Ma 共4期构造热事件,并 以前两期为主.对比研究显示,上述碎屑物源以塔里木盆地内古隆起为主,同时还可能有来自阿尔金造山带、西昆仑造山带的 再旋回沉积.但并没有记录到来自盆地北侧造山带和岛弧的物源信息,说明该时期南天山洋盆并没有闭合,塔里木盆地北缘西 部可能不存在洋盆的向南俯冲,晚泥盆世一早石炭世其可能为被动大陆边缘.

关键词:巴楚地区;上泥盆统一下石炭统;碎屑锆石;地质年代学;构造演化;地球化学.

中图分类号: P542; P597 **文章编号:** 1000-2383(2017)03-0421-14 **收稿日期:** 2016-09-01

Depositional and Provenance Records of Upper Devonian to Lower Carboniferous Sandstones from Bachu Area, Northwestern Tarim Basin: Implications for Tectonic Evolution

Guo Chuntao^{1,2,3}, Gao Jian^{2,4}, Li Zhong^{2*}, Zhang Lei¹

College of Coal Engineering, Datong University, Datong 037003, China
 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
 Postdoctoral Research Station, PetroChina Company Limited, Daqing 163453, China
 Beijing Geothermal Research Institute, Beijing 10043, China

Abstract: Devonian-Carboniferous is the critical tectonic evolution period of the South Tianshan Ocean and the northern margin of Tarim Basin. Taking Upper Devonian to Lower Carboniferous outcrop of Bachu as the study area, this study further explores provenance, tectonic evolution and its geodynamic mechanism about the Tarim basin and the periphery orogen, based on depositional system, sandstone skeleton component, heavy minerals, especially detrial zircon geochronology analysis by LA-ICP-MS in situ U-Pb and Lu-Hf isotope.Sandstone skeleton component analysis shows that sandstone grains are dominated by mono crystalline quartz, and volcanic-metavolcanic fragments are rare. Its main provenance is the continental block provenance. The main proportions of heavy mineral assemblages are the stable heavy minerals, such as zircon, tourmaline, and TiO_2 minerals. Heavy minerals analysis reflects the relatively distant source-sink systems and stable tectonic setting are possible. The geochronological samples show that the two samples have similar U-Pb age patterns and Hf isotopic compositions, mainly reflec-

作者简介:郭春涛(1981-),男,博士,主要从事沉积学研究.ORCID:0000-0001-7861-5062.E-mail:xinylx521@163.com

基金项目:国家自然科学基金项目(Nos.40972085,41372120);国家重大专项(No.2011ZX05008-003).

^{*} 通讯作者:李忠,ORCID:0000-0001-9155-0742.E-mail:lizhong@mail.iggcas.ac.cn

ting multiphase tectono-thermal events with age groups of 383-479 Ma,710-932 Ma,1752-1936 Ma, and 2419-2597 Ma respectively. Compared with the main potential source areas, the main provenance is the palaeohigh of Tarim basin. Meanwhile, the West Kunlunorogen and the Altunorogen may also have some contribution. However, there is no information about the northern orogenand island arcs. It shows the South Tianshan Ocean has not closed in this period, and there isn't subduction to the south in the northwestern margin of Tarim basin. In other words, the northwestern margin of Tarim basin is a passive continental margin during Late Devonian to Early Carboniferous.

Key words: Bachu area; Upper Devonian to Lower Carboniferous; detrital zircon; geochronology; tectonic evolution; geochemistry.

0 引言

塔里木盆地及其周缘造山带的形成演化一直是 地质学家关注的热点问题(贾承造,2004;Gao et al.,2009;Zhang et al.,2013),对其解剖分析对 整个中亚造山带、中央造山带的研究具有重要意义 (Xiao et al.,2005;Ge et al.,2012a).人们对塔里木 盆地泥盆纪一石炭纪周缘构造活动及盆内沉积演化 一直存在诸多争议(Carroll et al.,1995;高俊等, 2006,2009;Charvet et al.,2007;Lin et al.,2008; Wang et al.,2011;Ge et al.,2012a),其中有关晚古 生代洋一陆转换构造演变关键期的证据大多来自于 前人的结晶学、地球化学以及造山带地层构造综合 工作(Zhang et al., 2007; Zhu et al., 2008; Gao et al., 2009; Wang et al., 2011; Charvet et al., 2007).但由于洋盆闭合的时空差异性、造山带地层 构造的复杂性和中新生代构造的叠加,造成人们对 晚古生代塔里木盆地北缘构造演化、南天山洋俯冲 闭合模式的认识存在较大分歧(高俊等, 2006, 2009; Charvet et al., 2007; Lin et al., 2008, 2013; Wang et al., 2011; Ge et al., 2012a),因此需要进一 步明确该时期塔里木北缘洋一陆转换过程.

运用碎屑锆石原位 U-Pb 和 Lu-Hf 同位素信息 来判断物源、恢复古地理、揭示构造演化已经成为一

Fig.1 Geological sketch of Bachu area and the position of detrial zircon

改自 Yang et al.(2007)

种可靠成熟的方法(Li and Peng, 2010;李忠和彭守 涛, 2013; Han et al., 2015).目前对塔里木盆地内碎 屑锆石测年工作主要集中于志留系、中新生界, 而对 洋一陆转换关键地质历史时期的上泥盆统一石炭系 则关注较少(Li and Peng, 2010; Shu et al., 2011; Liu et al., 2012a, 2012b).巴楚地区具有塔里木盆地 极少的出露完好的上泥盆统一二叠系,提供了研究 西南天山与塔里木盆地耦合作用的良好的"靶区". 笔者针对塔里木盆地西北缘巴楚地区上泥盆统一下 石炭统剖面砂岩样品, 在沉积体系、重矿物、碎屑骨 架组分等分析基础上, 应用 LA-ICP-MS 方法进行 碎屑锆石 U-Pb 和 Lu-Hf 同位素分析, 重点探讨碎 屑物源体系及其与晚古生代塔里木盆地陆缘构造演 化的响应关系, 为认识该期构造一沉积古地理和动 力学演变提供了新的证据.

1 地质背景和样品采集

1.1 构造和地层

塔里木盆地位于中国西北部(图 1a),介于天山 造山带和昆仑造山带之间(图 1b),是在前震旦纪结 晶基底之上发展形成的大型叠合盆地.随着 Rodinia 超大陆的解体,塔里木陆块周缘开始裂解,至震旦纪 塔里木陆块已经发展成为古亚洲洋和原特提斯洋之 间的一个"孤岛".寒武纪一奥陶纪,周缘洋盆持续裂 解并达到鼎盛,南天山洋由早古生代早期的有限洋 盆演化为早古生代晚期的广阔大洋(林畅松等, 2011),盆地内主要沉积巨厚的海相碳酸盐岩、白云 岩等.奥陶纪末期一早中泥盆世,阿尔金洋、西昆仑 洋逐渐闭合造山,盆地构造格局由伸展转变为挤压 (林畅松等,2011),盆内主要沉积一套河流、三角洲、

图 2 巴楚地区上泥盆统一下石炭统沉积剖面及样品位置

Fig.2 The Upper Devonian to Lower Carboniferous depositional column and position of samples of the Bachu outcrop 改自李罗照等(1996)

潮坪、陆棚相的碎屑岩.晚古生代南天山洋逐渐闭 合,晚加里东运动使盆地大部分地区出露剥蚀,形成 上泥盆统与之前地层的大型角度不整合,其古地理 格局控制着上泥盆统一石炭系沉积体系的展布(林 畅松等,2011).晚泥盆世一石炭纪发育了盆地内最 后一次大规模的海侵,盆地沉积了一套三角洲、滨 岸、潮坪、台地、陆棚相的细碎屑岩夹薄层碳酸盐岩, 自下而上可分为东河塘组、甘木里克组、巴楚组、卡 拉沙依组、小海子组(图2),甘木里克组仅包括含砾 砂岩段,巴楚组可进一步细分为下泥岩段、生屑灰岩 段、中泥岩段、标准灰岩段,卡拉沙依组可进一步细 分为上泥岩段、砂泥岩段.

巴楚隆起位于盆地中央隆起带的西段,在震旦 纪前就已经是一个宽缓的隆起,寒武纪一奥陶纪继 承了震旦纪的构造面貌,隆起范围进一步扩大,并一 直持续到泥盆纪.巴楚剖面位于巴楚隆起的北部,夹 持于柯坪断隆、塔中低隆起、阿瓦提凹陷、塘西南坳 陷之间,是一个由断裂控制的活动古隆起.巴楚地区 大部分地层被第四系所覆盖,仅在东部 40 km 处的 小海子水库附近出露志留系、泥盆系、石炭系及下二 叠统(张师本和高琴琴, 1992)(图 1c,1d).本文重点 研究的巴楚剖面位于小海子水库东岸,剖面岩性主 要为细碎屑岩、膏盐及碳酸盐岩.

1.2 样品采集

针对巴楚剖面进行了系统的样品采集与测试(图 2).符合统计条件(李忠等,1999)的砂岩碎屑骨架样 品共17个,主要集中于东河砂岩段、含砾砂岩段、下 泥岩段、中泥岩段、标准灰岩段(图 2),岩性为中细砂 岩.重矿物样品共有3件,均为中细砂岩(图 2).

年代学样品共2件(图1,图2).BC1-13取自东 河塘组最底部的灰白色中细砂岩层(图2),GPS点 坐标为N39°44′03″、E78°51′55″,塔中、塔北东河砂 岩时代为晚泥盆世法门期,考虑到东河塘组穿时性 强,且样品取自巴楚东河塘组底部1m处,所以该样 品时代可能为早法门期或者更早.BC3-9取自巴楚 组标准灰岩段中的砂岩层(图2),GPS点坐标为 N39°41′52″、E78°50′11″,为晚杜内阶一早维宪阶紫 红色中细砂岩.

样品 BC1-13 粒径为 0.1~0.3 mm(图 3),平均 约为 0.2 mm,分选磨圆均较好,石英表面光洁,少部 分可见次生加大,石英颗粒约占 90%,长石和岩屑 含量极低.样品 BC3-9 粒径为 0.15~0.35 mm(图 3),平均约为 0.25 mm,分选磨圆均较好,石英表面 光洁,少部分可见次生加大,石英颗粒约占90%以

图 3 巴楚剖面砂岩正交偏光镜下特征

Fig.3 Microscopic feature of sandstone of Bachu outcrop

BC1-13.上泥盆统东河塘组中细砂岩;BC1-22.上泥盆统甘木里克组中细砂岩;BC3-4.下石炭统巴楚组中细砂岩;BC3-9.下石炭统巴楚组中细砂岩;BC3-9.下石炭统巴楚组中细砂岩;BC3-9.下石炭统巴楚组中细砂岩;BC3-4.下石炭统巴楚组中细砂岩;BC3-9.下石炭统巴楚组中细砂岩;BC3-9.下石炭统巴楚组中细砂岩;BC3-9.下石炭统巴楚组中细砂岩;BC3-9.下石炭统巴

上,长石和岩屑含量极低.两个样品石英颗粒均以单 晶石英为主,长石以斜长石为主,岩屑以沉积岩岩屑 为主,(变质)结晶岩岩屑极少.

2 沉积环境与岩矿组成特征

2.1 沉积环境

东河砂岩是一套海侵背景下、由西向东逐渐超 覆的滨岸碎屑岩沉积体,在不同地区与下伏寒武系、 奥陶系、志留系和泥盆系呈角度不整合接触.巴楚剖 面东河砂岩岩性主要为灰白色石英砂岩、细砂岩、含 砾砂岩,砂岩成分成熟度、结构成熟度均高.沉积构 造丰富(图 4a),可见剥离线理,不含生物化石,为典 型的滨岸相沉积体(张师本和高琴琴,1992;许杰, 2009).东河砂岩沉积之后,研究区经历短暂的剥蚀, 含砾砂岩段底部发育古土壤层(许杰,2009),并含有 0~0.6 m 的底砾岩,向上以滨岸砾岩为主(图 4b), 成分成熟度、结构成熟度高,为典型的滨岸相沉积.

巴楚组下泥岩段岩性主要为粉砂岩、泥岩,夹膏 岩、灰岩等(图 4c).砂岩颗粒分选磨圆较好,成分成 熟度、结构成熟度较高,概率累积曲线中跳跃组分均 为斜率不同的两段,为潟湖相沉积.生屑灰岩段岩性 主要为泥晶灰岩、生屑灰岩,夹泥岩、粉砂岩,生物碎 屑异常发育,水体能量强,砾屑分选磨圆较好,可见 波纹层理(图 4d)、透镜层理,波浪作用较强,可能为 开阔台地相沉积.

巴楚组中泥岩段以潟湖相薄层粉砂岩、粉砂质 泥岩、泥晶灰岩为主,夹膏岩层,发育水平层理、小型 交错层理(图4e).标准灰岩段岩性主要为台地相碳 酸盐岩、砂岩,厚度约为20m,夹有约5m的砂岩层 (图4f).砾屑灰岩极其发育,其中砾屑分选磨圆均较 好(图4g),反映高能的沉积环境.上部灰岩与泥岩 呈薄互层(图4h).

卡拉沙依组上泥岩段、砂泥岩段岩性主要为膏 岩、硫酸盐岩夹粉砂岩、泥岩(图 4i),反映了当时干热

图 4 巴楚剖面主要岩性、构造

Fig.4 Lithologic and sedimentary structure photographs of the Bachu outcrop

a.东河塘组冲洗交错层理,东河砂岩沉积构造丰富,发育各种交错层理、水平层理、流水线理、剥离线理等;b.含砾砂岩段滨岸砾岩,砾石以石英 质为主,分选磨圆均较好;c.巴楚组下泥岩段土黄色泥岩夹灰绿色粉砂岩,显示低能的潟湖环境;d.巴楚组生屑灰岩段,被压扁的波纹层理,显 示台地的波浪作用较强;e.巴楚组中泥岩段小型交错层理;f.巴楚组标准灰岩段,灰岩层中夹河道砂岩,说明有短期的河流注入;g.巴楚组标准 灰岩段上部灰岩层,砾屑灰岩极其发育,砾屑分选磨圆均很好,反映高能的沉积环境;h.标准灰岩段上部,灰岩与泥岩薄互层;i.卡拉沙依组,蒸 发坪环境,发育厚层的膏岩层,可见粉砂岩夹层

图 5 巴楚剖面砂岩碎屑组分与物源类型三角图 Fig.5 Triangular plots showing sandstone fragment components and provenance of the Bachu outcrop Qm.单晶石英;Qp.多晶石英;K.钾长石;P.斜长石;Lv.(变质)结 晶岩岩屑;Ls.(变质)沉积岩岩屑;Q.总石英颗粒;F.长石;L.不稳 定复晶岩屑;Lt.岩屑总含量.改自 Dickinson and Suczek(1979)

的气候和蒸发坪的沉积环境.小海子组岩性主要为泥 晶灰岩、微晶灰岩、钙质页岩夹粉砂质泥岩、泥岩等, 化石较多且保持完好,表明其可能为台地沉积.

2.2 碎屑岩矿特征

笔者针对巴楚剖面的东河塘组、甘木里克组、巴 楚组开展了碎屑砂岩薄片鉴定统计.碎屑骨架组成 分析方法参考 Dickinson and Suczek (1979)和李忠 等(1999).符合统计原则并参加作图的有效砂岩样 品共 17 个(图 2).

砂岩碎屑统计显示,东河塘组、巴楚组碎屑组分 以石英颗粒为主(图 3),含量为 83.8%~97.5%,其 中主要为单晶石英,几乎不含多晶石英.长石颗粒含 量为 2.0%~11.3%,以斜长石为主.基本不含云母. 岩屑颗粒含量为 0~6.7%,以(变质)沉积岩岩屑为 主,(变质)结晶岩岩屑极少.如图 5 所示,样品基本 都落入陆块物源区,少部分落入成熟岩石与稳定构 架合并处,说明该时期研究区的物源主要为成熟的 克拉通物质,其可能主要来自塔里木盆地内部,且该 时期构造活动平静,盆山分异作用弱.泥盆纪一石炭 纪塔里木盆地北缘大部分地区长时间为剥蚀区,这 些剥蚀区可能成为潜在的物源区.

同时,对巴楚剖面3件砂岩样品进行了重矿物 组合分析.样品处理程序参考李忠等(1999).鉴定结 果的体积百分比列于表1和图2.

自下而上各种重矿物的表形特征具有很大的相 似性.锆石分两种,一种呈玫瑰色,透明或者金刚一 弱毛玻璃光泽,半自形为主,少数为自形、次圆粒状, 表面常见凹坑.另一种锆石呈浅粉色,半自形一次圆 粒状主,个别为自形,透明或金刚一弱毛玻璃光泽. 含 TiO₂ 矿物多为次棱角状一次圆状.电气石多为黑 褐色,柱状、次圆粒状,透明一玻璃光泽.镜铁矿、赤 褐铁矿形态多为立方体或次棱角状,该类重矿物可 能大多是自生矿物,在对比时将其剔除.

重矿物分析结果显示,重矿物类型以锆石、白钛石、金红石、锐钛矿、电气石、磷灰石为主(图 2).3件样品重矿物组合均以锆石+电气石+TiO2矿物为主,其含量占稳定重矿物的 94.1%~100.0%,不含中等稳定和不稳定重矿物.从重矿物组合特征来看,源区母岩类型始终以沉积岩+低级变质岩为主.

3 研究方法与测试结果

3.1 实验方法

上泥盆统东河塘组样品 BC1-13、下石炭统巴楚 组标准灰岩段样品 BC3-9 的 CL 图、U-Pb、Lu-Hf 测试均在中国科学院地质与地球物理研究所岩石圈 演化国家重点实验室完成.样品分析时激光斑束直 径为 32 μm,激光剥蚀样品的深度为 20~40 μm.标 准锆石 91500 和 NIST610 被用来进行数据校正.数 据处理采用软件 Glitte4.0,并进行了详细的 Pb 校 正.本文取不谐和度小于 10%的为有效数据点.年龄 计算和图谱制作运用 Isoplot 软件处理,详细的实验 步骤和处理方法参见 Yuan *et al.*(2004).

Hf同位素测定在 Neptune MC-ICP-MS 仪器 上进行,频率为8Hz,能量为100mJ,分析点与

表1 巴楚剖面砂岩重矿物统计(%)

		-				-		-	
样品	层位	锆石	白钛石	金红石	锐钛矿	电气石	磷灰石	赤褐铁矿	镜铁矿
BC1-13	东河塘组	50.6	5.0	0.8	26.3	13.5	3.7		
BC1-22	甘木里克组	42.5	0.9		1.2	0.9	8.8		45.7
BC3-9	标准灰岩段	64.4	9.9	0.7	1.1	10.9		13.0	

Table 1 Heavy minerals statistics of sandstone samples in the Bachu outcrop

图 6 碎屑锆石样品 U-Pb 谐和图和年龄频谱 Fig.6 Concordia plots, Histograms and relative probability plots of detrital zircon U-Pb ages

U-Pb定年分析点为同一位置.Lu-Hf 同位素测定用 ¹⁷⁶Lu/¹⁷⁵Lu=0.026 6 和¹⁷⁶Yb/¹⁷²Yb=0.588 6 进行 同量异位干扰校正计算测试样品的¹⁷⁶Lu/¹⁷⁷Hf 和 ¹⁷⁶Hf/¹⁷⁷Hf比值. $\epsilon_{\rm Hf}$ 的计算采用¹⁷⁶Lu 衰变常数为 1.867×10⁻¹¹ a(Scherer *et al.*,2001).球粒陨石现今 推荐值¹⁷⁶Hf/¹⁷⁷Hf = 0.282 772,¹⁷⁶Lu/¹⁷⁷Hf = 0.0332,Hf 亏损地幔单阶段模式年龄($t_{\rm DM}$)的计算 采用现今的亏损地幔¹⁷⁶Hf/¹⁷⁷Hf=0.2832和 ¹⁷⁶Lu/¹⁷⁷Hf=0.0384,两阶段模式年龄 t_{DM} ^C依据大陆上地壳平均组成($f_{Lu/Hf}$ =-0.72)计算.详细的实验步骤、处理方法和参数选取参见吴福元等(2007)及其参考文献.

碎屑锆石 U-Pb 和 Lu-Hf 分析数据见附表 1 和 附表 2(www.earth-science.net/index.aspx).两件碎 屑锆石样品 U-Pb 谐和图和年龄谱图如图 $6, \epsilon_{Hf}(t)$ 如图 7,对应的 Th/U 如图 8,典型的 CL 如图 9.

图 8 碎屑锆石 Th/U 比值分布

Fig.8 Th/U plots of detrital zircons from the two samples

3.2 测试结果

两个样品共 257 个测试点中共获得 244 个有效 年龄(图 6).U-Pb 有效年龄主要集中在 383~479 Ma、 710~932 Ma、1 752~1 936 Ma、2 419~2 597 Ma(图 6).在各组年龄中,710~932 Ma 和383~479 Ma 年龄 组所占比例最大,分别为 40.2%和 21.7%.

根据 Th/U 比值(图 8)、CL 图特征(图 9), 383~479 Ma 锆石颗粒均有明显的环带结构,Th/U 比值为 0.15~1.42,平均为 0.66,显示出明显的岩浆 起源的特征.大部分 710~932 Ma 锆石颗粒 CL 图 特征与 383~479 Ma 锆石相似,Th/U 比值为 0.15~2.00,平均为 0.60,可能为岩浆成因.而 1752~1936 Ma 锆石既有显示出明显的环带结构, 又显示出均质、溶蚀的特点,Th/U 比值 0.09~ 1.04,平均为 0.58,可能部分为变质成因.而 2 419~ 2 597 Ma锆石与 1 752~1 936 Ma 锆石相似,Th/U 比值0.03~1.61,可能部分为变质成因.

244 个年龄数据中,共得到 240 个有效的 Hf 同 位素分析结果(图 7).值得注意的是,90%以上的中 新元古代(710~932 Ma)、晚古元古代(1 752~ 1 936 Ma)锆石的 $\epsilon_{\rm Hf}(t)$ 值为负值,说明该期锆石多 为古老地壳重熔的产物;而 36%的古生代(383~ 479 Ma)锆石的 $\epsilon_{\rm Hf}(t)$ 值为正值,说明虽然该期锆石 大部分为古老地壳重熔的产物,但新生的地壳物质 也明显增多.

4 讨论

Fig.9 Typical CL images of detrital zircons 图中圆圈代表原位测试点,直径为 32 μm.红色数字为 U-Pb 年龄,单位为 Ma;绿色数字为 ε_{Hf}(t)值

研究表明,2500 Ma 左右发生了一次全球性的

地壳增生事件,在华北、塔里木、华南、西非、北芬兰 等地都有这一期的岩浆记录(Shu et al.,2011).在塔 里木盆地及周缘,已获得的部分该期结晶岩主要出 露在库鲁克塔格地区(Long et al.,2010;Shu et al., 2011).本文样品 2 419~2 597 Ma年龄峰可能正好 记录了这次增生事件.

碎屑锆石样品中记录到了明显的1752~ 1936 Ma年龄峰,该年龄峰常与Columbia超大陆汇 聚事件相关(Shu et al.,2011).该期构造事件在塔里 木盆地内有着广泛的记录,目前主要出露于库鲁克 塔格和塔西南铁克里克地区(Wang,2011).

710~932 Ma 年龄峰与塔里木盆地内的岩浆活 动有很好的一致性.Rodinia 超大陆裂解事件在塔里 木盆地留下大量的印记,在盆地内库鲁克塔格、阿克 苏、腹部、铁克里克等都广泛发育有约800 Ma的双 峰式火山、基性岩墙群、碱性花岗岩等,并伴随着"雪 球"事件和冰碛岩(李曰俊等,2003; Shu *et al.*, 2011). Rodinia 聚合事件持续时间为860~ 1140 Ma,裂解事件的持续时间约为680~840 Ma (Shu *et al.*,2011),样品中记录到的710~932 Ma 年龄峰除了记录了完整的超大陆裂解事件外,还记 录了部分超大陆汇聚事件.

383~479 Ma 年龄峰占有显著比例,说明物源区 该时期存在明显的构造活动.相对应的,塔里木地块 及周缘古生代构造活动频繁,与之相关的岩浆活动广 泛发育于塔里木及周缘造山带中(Xiao et al.,2005; 高俊等,2009),主要与周缘洋盆的俯冲闭合造山有 关.前人对该期结晶岩 U-Pb 年龄进行了诸多统计(彭 守涛,2007;李忠和彭守涛,2013;郭春涛,2014),南天 山造山带结晶岩年龄主要集中于 290~350 Ma、360~ 460 Ma;中天山造山带结晶岩年龄主要集中于 290~ 370 Ma、370~490 Ma;西昆仑造山带结晶岩年龄主要 集中于380~530 Ma;阿尔金造山带结晶岩年龄主要 集中于 400~510 Ma.样品中记录到的 383~479 Ma 年龄峰,可能与周缘单个俯冲造山活动或多个俯冲造 山活动的叠加有关.

4.2 物源体系

前人对塔里木盆地西北缘泥盆系一石炭系物源 体系进行了大量的研究,李曰俊等(1999)认为巴楚 地区志留系一石炭系碎屑砂岩的物源主要来自盆地 内部;郭战峰等(2004)认为柯坪、巴楚断隆志留系一 泥盆系来自相对稳定的再旋回造山带和大陆块物源 区;Carroll *et al*.(1995,2001)认为盆地西北缘志留 系一泥盆系物源主要为阿尔金造山带,石炭系物源 为盆地内古隆起; Han et al. (2015)认为盆地西北缘 石炭系来源于盆地内前石炭系地层的剥蚀; 李忠等 (2015)认为盆地北缘东部泥盆系一石炭系物源除了 盆地北缘岛弧外,还有来自阿尔金造山带和西昆仑 造山带的再旋回沉积, 而盆地北缘西部主物源为盆 地内前寒武基底.大多数研究者认为塔里木盆地西 北缘泥盆一石炭系的物源来自于盆地内部(郭战峰 等, 2004; Liu et al., 2012b; Han et al., 2015; 李忠 等, 2015).而本研究则更进一步,认为不仅有来自盆 地内的物源,还有来自阿尔金造山带、西昆仑造山带 的再旋回沉积(李忠等, 2015).

对巴楚剖面来说,该时期南天山洋盆尚未闭合, 中天山造山带、南天山造山带不可能成为研究区的物 源区,主要依据有:(1)南天山洋可能于晚泥盆世一早 石炭世闭合(Carroll et al., 1995; 高俊等, 2006, 2009; Charvet et al., 2007, 2011; Wang et al., 2011), 近年来 放射虫资料进一步证实洋盆可能闭合于早石炭世维 宪期(Wang et al., 2011).而本文所测样品的时代为晚 泥盆世--早石炭世维宪期,样品年龄基本上接近或早 于洋盆闭合时间,因此南天山洋可能没有闭合,且其 会阻隔来自北边的物源;(2)样品 BC3-9 地质年龄约 为340 Ma或更小,与获得的最小碎屑锆石年龄相差 40 Ma以上,也从侧面证明上述结论; (3)两个样品记 录到明显的 383~479 Ma 年龄峰,峰值于460 Ma.而 南天山造山带、中天山造山带结晶岩年龄分布于 290~490 Ma,绝大部分小于 460 Ma,且峰值于420 Ma 左右, 与样品年龄峰差别明显. 也就是说, 383~ 479 Ma年龄碎屑锆石不可能来自北侧的天山造山带, 可能暗示着该时期洋盆依然存在,并阻止了天山造山 带为研究区提供碎屑物质.

年代学对比不能排除来自阿尔金和西昆仑再旋 回沉积的可能性,特别是研究地层中发现有大量的 383~479 Ma的碎屑锆石,这并非塔里木陆块结晶 岩物源所能解释的,而这与已经揭示的 400~ 500 Ma左右阿尔金和西昆仑岩浆一变质地体可以 对比(图 10),它们可能在晚泥盆世之前就堆积在塔 里木陆块(李忠等,2015),以致志留系一泥盆系含有 大量的 400~500 Ma的碎屑锆石(Liu *et al.*,2012b; Han *et al.*,2015),之后再剥蚀、搬运至研究区.

另外,如图 10 所示,样品与塔里木盆地基底都 具有明显的 800 Ma、1 800 Ma、2 500 Ma 的年龄峰, 说明物源来自于盆地内部的可能性较大.碎屑组分 和重矿物组合特征也均支持盆地内古隆起作为物源 区的可能性.近些年,国内外学者对塔里木盆地出露 的各类前寒武系结晶岩和变质岩进行了众多的 Hf 同位素研究(Long *et al.*,2010,2011;Lei *et al.*, 2012;Ge *et al.*,2012a,2012b,2013),从图 7 可以看 出尽管样品碎屑锆石 $\varepsilon_{\rm Hf}(t)$ 有些分散,但其与塔里 木基底结晶岩的 $\varepsilon_{\rm Hf}(t)$ 极其相似,也说明研究区物 源可能是盆内的古隆起.

值得注意的是,虽然图 10 统计到的阿尔金和西 昆仑造山带前寒武结晶岩 U-Pb 年龄较少,但并不 意味着该区不发育 800 Ma、1 800 Ma、2 500 Ma 的 年龄峰,只是由于目前的研究者更关注于古生代而 已,如西昆仑地块曾是塔里木地块的组成部分,具有 一致的前寒武演化史(Mattern *et al.*,2000).与阿尔 金和西昆仑造山带有关的 800 Ma、1 800 Ma、 2 500 Ma碎屑锆石可能在晚泥盆世之前就堆积在塔 里木陆块上.

综上所述,巴楚地区上泥盆统一下石炭统的物 源主要为塔里木盆地内的古隆起,同时还可能有来 自阿尔金造山带、西昆仑造山带的再旋回沉积.

4.3 塔里木北缘的构造属性

晚古生代塔里木盆地北缘构造属性主要有被动

大陆边缘、活动大陆边缘之争(Carroll et al.,1995, 2001; Charvet et al.,2007; Lin et al.,2008,2013; Ge et al.,2012),争论源于对洋盆俯冲极性认识的差异.目前洋盆俯冲极性主要存在 3 种认识.向南俯冲的主要依据:(1)塔里木盆地北缘发育的一系列岛弧岩浆岩(姜常义等,2001;朱志新等,2008; Ge et al.,2012; Lin et al.,2013);(2)南天山造山带内多期向北的塑形变形(Charvet et al.,2007,2011; Lin et al.,2008; Wang et al.,2011).向北俯冲的主要依据:(1)中天山一伊犁块体内发育的与洋盆向北俯冲有关的岛弧岩浆岩;(2)塔里木北缘广泛发育古生代沉积岩(Carroll et al.,1995,2001),极少有结晶岩出露,其常被认为是被动大陆边缘沉积.双向俯冲模型则是对上述两种模型的综合.

前人对盆地北缘构造属性的研究多集中于造山带结晶岩石学、地球化学以及地层一构造综合工作(姜常义等,2001;Charvet et al.,2007,2011;朱志新等,2008;Wang et al.,2011;Ge et al.,2012;Lin et al.,2013),而对构造演化更为敏感的沉积地质记录分析则不多见,或仅涉及沉积地层的探索(Carroll

Fig.10 Comparison of the ages between the samples and possible source areas a~e引自前人文献(Dong *et al.*,2014;郭春涛,2014;李忠等,2015);g和f为本文样品

et al.,1995,2001;李曰俊等,2003),或研究方法过 于单一.本文所做的砂岩碎屑组分、重矿物、碎屑锆 石等基础工作,有助于对该问题的解析.

碎屑组分分析显示,样品基本都落入陆块物源 区,少部分落入成熟岩石与稳定构架合并处,说明该 时期研究区的物源主要为成熟的克拉通物质,且该 时期构造活动平静,盆山分异作用弱.重矿物组合均 以锆石+电气石+TiO2 矿物为主,不含中等稳定和 不稳定重矿物,说明源区母岩类型始终以沉积岩+ 低级变质岩为主.砂岩碎屑组分、重矿物分析数据均 不支持岛弧作为物源区的可能性.

近年来人们在塔里木北缘东部发现了一系列与 南天山洋俯冲有关的古生代岛弧,主要集中于东部的 野云沟(姜常义等,2001)、库鲁克塔格、黑英山一色日 牙克依拉克(朱志新等,2008)、库尔勒附近(Ge *et al.*, 2012a;Lin *et al.*,2013),U-Pb 年龄主要集中于 387~ 422 Ma,是南天山样盆向南俯冲、塔里木盆地北缘为 活动陆缘的主要证据.虽然本文碎屑锆石结果显示含 有大量的 383~479 Ma 组分,但与物源为北缘岛弧的 塔北地区泥盆系碎屑锆石特征又显著差别(Liu *et al.*,2012b),且其 $\epsilon_{\rm HI}(t)$ 特征也明显不同于盆地北 缘岛弧的 $\epsilon_{\rm HI}(t)$ (图 7),说明碎屑锆石也没有记录到 任何来自北侧岛弧的信息.

塔里木盆地西北缘乌什(郭春涛等,2015)、巴楚 地区晚泥盆世-早石炭世沉积没有记录到任何来自 北侧岛弧的物源,且迄今为止盆地北缘西部还没有 发现与俯冲相关的晚古生代岛弧,这些均说明该时 期在盆地北缘西部可能不存在南天山洋盆的向南俯 冲.而鉴于盆地北缘东部发现的岛弧岩浆岩,李忠等 (2015)认为塔里木盆地北缘的演化模式可能具有时 空差异性,东部为活动大陆边缘,西部为被动大陆边 缘.然而该种演化模式还需要进一步的工作来详细 揭示或证伪.

5 结论

(1)巴楚剖面上泥盆统一下石炭统碎屑锆石 U-Pb 定年主要反映 4 期年龄: 383~479 Ma、710~ 932 Ma、1752~1936 Ma、2419~2597 Ma.主要反 映了 4 期构造热事件, 383~479 Ma 组年龄主要与 早古生代塔里木地块及周缘强烈的构造活动有关, 是单个或多个俯冲造山活动的产物; 710~932 Ma 组年龄记录了 Rodinia 超大陆汇聚一裂解事件在塔 里木盆地上留下的印记: 1752~1936 Ma 组年龄说 明塔里木盆地卷入了 Columbia 超大陆汇聚过程, 是塔里木重要的地壳增生和岩浆事件;而 2 419~ 2 597 Ma组年龄代表了在塔里木地块在 25 Ga 左右 所发生的地壳增生事件.

(2)巴楚剖面上泥盆统一下石炭统物源主要为 塔里木盆地内的古隆起,同时还可能有来自阿尔金 造山带、西昆仑造山带的再旋回沉积.该时期南天山 洋盆并没有闭合,各种沉积记录并没有显示出来自 盆地北侧造山带或岛弧的物源信息.

(3)碎屑组分、重矿物、碎屑锆石等工作显示,塔 里木盆地北缘西部可能不存在洋盆向南俯冲,其可 能为被动大陆边缘.

致谢:感谢两位匿名审稿人对本文的建设性意见! CL 图像分析得到中国科学院地质与地球物理研究所扫描电镜实验室杨赛红老师的帮助,锆石 U-Pb、Hf 同位素测定得到中国科学院地质与地球物理研究所 LA-ICP-MC 实验室杨岳衡老师的帮助, 在此一并表示衷心感谢!

References

- Carroll, A.R., Graham, S.A., Hendrix, M.S., et al., 1995. Late Paleozoic Tectonic Amalgamation of Northwestern China: Sedimentary Record of the Northern Tarim, Northwestern Turpan, and Southern Junggar Basins. Geological Society of America Bulletin, 107(5):571-594.
- Carroll, A.R., Graham, S.A., Chang, E.Z., et al., 2001. Sinian through Permian Tectonostratigraphic Evolution of the Northwestern Tarim Basin, China. Geological Society of America Memoir, 194:47-70.
- Charvet, J., Shu, L. S., Laurent-Charvet, S., 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. *Episodes*, 30(3):162-186.
- Dickinson, W. R., Suczek, C. A., 1979. Plate Tectonics and Sandstone Compositions. *AAPG Bulletin*, 63 (12): 2164-2182.
- Dong, S.L., Li, Z., Xu, J.Q., et al., 2014. Detrital Zircon U-Pb Geochronology and Hf Isotopic Compositions of Middle-Upper Ordovician Sandstones from the Quruqtagh Area, Eastern Tarim Basin: Implications for Sedimentary Provenance and Tectonic Evolution. *Chinese Science Bulletin*, 59 (10): 1002 - 1012. doi: 10.1007/s11434 -013-0073-9
- Gao, J., Long, L.L., Qian, Q., et al., 2006. South Tianshan: A late Paleozoic or a Triassic Orogen? Acta Petrologica Sinica, 22(5):1049-1061 (in Chinese with English abstract).

第 42 卷

- Gao, J., Long, L.L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. doi: 10.1007/s00531-008-0370-8
- Gao, J., Qian, Q., Long, L.L., et al., 2009. Accretionary Orogenic Orocess of Western Tianshan, China. Geological Bulletin of China, 28 (12): 1804 - 1816 (in Chinese with English abstract).
- Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2012a. The Paleozoic Northern Margin of the Tarim Craton: Passive or Active? *Lithos*, 142 - 143: 1 - 15. doi: 10.1016/j.lithos. 2012.02.010.
- Ge, R. F., Zhu, W. B., Zheng, B. H., et al., 2012b. Early Pan-African Magmatism in the Tarim Craton: Insights from Zircon U-Pb-Lu-Hf Isotope and Geochemistry of Granitoids in the Korla Area, NW China. Precambrian Research, 212 – 213: 117 – 138. doi: 10.1016/j. precamres. 2012.05.001
- Ge, R.F., Zhu, W.B., Wu, H.L., et al., 2013. Timing and Mechanisms of Multiple Episodes of Migmatization in the Korla Complex, Northern Tarim Craton, NW China: Constraints from Zircon U-Pb-Lu-Hf Isotopes and Implications for Crustal Growth. Precambrian Research, 231:136-156.doi: 10.1016/j.precamres.2013.03.005
- Guo, C. T., 2014. Sedimentary Records, Provenance Systems and Paleogeography Reconstruction of Devonian-Carboniferous in Northern Tarim (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
- Guo, C. T., Li, Z., Gao, J., et al., 2015. Depositional and Detrital Zircon Geochronological Records of Carboniferous System in Wushi, Northwest Tarim Basin: Implications for Tectonic Evolution. Acta Petrologica Sinica, 31(9): 2679-2695 (in Chinese with English abstract).
- Guo,Z.F., Liu, X. M., Liu, J., 2004. Sandstone Detrital Composition and Tectonic Setting through Silurian to Devonian in Keping and Bachu Uplift. *Henan Petroleum*, 18 (4):7-10 (in Chinese).
- Han, Y.G., Zhao G.C., Sun, M., et al., 2015. Paleozoic Accretionary Orogenesis in the Paleo-Asian Ocean: Insights from Detrital Zircons from Silurian to Carboniferous Strata at the Northwestern Margin of the Tarim Craton. *Tectonics*, 34 (2): 334 351. doi: 10.1002/2014TC003668
- Jia, C.Z., 2004. Stratigraphy of the Tarim Basin and Adjacent Areas: Summary of the Stratigraphy. Science Press, Bei-

jing,1063 (in Chinese).

- Jiang, C. Y., Mu, Y. M., Zhao, X. N., et al., 2001. Petrology and Geochemistry of an Active Continental-Margin Intrusive Rock Belt on the Northern Margin of the Tarim Plate. *Regional Geology of China*, 20(2):158-163 (in Chinese).
- Lei, R. X., Wu, C. Z., Chi, G. X., et al., 2012. Petrogenesis of the Palaeoproterozoic Xishankou Pluton, Northern Tarim Block, Northwest China: Implications for Assembly of the Supercontinent Columbia. International Geology Review, 54 (15): 1829 - 1842. doi: 10.1080/00206814. 2012.678045
- Li, L.Z., Li, Y.B., Xiao, C.T., et al., 1996. The Carboniferous-Permian Stratigraphy of Tarim Basin. Petroleum Industry Press, Beijing, 132 (in Chinese with English abstract).
- Li, Y.J., Mai, G.R., Luo, J.C., et al., 1999. Palaeozoic Tectonic Setting and Provenance Nature Discrimination of Bachu Fault-Uplift, Tarim, Northwest China. Journal of Palaeogeography, 1(4):45-53 (in Chinese with English abstract).
- Li, Y.J., Wang, Z.M., Wu, H.R., et al., 2010. Discovery of Radiolarian Fossils from the Aiketik Group at the Western End of the South Tianshan Mountains of Chinaand Its Implications. Acta Geologica Sinica, 76(2):146-153.
- Li, Z., Li, R.W., Sun, S., et al., 1999. Detrital Composition and Provenance Tectonic Attributes of Jurassic Sandstones, South Hefei Basin. Acta Petrologica Sinica, 15(3): 438-445 (in Chinese with English abstract).
- Li, Z., Peng, S. T., 2010. Detrital Zircon Geochronology and Its Provenance Implications: Responses to Jurassic through Neogene Basin-Range Interactions along Northern Margin of the Tarim Basin, Northwest China. Basin Research, 22(1):126-138.doi:10.1111/j.1365-2117.2009.00440.x
- Li, Z., Gao, J., Guo, C. T., et al., 2015. Devonian-Carboniferous Tectonic Evolution of Continental Margins in Northern Tarim Block, Northwest China: Constrained by Basin-Fill Sequences and Provenance Systems. *Earth Science Frontiers*, 22(1):35-52 (in Chinese with English abstract).
- Lin,C.S.,Li,S.T.,Liu,J.Y., et al., 2011. Tectonic Framework and Paleogeographic Evolution of the Tarim Basin during the Paleozoic Major Evolutionary Stages. Acta Petrologica Sinica, 27 (1): 210 - 218 (in Chinese with English abstract).
- Lin, W., Faure, M., Shi, Y.H., et al., 2008. Palaeozoic Tectonics of the South-Western Chinese Tianshan: New Insights from a Structural Study of the High-Pressure/

Low-Temperature Metamorphic Belt. International Journal of Earth Sciences, 98(6):1259-1274.doi:10. 1007/s00531-008-0371-7

- Lin, W., Chu, Y., Ji, W., et al., 2013. Geochronological and Geochemical Constraints for a Middle Paleozoic Continental Arc on the Northern Margin of the Tarim Block: Implications for the Paleozoic Tectonic Evolution of the South Chinese Tianshan. *Lithos phere*, 5(4): 355 - 381. doi:10.1130/L231.1
- Liu, J. Y., Lin, C.S., Li, S.T., et al., 2012a. Detrital Zircon U-Pb Geochronology and Its Provenance Implications on Silurian Tarim Basin. Journal of Earth Science, 23(4): 455-475.doi:10.1007/s12583-012-0268-z
- Liu, J. Y., Yang, H. J., Yang, Y. H., et al., 2012b. The U-Pb Chronologic Evidence and Sedimentary Responses of Silurian Tectonic Activities at Northeastern Margin of Tarim Basin. Science China Earth Sciences, 55 (9): 1445-1460.doi:10.1007/s11430-012-4466-4
- Long, X. P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. *Precambrian Research*, 180(3): 272 - 284. doi: 10.1016/j. precamres. 2010.05.001
- Long, X.P., Yuan, C., Sun, M., et al., 2011. The Discovery of the Oldest Rocks in the Kuluketage Area and Its Geological Implications. Science China Earth Sciences, 54 (3):342-348.doi:10.1007/s11430-010-4156-z
- Mattern, F., Schneider, W., 2000. Suturing of the Proto- and Paleo-Tethys Oceans in the Western Kunlun (Xijiang, China): Journal of Asian Earth Sciences, 18, 637 – 650.doi:10.1016/S1367-9120(00)00011-0
- Peng, S. T., 2007. Mesozoic-Cenozoic Sedimentary Records of the Piedmont Basins along the Southern and Northern Sides of Tianshan and Its Geodynamic Significance (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
- Shu, L. S., Deng, X. L., Zhu, W. B., et al., 2011. Precambrian Tectonic Evolution of the Tarim Block, NW China: New Geochronological Insights from the Quruqtagh Domain. Journal of Asian Earth Sciences, 42(5):774-790.doi: 10.1016/j.jseaes.2010.08.018
- Wang, B., Shu, L.S., Faure, M., et al., 2011. Paleozoic Tectonics of the Southern Chinese Tianshan: Insights from Structural, Chronological and Geochemical Studies of the Heiyingshan Ophiolitic Mélange (NW China). Tectonophysics, 497(1-4): 85-104. doi: 10.1016/j.tecto. 2010.11.004

- Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract).
- Xiao, W.J., Windley, B.F., Liu, D.Y., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113 (6): 687 – 705.doi;10.1086/449326
- Xu, J., 2009. Sequence Stratigraphy of Upper Devonian-Carboniferous in Tarim Basin (Dissertation).Central South University,Changsha (in Chinese with English abstract).
- Yang, S. F., Li, Z. L., Chen, H. L., et al., 2007. Permian Bimodal Dyke of Tarim Basin, NW China: Geochemical Characteristics and Tectonic Implications. *Gondwana Research*, 12(1-2):113-120.doi::10.1016/j.gr.2006.10.018
- Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. *Geostandards and Geoanalytical Research*, 28 (3): 353 - 370. doi: 10.1111/j.1751 - 908X. 2004. tb00755.x
- Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China.Gondwana Research, 23(4):1306-1315.doi:10. 1016/j.gr.2012.05.009
- Zhang, L.F., Ai, Y.L., Li, X.P., et al., 2007. Triassic Collision of Western Tianshan Orogenic Belt, China: Evidence from SHRIMP U-Pb Dating of Zircon from HP/UHP Eclogitic Rocks. *Lithos*, 96 (1 - 2): 266 - 280. doi: 10. 1016/j.lithos.2006.09.012
- Zhang, S.B., Gao, Q.Q., 1992. Stratigraphy and Paleontology Through Sinian to Permian in Tarim.Petroleum Industry Press, Beijing, 383 (in Chinese).
- Zhu,Z.X.,Li,J.T., Dong,L.H., et al., 2008. Age Determination and Geological Significance of Devonian Granitic Intrusions in Seriyakeyilake Region, Northern Margin of Tarim Basin, Xinjiang. Acta Petrologica Sinica, 24(5): 971-976 (in Chinese with English abstract).

附中文参考文献

- 高俊,龙灵利,钱青,等,2006.南天山:晚古生代还是三叠纪 碰撞造山带?岩石学报,22(5):1049-1061.
- 高俊,钱青,龙灵利,等,2009.西天山的增生造山过程.地质通 报,28(12):1804-1816.
- 郭春涛,2014.塔里木盆地北部泥盆一石炭纪沉积记录与物 源演化及构造一古地理重建(博士学论文).北京:中国

科学院地质与地球物理研究所,1-175.

- 郭春涛,李忠,高剑,等,2015.塔里木盆地西北缘乌什地区石炭系沉积与碎屑锆石年代学记录及其反映的构造演化.岩石学报,31(9):2679-2695.
- 郭战峰,刘新民,刘颉,2004.塔里木盆地柯坪、巴楚断隆志 留一泥盆系砂岩碎屑组分与构造背景关系分析.河南 石油,18(4):7-10.
- 贾承造,2004.塔里木盆地及周边地层:各纪地层总结各分区 地层表.北京:科学出版社,1063.
- 姜常义,穆艳梅,赵晓宁,等,2001.塔里木板块北缘活动陆缘 型侵入岩带的岩石学与地球化学.中国区域地质,20 (2):158-163.
- 李罗照,李艺斌,肖传桃,等,1996.塔里木盆地石炭一二叠纪 生物地层.北京:石油工业出版社,132.
- 李曰俊,买光荣,罗俊成,等,1999.塔里木盆地巴楚断隆古生 代沉积构造背景和物源区性质的探讨.古地理学报,1 (4):45-53.
- 李曰俊,孙龙德,胡世玲,等,2003.塔里木盆地塔参1井底部 花岗闪长岩的⁴⁰ Ar-³⁹ Ar 年代学研究.岩石学报,19(3): 530-536.
- 李忠,李任伟,孙枢,等,1999.合肥盆地南部侏罗系砂岩碎屑 组分及其物源构造属性.岩石学报,15(3):438-444.

- 李忠,彭守涛,2013.天山南北麓中一新生界碎屑锆石 U-Pb 年代学记录、物源体系分析与陆内盆山演化.岩石学 报,29(3):739-755.
- 李忠,高剑,郭春涛,等,2015.塔里木块体北部泥盆-石炭纪 陆缘构造演化:盆地充填序列与物源体系约束.地学前 缘,22(1):35-52.
- 林畅松,李思田,刘景彦,等,2011.塔里木盆地古生代重要演 化阶段的古构造格局与古地理演化.岩石学报,27(1): 210-218.
- 彭守涛,2007.天山南北山前盆地中-新生代沉积记录及其 动力学分析(博士学位论文).北京:中国科学院地质与 地球物理研究所.
- 许杰,2009.塔里木盆地上泥盆统一石炭系层序地层学研究 (博士学位论文).长沙:中南大学.
- 吴福元,李献华,郑永飞,等,2007.Lu-Hf 同位素体系及其岩 石学应用.岩石学报,23(2):185-220.
- 张师本,高琴琴,1992.塔里木盆地震旦纪至二叠纪地层古生物.北京:石油工业出版社,383.
- 朱志新,李锦轶,董连慧,等,2008.新疆塔里木北缘色日牙克 依拉克一带泥盆纪花岗质侵入体的确定及其地质意 义.岩石学报,24(5):971-976.

				Appendix	Lable I Zli いた	rcon LA-IUF	-MIS U-PD	dating data ir	OIII Daciiu	MICa <i> 車 元 山</i>	(A4-)			
样品点	²³² Th/ ²³⁸ U .		,	同仏系	比個				,	表闻牛啜	(IMa)			- 谐和度
WV HH LL) /// -	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	$\pm 1\sigma$	$^{207}{ m Pb}/^{235}{ m U}$	$\pm 1\sigma$	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	$\pm 1\sigma$	$^{207}{ m Pb}/^{206}{ m Pb}$	$\pm 1\sigma$	$^{207}{ m Pb}/^{235}{ m U}$	$\pm 1\sigma$	$^{206}{ m Pb}/^{238}{ m U}$	$\pm 1\sigma$	× inter
BC1-13-001	0.20	0.055 99	0.00271	0.558 19	0.025 09	0.072 30	0.001 61	452	61	450	16	450	10	100.0
BC1-13-002	0.56	0.055 22	0.00741	0.53146	0.06656	0.069 80	0.003 82	421	183	433	44	435	23	99.5
BC1-13-003	0.66	0.068 67	0.002 20	1.312 77	0.03850	0.138 64	0.002 58	889	32	851	17	837	15	101.7
BC1-13-004	0.41	0.163 47	0.00218	10.63147	0.13399	0.471 63	0.006 51	$2 \ 492$	10	$2 \ 491$	12	2491	29	100.0
BC1-13-005	0.62	0.162 09	0.003 85	10.47918	0.23591	0.468 84	0.009 89	2 478	17	2 478	21	2478	43	100.0
BC1-13-006	0.97	0.05573	0.00257	0.539 21	0.02317	0.070 16	0.00147	442	59	438	15	437	6	100.2
BC1-13-007	0.85	0.056 21	0.003 00	0.55149	0.02734	0.071 15	0.00172	461	68	446	18	443	10	100.7
BC1-13-008	0.33	0.066 14	0.00298	1.212 95	0.05037	0.132 99	0.003 10	811	49	807	23	805	18	100.2
BC1-13-009	1.18	0.054 77	0.01160	0.472 17	0.09567	0.062 52	0.004 24	403	324	393	66	391	26	100.5
BC1-13-010	0.38	0.22688	0.002 22	18.75542	0.17835	0.599 49	0.007 33	3 030	6	3 0 2 9	6	3 028	30	100.1
BC1-13-011	0.17	0.182 15	0.00376	12.89018	0.25447	0.513 18	0.010 08	2 673	15	2672	19	2 670	43	100.1
BC1-13-012	0.33	0.064 67	0.002.67	1.113 70	0.04227	0.124 89	0.002 71	764	45	760	20	759	16	100.1
BC1-13-013	0.42	0.123 30	0.00276	6.197 62	0.12929	0.36452	0.006 54	2 005	17	2 004	18	2 004	31	100.0
BC1-13-014	0.77	0.069 36	0.00387	1.405 87	0.07240	0.147 00	0.004 18	606	61	891	31	884	23	100.8
BC1-13-015	0.46	0.057 36	0.00314	0.606 66	0.03061	0.07670	0.001 97	505	67	481	19	476	12	101.1
BC1-13-016	0.38	0.056 37	0.00321	0.573 66	0.03070	0.073 80	0.00173	467	77	460	20	459	10	100.2
BC1-13-017	0.93	0.064 80	0.00432	1.131 05	0.07089	0.126 58	0.003 67	768	84	768	34	768	21	100.0
BC1-13-018	0.43	0.054 81	0.00826	0.492 69	0.07140	0.065 20	0.002 71	404	335	407	49	407	16	100.0
BC1-13-019	0.41	0.07140	0.00487	1.334 44	0.08347	0.135 54	0.004 74	969	72	861	36	819	27	105.1
BC1-13-020	0.69	0.070 79	0.002 64	0.750 98	0.02546	0.07693	0.001 52	951	38	569	15	478	6	119.0
BC1-13-021	0.39	0.066 98	0.00130	1.283 81	0.02290	0.138 99	0.00184	837	18	839	10	839	10	100.0
BC1-13-022	0.55	0.067 30	0.00142	1.306 18	0.02537	0.140 76	0.001 94	847	20	848	11	849	11	6. 09
BC1-13-023	0.16	0.066 49	0.00231	1.25122	0.03986	0.13648	0.002 69	822	35	824	18	825	15	6. 66
BC1-13-024	0.69	0.056 33	0.00381	0.576 55	0.03678	0.074 23	$0.002\ 01$	465	93	462	24	462	12	100.0
BC1-13-025	0.68	0.111 98	0.00373	5.065 62	0.15588	0.328 06	0.007 93	1832	26	1830	26	1829	38	100.2
BC1-13-026	0.48	0.064 96	0.003 35	1.141 84	0.05422	0.127 48	0.003 33	773	57	773	26	773	19	100.0
BC1-13-027	0.36	0.078 05	0.00341	0.859 58	0.03522	0.079 88	0.00121	1148	89	630	19	495	7	127.3
BC1-13-028	0.68	0.151 33	0.00652	8.896 90	0.32916	0.426 39	0.009 44	2361	75	2 327	34	2 289	43	103.1
BC1-13-029	0.29	0.056 00	0.00492	0.568 34	0.04731	0.073 59	0.002 40	452	127	457	31	458	14	99.8
BC1-13-030	1.20	0.065 89	0.01663	1.178 25	0.28364	0.129 67	0.01197	803	364	790	132	786	68	100.5
BC1-13-031	0.55	0.069 19	0.00615	1.392 37	0.11473	0.145 93	0.006 31	904	100	886	49	878	35	100.9
BC1-13-032	0.47	0.153 55	0.00315	9.480 71	0.18356	0.447 77	0.008 27	2386	15	2386	18	2385	37	100.0
BC1-13-033	0.79	0.057 38	0.00437	0.651 35	0.04630	0.082 32	0.002 67	506	100	509	28	510	16	99.8
BC1-13-034	0.67	0.095 34	0.00636	3.524 30	0.21765	0.268 08	0.010 83	1535	60	1533	49	1531	55	100.3
BC1-13-035	0.62	0.065 67	0.002 65	1.137 02	0.04236	0.125 55	0.002 66	796	44	771	20	762	15	101.2

附表1 巴楚地区碎屑锆石 LA-ICP-MS U-Pb 测年数据

第3期

435

头四衣 I	**00007			同位素	比值					表面年齢	≹(Ma)			
年品点	0 007 /4.1.707	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	$^{207}{ m Pb}/^{235}{ m U}$	$\pm 1\sigma$	$^{206}{ m Pb}/^{238}{ m U}$	$\pm 1\sigma$	$^{207}{ m Pb}/^{206}{ m Pb}$	$\pm 1\sigma$	$^{207}{ m Pb}/^{235}{ m U}$	$\pm 1\sigma$	$^{206}{ m Pb}/^{238}{ m U}$	$\pm 1_{\sigma}$	- 诸利度
BC1-13-036	0.60	0.067 41	0.003 35	1.310 03	0.060 20	0.140 93	0.003 57	850	55	850	26	850	20	100.0
BC1-13-037	0.77	0.066 44	0.00287	1.24077	0.04947	0.135 42	0.003 05	820	47	819	22	819	17	100.0
BC1-13-038	0.88	0.067 19	0.00613	1.300 26	0.11137	0.140 34	0.005 68	844	112	846	49	847	32	99.9
BC1-13-039	0.44	0.056 25	0.00313	0.572 45	0.02979	0.073 80	0.00178	462	73	460	19	459	11	100.2
BC1-13-040	1.30	0.055 86	0.00275	0.516 67	0.02375	0.067 08	0.00144	447	64	423	16	419	6	101.0
BC1-13-041	0.57	0.123 13	0.00554	4.833 85	0.19779	0.284 70	0.008 97	2 002	34	1791	34	1 615	45	124.0
BC1-13-042	0.52	0.070 23	0.003 65	1.472 00	0.07013	0.152 01	0.004 24	935	54	919	29	912	24	100.8
BC1-13-043	0.95	0.067 83	0.00238	1.33992	0.04358	0.143 26	0.002 69	863	37	863	19	863	15	100.0
BC1-13-044	0.56	0.065 77	0.00224	1.199 83	0.03770	0.132 30	0.002 44	799	36	801	17	801	14	100.0
BC1-13-045	0.63	0.067 21	0.00313	1.29205	0.05624	0.139 42	0.003 16	844	54	842	25	841	18	100.1
BC1-13-046	0.52	0.141 96	0.00526	8.168 73	0.28426	0.417 30	0.012 19	2 251	27	2 250	31	2 248	55	100.1
BC1-13-047	0.33	0.068 20	0.00276	1.317 31	$0.049\ 00$	0.140 08	0.003 08	875	42	853	21	845	17	100.9
BC1-13-048	1.10	0.066 62	0.00410	1.22786	0.07115	0.133 65	0.003 66	826	76	813	32	809	21	100.5
BC1-13-049	1.10	0.083 53	0.00832	1.599 18	0.14844	0.138 83	0.006 36	1 282	111	970	58	838	36	115.8
BC1-13-050	1.61	0.174 07	0.00623	11.87276	0.405 52	0.494 63	0.015 40	2 597	25	2594	32	2591	66	100.2
BC1-13-051	0.76	0.055 26	0.005 38	0.517 00	0.047 53	0.067 85	0.002 48	423	140	423	32	423	15	100.0
BC1-13-052	0.15	0.057 29	0.00228	0.600 97	0.02207	0.076 07	0.001 49	503	47	478	14	473	6	101.1
BC1-13-053	0.45	0.068 90	0.00184	1.40702	0.03441	0.148 10	0.00241	896	26	892	15	890	14	100.2
BC1-13-054	0.34	0.125 91	0.00887	6.321 29	0.38449	0.364 11	0.012 93	2042	128	2 021	53	2 002	61	102.0
BC1-13-055	1.43	0.067 95	0.00388	1.351 39	0.07162	0.144 23	0.004 09	867	64	868	31	869	23	99.9
BC1-13-056	1.39	0.063 40	0.00436	1.043 54	0.06717	0.119 37	0.003 62	722	86	726	33	727	21	99.9
BC1-13-057	1.20	0.087 46	0.00648	1.14874	0.07713	0.095 24	0.003 56	1 371	73	777	36	586	21	132.6
BC1-13-058	0.23	0.145 99	0.00346	8.596 92	0.19104	0.427 04	0.008 67	2 299	17	2 296	20	2 292	39	100.3
BC1-13-059	0.19	0.070 32	0.00183	1.507 39	0.03596	0.155 46	0.002 50	938	25	933	15	931	14	100.2
BC1-13-060	0.62	0.069 14	0.00173	1.430 80	0.03290	0.150 08	0.002 35	903	24	902	14	901	13	100.1
BC1-13-061	0.22	0.087 35	0.00130	2.843 70	0.039 06	0.236 09	0.002 93	1368	12	1367	10	1366	15	100.1
BC1-13-062	0.78	0.066 87	0.002 24	1.273 12	0.03921	0.138 07	0.002 60	834	34	834	18	834	15	100.0
BC1-13-063	0.74	0.065 17	0.005522	1.151 15	0.090 39	0.128 09	0.005 12	780	66	778	43	777	29	100.1
BC1-13-064	0.42	0.119 21	0.00378	5.795 42	0.17051	0.35254	0.008 37	1 944	24	1 946	25	1 947	40	99.8
BC1-13-065	0.75	0.054 77	0.00532	0.49162	0.04532	0.065 10	0.002 30	403	144	406	31	407	14	99.8
BC1-13-066	0.40	0.066 48	0.00455	$1.264\ 00$	0.080 07	0.137 89	0.004 60	822	78	830	36	833	26	99.6
BC1-13-067	0.36	0.116 12	0.002 50	5.459 70	0.10857	0.340 97	0.005 87	1897	16	1894	17	1891	28	100.3
BC1-13-068	0.60	0.065 94	0.003 29	1.202 21	0.05571	0.132 22	0.003 26	804	57	802	26	801	19	100.1
BC1-13-069	1.00	0.112 09	0.01028	$5.080\ 21$	0.44042	0.328 67	0.017 54	1834	84	1833	74	1832	85	100.1
BC1-13-070	0.26	0.070 07	0.003 65	1.46334	0.070 95	0.151 45	0.003 93	930	58	915	29	606	22	100.7
BC1-13-071	0.65	0.060 19	0.00253	0.790 31	0.03054	0.095 22	0.002 03	610	48	591	17	586	12	100.9

突附表 I				同位素	比值					表面年龄	§(Ma)			
样品点	²³² Th/ ²³⁸ U	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	$\pm 1_{\sigma}$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1_{\sigma}$	$^{206}{ m Pb}/^{238}{ m U}$	$\pm 1\sigma$	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	$\pm 1_{\sigma}$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1_{\sigma}$	$^{206}{ m Pb}/^{238}{ m U}$	$\pm 1_{\sigma}$	- 谐和度
BC1-13-072	0.34	0.129 41	0.00573	6.730 16	0.27775	0.377 14	0.012 47	2 090	33	2 077	36	2 063	58	101.3
BC1-13-073	1.32	0.065 49	0.009 19	1.179 51	0.15886	0.130 61	0.006 40	790	203	791	74	791	36	100.0
BC1-13-074	0.25	0.069 20	0.00231	1.401 53	0.04293	0.146 88	0.002 82	905	33	890	18	883	16	100.8
BC1-13-075	0.65	0.115 50	0.00524	5.408 86	0.22819	0.33962	0.010 65	1 888	36	1886	36	1885	51	100.2
BC1-13-076	0.32	0.067 01	0.00138	$1.284\ 20$	0.02440	0.138 97	0.001 89	838	19	839	11	839	11	100.0
BC1-13-077	0.39	0.18977	0.00299	13.86365	0.20962	0.52978	0.008 44	2740	12	2740	14	2741	36	100.0
BC1-13-078	0.46	0.067 63	0.00439	1.309 56	0.07807	0.140 43	0.00471	857	70	850	34	847	27	100.4
BC1-13-079	1.14	0.120 49	0.00737	5.91656	0.33911	0.356 10	0.014 52	1963	50	1964	50	1964	69	99.9
BC1-13-080	0.49	0.056 36	0.00382	0.58194	0.036 80	0.074 88	0.002 18	467	89	466	24	465	13	100.2
BC1-13-081	0.21	0.067 19	0.00214	1.286 60	0.03786	0.138 87	0.002 46	844	33	840	17	838	14	100.2
BC1-13-082	0.65	0.161 12	0.00386	10.37577	0.23573	$0.467\ 01$	0.009 94	2467	17	2 469	21	2470	44	99.9
BC1-13-083	0.77	0.120 26	0.00572	$5.900\ 21$	0.26043	0.35578	0.01179	1960	37	1961	38	1962	56	99.9
BC1-13-084	2.00	0.080 02	0.00249	2.228 80	0.063 60	0.202 00	0.003 91	$1 \ 197$	28	$1 \ 190$	20	1186	21	100.9
BC1-13-085	0.39	0.109 57	0.00438	4.845 46	0.18079	0.320 69	0.008 52	1792	33	1793	31	1793	42	6. 66
BC1-13-086	0.39	0.079 53	0.00749	2.214 16	0.19397	0.201 89	0.009 79	1185	66	1186	61	1185	53	100.0
BC1-13-087	0.22	0.15431	0.00284	7.184 30	0.12054	0.337 64	0.005 49	2 394	13	$2 \ 135$	15	1875	26	127.7
BC1-13-088	0.83	0.070 32	0.00483	1.49709	0.09470	0.154 38	0.005 43	938	74	929	39	925	30	100.4
BC1-13-089	0.47	0.077 01	0.00741	1.368 36	0.120 09	0.128 85	0.006 32	$1\ 121$	66	875	51	781	36	112.0
BC1-13-090	0.53	0.055 75	0.00653	0.546 63	0.059 80	0.071 11	0.003 41	442	159	443	39	443	21	100.0
BC1-13-091	0.51	0.119 22	0.00270	$5.785\ 16$	0.12154	0.351 90	0.006 26	1 945	17	1 944	18	1 944	30	100.1
BC1-13-092	0.95	0.065 67	0.00892	1.18784	0.15290	0.131 16	0.007 09	796	181	795	71	794	40	100.1
BC1-13-093	1.12	0.073 33	0.00371	0.649 50	0.02962	0.064 23	0.001 65	1 023	52	508	18	401	10	126.7
BC1-13-094	0.37	0.065 53	0.00270	1.182 83	0.04507	0.130 91	0.002 81	791	45	793	21	793	16	100.0
BC1-13-095	1.12	0.065 81	0.01177	1.201 90	0.200 29	0.13244	0.010 66	800	219	801	92	802	61	99.9
BC1-13-096	0.36	0.055 23	0.01416	0.502 72	0.12321	0.066 01	0.005 54	422	364	414	83	412	34	100.5
BC1-13-097	0.59	0.064 19	0.00429	1.08201	0.06817	0.122 23	0.003 48	748	85	745	33	743	20	100.3
BC1-13-098	0.51	0.080 09	0.01059	1.816 71	0.22093	0.164 49	0.011 14	$1\ 199$	137	1 051	80	982	62	107.0
BC1-13-099	0.62	0.110 33	0.00502	4.917 97	0.20831	0.323 25	0.009 81	1805	37	1805	36	1806	48	99.9
BC1-13-100	0.43	0.067 57	0.00418	1.315 33	0.075 00	0.14116	0.004 44	855	68	852	33	851	25	100.1
BC1-13-101	0.34	0.069 28	0.00249	1.40006	0.04626	0.146 55	0.002 93	206	37	889	20	882	16	100.8
BC1-13-102	0.46	0.057 39	0.00263	0.646 88	0.027 80	0.08174	0.001 63	507	60	507	17	507	10	100.0
BC1-13-103	0.75	0.05898	0.00757	0.512 37	0.064 03	0.063 00	0.001 87	566	291	420	43	394	11	106.6
BC1-13-104	0.60	0.068 58	0.003 60	1.359 83	0.065 66	0.143 79	0.003 97	886	56	872	28	866	22	100.7
BC1-13-105	0.52	0.055 94	0.00265	0.567 46	0.02496	0.073 56	0.001 60	450	60	456	16	458	10	9.66
BC1-13-106	0.49	0.067 04	0.00347	1.28296	0.06133	0.138 77	0.003 66	839	57	838	27	838	21	100.0
BC1-13-107	0.30	0.06640	0.003 04	1.222 71	0.05174	0.133 55	0.003 12	819	50	811	24	808	18	100.4

头凹衣 I														
과 미 차	232 T 1 238 T 1			同位素	比值					表面年龄	§(Ma)			相 枯光:
年品点	∩ °°2 I h/ 200 U	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1\sigma$	$^{206}{ m Pb}/^{238}{ m U}$	$\pm 1_{\sigma}$	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	$\pm 1_{\sigma}$	$^{207}{ m Pb}/^{235}{ m U}$	$\pm 1\sigma$	$^{206}{ m Pb}/^{238}{ m U}$	$\pm 1_{\sigma}$	- 谐和度
BC1-13-108	0.53	0.163 37	0.00586	10.212 91	0.299 85	0.453 40	0.009 34	2 491	62	2 454	27	2 410	41	103.4
BC1-13-109	0.90	0.064 23	0.00526	0.43301	0.03441	0.048 89	0.000 95	749	179	365	24	308	9	118.5
BC1-13-110	0.65	0.057 76	0.00455	0.554 35	0.040 59	0.069 60	0.002 33	521	102	448	27	434	14	103.2
BC1-13-111	0.49	0.066 90	0.00295	1.250 87	0.05062	0.135 59	0.003 21	835	46	824	23	820	18	100.5
BC1-13-112	1.04	0.083 60	0.00413	2.526 87	0.11540	0.219 19	0.006 23	1283	47	1 280	33	1 278	33	100.4
BC1-13-113	0.34	0.100 67	0.00195	4.005 29	0.07125	0.288 53	0.004 32	1636	15	1635	14	1 634	22	100.1
BC1-13-114	0.50	0.054 82	0.00436	0.48324	0.03649	0.063 93	0.001 87	405	117	400	25	399	11	100.3
BC1-13-115	0.41	0.056 31	0.00264	0.558 00	0.02409	0.07186	0.001 60	465	57	450	16	447	10	100.7
BC1-13-116	0.20	0.064 96	0.00249	1.14131	0.04052	0.127 41	0.002 53	773	42	773	19	773	14	100.0
BC1-13-117	0.60	0.056 64	0.00547	0.602 91	0.05497	0.077 19	0.002 86	478	137	479	35	479	17	100.0
BC1-13-118	0.75	0.065 27	0.00789	1.161 40	0.13139	0.12904	0.006 87	783	150	783	62	782	39	100.1
BC1-13-119	0.71	0.055 13	0.004 50	$0.498\ 17$	0.038 59	0.065 52	0.001 95	417	120	410	26	409	12	100.2
BC1-13-120	0.56	0.064 37	0.00440	1.115 09	0.07084	0.125 63	0.003 98	754	81	761	34	763	23	99.7
BC1-13-121	0.47	0.065 34	0.00783	1.165 96	0.13054	0.129 40	0.006 81	785	148	785	61	784	39	100.1
BC1-13-122	0.51	0.056 13	0.00313	0.565 25	0.029 30	0.073 03	0.00179	458	72	455	19	454	11	100.2
BC1-13-123	0.16	0.075 34	0.00240	1.669 75	0.04625	0.160 75	0.002 53	1078	65	266	18	961	14	103.7
BC1-13-124	0.86	0.066 13	0.00260	1.21554	0.04399	0.133 30	0.00277	810	42	808	20	807	16	100.1
BC1-13-125	0.41	0.068 66	0.00384	1.41422	0.07262	0.149 36	0.004 38	889	59	895	31	897	25	99.8
BC1-13-126	0.16	0.154 39	0.00215	8.490 68	0.10939	0.398 81	0.005 30	2 395	10	2 285	12	$2 \ 164$	24	110.7
BC1-13-127	0.68	0.062 99	0.00770	1.011 76	0.117 29	0.116 47	0.005 56	708	167	710	59	710	32	100.0
BC1-13-128	0.13	0.071 28	0.00184	1.583 29	0.037 59	0.161 08	0.002 56	965	24	964	15	963	14	100.1
BC1-13-129	0.50	0.17871	0.00238	12.75432	0.16125	0.517 55	0.006 98	2 641	10	2662	12	2689	30	98.2
BC1-13-130	0.46	0.07279	0.00174	1.41658	0.03086	0.141 14	0.002 13	1 008	22	896	13	851	12	105.3
BC1-13-131	0.56	0.16176	0.00312	10.44217	0.19029	0.46814	0.008 19	2474	14	2475	17	2 475	36	100.0
BC1-13-132	0.09	0.118 52	0.00149	5.644 59	0.065 59	0.345 36	0.004 10	1934	10	1 923	10	$1 \ 912$	20	101.2

样品点	年龄(Ma)	$^{176}{\rm Yb}/^{177}{\rm Hf}$	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	176 Hf/177 Hf	2σ	$^{176}{ m Hf}/^{177}{ m Hf}_{ m i}$	$T_{\rm DM}({\rm Ma})$	$T_{\rm DM}^{\rm C}({ m Ma})$	ε _{Hf} (0)	ε _{Hf} (t)	2σ	$f_{\rm Lu/Hf}$
BC3-9-001	837	0.022 296	0.001 540	0.000 666	0.000 046	0.281 914	0.000 029	0.281 903	1864	2 509	-30.3	-12.3	1.0	-0.98
BC3-9-002	868	0.020 943	0.000 086	0.000 690	0.000 004	0.282 214	0.000 031	0.282203	1452	1821	-19.7	-1.0	1.1	-0.98
BC3-9-003	2 490	0.040626	0.000 265	0.001 028	0.000 008	0.281 187	0.000 033	0.281138	2878	3 138	-56.1	-1.9	1.2	-0.97
BC3-9-004	$1 \ 936$	0.002 016	0.000 034	0.000042	0.000 001	0.281428	0.000 021	0.281427	2485	2866	-47.5	-4.4	0.7	-1.00
BC3-9-005	828	0.008 396	0.000 115	0.000244	0.000002	$0.282\ 018$	0.000 024	0.282014	1702	2268	-26.7	-8.5	0.8	-0.99
BC3-9-007	475	0.020 330	0.000 291	0.000 650	0.000 008	0.282 586	0.000 032	0.282 580	934	1 220	-6.6	3.7	1.1	-0.98
BC3-9-008	531	0.025 969	0.000 136	0.000 765	0.000 002	0.282 348	0.000 023	0.282340	1269	1725	-15.0	-3.6	0.8	-0.98
BC3-9-009	$1 \ 912$	0.012 193	0.000 080	0.000354	0.000 003	0.281263	0.000 027	0.281250	2727	3 278	-53.4	-11.2	1.0	-0.99
BC3-9-010	1 900	$0.002\ 013$	0.000 045	0.000 040	0.000 001	0.281 415	0.000 023	0.281414	2503	2 919	-48.0	-5.7	0.8	-1.00
BC3-9-011	853	0.022692	0.000 058	0.000 676	0.000 004	0.282 229	0.000 024	0.282219	1430	1795	-19.2	-0.7	0.9	-0.98
BC3-9-012	853	0.019 110	0.000 030	0.000532	0.000 001	0.281954	0.000 026	0.281945	1803	2 406	-28.9	-10.4	0.9	-0.98
BC3-9-013	512	0.019 828	0.000 283	0.000 561	0.000011	0.282239	0.000 022	0.282234	1 412	1 973	-18.8	-7.8	0.8	-0.98
BC3-9-014	433	0.063 088	0.000 610	0.001775	0.000 020	0.282 567	0.000 029	0.282553	989	1 308	-7.2	1.8	1.0	-0.95
BC3-9-015	2 090	0.010 666	0.000 220	0.000 317	0.000 005	0.281561	0.000 022	0.281549	2324	2485	-42.8	3.5	0.8	-0.99
BC3-9-016	2 489	0.024 117	0.000 249	0.000621	0.000 004	0.281039	0.000 030	0.281010	3046	3 428	-61.3	-6.5	1.1	-0.98
BC3-9-017	798	0.023 488	0.000 165	0.000694	0.000 005	0.281874	0.000 023	0.281864	$1 \ 9 \ 19$	2620	-31.7	-14.5	0.8	-0.98
BC3-9-018	879	0.019 750	0.000 037	0.000 589	0.000 003	0.282 287	0.000 026	0.282278	1346	1 645	-17.1	1.9	0.9	-0.98
BC3-9-019	731	0.014 669	0.000 373	0.000417	0.000011	0.282 352	0.000 025	0.282346	1251	1585	-14.8	1.1	0.9	-0.99
BC3-9-020	337	0.038 792	0.000 375	0.000 979	0.000 005	0.282 787	0.000 031	0.282781	658	853	0.5	7.7	1.1	-0.97
BC3-9-021	2521	0.010 328	0.000 110	0.000 288	0.000002	0.281074	0.000 027	0.281 060	2.974	$3\ 292$	-60.1	-4.0	1.0	-0.99
BC3-9-023	791	0.023481	0.000 130	0.000 683	0.000002	0.282 026	0.000 026	0.282016	1710	2 287	-26.4	-9.3	0.9	-0.98
BC3-9-024	855	0.070 849	0.001 596	0.002167	0.000048	0.282 206	0.000 033	0.282171	1522	1 900	-20.0	-2.4	1.2	-0.93
BC3-9-025	923	0.036 907	0.000 093	0.000 986	0.000 006	0.282 190	0.000 025	0.282 173	1 497	1853	-20.6	-0.8	0.9	-0.97
BC3-9-026	2557	0.024 845	0.002 873	0.000 676	0.000 075	0.281 300	0.000 033	0.281267	2700	2799	-52.1	4.2	1.2	-0.98
BC3-9-027	473	0.026296	0.000 041	0.000 721	0.00001	0.282262	0.000 024	0.282256	1386	1 948	-18.0	-7.8	0.9	-0.98
BC3-9-028	891	$0.027\ 072$	0.000 288	0.000743	0.000 009	0.282 128	0.000 028	0.282116	1572	2 001	-22.8	-3.5	1.0	-0.98
BC3-9-029	383	0.045 392	0.000 518	0.001426	0.000012	0.282 572	0.000 026	0.282562	973	$1 \ 3 \ 19$	-7.1	1.0	0.9	-0.96
BC3-9-030	714	0.030 372	0.000 608	0.000 808	0.000015	$0.282\ 017$	0.000 027	0.282006	1728	2 356	-26.7	-11.3	0.9	-0.98
BC3-9-031	540	0.040 326	0.000 188	0.001 118	0.00004	0.282 474	0.000 023	0.282463	$1\ 103$	1 443	-10.5	1.0	0.8	-0.97
BC3-9-032	445	0.042 257	0.000 157	0.001084	0.00001	0.282519	0.000 033	0.282510	1 039	1 398	-9.0	0.5	1.2	-0.97
BC3-9-033	524	0.014 824	0.000 090	0.000394	0.00001	0.282 193	0.000 023	0.282189	1469	2065	-20.5	-9.1	0.8	-0.99
BC3-9-034	460	0.013481	0.000 073	0.000 377	0.000 001	0.282 541	0.000 026	0.282537	066	1 326	-8.2	1.8	0.9	-0.99
BC3-9-035	449	0.036 267	0.000 072	0.001 080	0.000 005	0.282 533	0.000 023	0.282524	$1 \ 0 \ 19$	1363	-8.4	1.1	0.8	-0.97
BC3-9-036	455	0.034 820	0.000 881	0.000 997	0.000 020	0.282 423	0.000 026	0.282414	1172	1 606	-12.3	-2.6	0.9	-0.97
BC3-9-037	2 346	0.039 009	0.000 116	0.001022	0.000 003	0.281 458	0.000 029	0.281412	2508	2616	-46.5	4.5	1.0	-0.97
BC3-9-038	1569	0.063 199	0.000 297	0.001712	0.000013	0.281 496	0.000 024	0.281445	2501	3066	-45.1	-12.1	0.9	-0.95
BC3-9-039	453	0.055479	0.000 762	0.001496	0.000 015	0.282 546	0.000 026	0.282533	1 012	1 339	-8.0	1.5	0.9	-0.95
BC3-9-040	816	0.023460	0.000 852	0.000614	0.000014	0.282 028	0.000 031	0.282018	1705	2 267	-26.3	-8.7	1.1	-0.98
BC3-9-042	467	0.033734	0.000 944	0.001047	0.000 025	0.282 526	0.000 023	0.282516	1 029	1369	-8.7	1.2	0.8	-0.97
BC3-9-043	493	0.029 252	0.000 126	0.000759	0.000 001	0.282085	0.000 026	0.282078	1 632	2 330	-24.3	-13.7	0.9	-0.98

附表 2 巴楚地区碎屑锆石 Lu-Hf 同位素分析结果 Appendix Table 2 Zircon Lu-Hf isotope analysis results from Bachu Area

第3期

续附表 2														
样品点	年龄(Ma)	$^{176}{\rm Yb}/^{177}{\rm Hf}$	2σ	$^{176} m Lu/^{177} m Hf$	2σ	$176{\rm Hf}/{177}{\rm Hf}$	2σ	$^{176}{ m Hf}/^{177}{ m Hf}_{ m i}$	$T_{\rm DM}({\rm Ma})$	$T_{\rm DM}^{\rm C}({\rm Ma})$	ε _{Hf} (0)	$\epsilon_{\rm Hf}(t)$	2σ	$f_{\rm Lu/Hf}$
BC3-9-045	638	0.040 300	0.000 423	0.001 115	0.000 011	0.282 068	0.000 029	0.282 055	1671	2 294	-24.9	-11.3	1.0	-0.97
BC3-9-046	486	0.034697	0.000 387	0.001129	0.000014	0.282 658	0.000 024	0.282648	844	1060	-4.0	6.3	0.8	-0.97
BC3-9-047	2506	0.015872	0.000 143	0.000421	0,000 003	0.280 954	0.000 022	0.280934	3144	3586	-64.3	-8.8	0.8	-0.99
BC3-9-048	2 494	0.006 138	0.000 108	0.000 180	0.000 003	0.280 560	0.000 023	0.280551	3643	4 445	-78.2	-22.7	0.8	-0.99
BC3-9-049	409	$0.028\ 133$	0.000 409	0.000 859	0.000 011	$0.282\ 194$	0.000 027	0.282188	1486	2139	-20.4	-11.7	0.9	-0.97
BC3-9-050	463	0.055 671	0.000 321	0.001560	0,000 009	0.282574	0.000 027	0.282560	974	$1\ 273$	-7.0	2.7	1.0	-0.95
BC3-9-051	795	0.012529	0.000 123	0.000 358	0.000 003	0.281 939	0.000 028	0.281934	1815	2467	-29.5	-12.1	1.0	-0.99
BC3-9-052	2 226	0.019 708	0.000 201	0.000 538	0.000 004	0.281 186	0.000 029	0.281163	2843	$3\ 262$	-56.1	-7.1	1.0	-0.98
BC3-9-053	503	0.061 696	0.000 921	0.001674	0.000 023	0.282 355	0.000 030	0.282339	$1\ 290$	1744	-14.8	-4.2	1.0	-0.95
BC3-9-054	463	0.026 657	0.000 533	0.000 700	0.000 012	$0.282\ 172$	0.000 026	0.282166	1510	2154	-21.2	-11.2	0.9	-0.98
BC3-9-055	1824	0.029 825	0.000 221	0.000 907	0.000 004	0.281 583	0.000 025	0.281552	2 330	2660	-42.0	-2.5	0.9	-0.97
BC3-9-056	746	0.039 102	0.000 505	0.001 070	0.000016	0.282059	0.000 025	0.282044	1682	2 253	-25.2	-9.3	0.9	-0.97
BC3-9-057	2 479	0.001 100	0.000 010	0.000 025	0.000 000	0.281079	0.000 023	0.281078	2948	3 282	-59.9	-4.3	0.8	-1.00
BC3-9-058	790	0.034 835	0.000 531	0.000 905	0.000 015	0.282077	0.000 025	0.282064	1650	$2\ 181$	-24.6	-7.6	0.9	-0.97
BC3-9-059	2 422	0.029 372	0.000 272	0.000794	0.000 008	0.280 799	0.000 028	0.280762	3 382	4 027	-69.8	-16.9	1.0	-0.98
BC3-9-060	829	0.013782	0.000 319	0.000 383	0.000 009	0.282 015	0.000 027	0.282009	1712	2 279	-26.8	-8.7	1.0	-0.99
BC3-9-061	2 176	0.028 289	0.000 745	0.000 907	0.000 027	0.281532	0.000 028	0.281495	2 399	2 548	-43.8	3.5	1.0	-0.97
BC3-9-062	767	0.011 698	0.000 298	0.000 323	0.000 008	0.282042	0.000 029	0.282037	1673	2 254	-25.8	-9.1	1.0	-0.99
BC3-9-063	1558	0.020 708	0.000 071	0.000 629	0.000001	0.281 444	0.000 021	0.281425	2502	3 117	-47.0	-13.0	0.7	-0.98
BC3-9-064	462	0.013 897	0.000 024	0.000 373	0.000001	0.282263	0.000 028	0.282260	1372	1945	-18.0	-7.9	1.0	-0.99
BC3-9-065	1 642	0.015 514	0.000 166	0.000430	0.000 004	0.281479	0.000 031	0.281466	2 441	2972	-45.7	-9.7	1.1	-0.99
BC3-9-067	785	0.031 018	0.000 551	0.000 923	0.000 015	0.2819999	0.000 028	0.281985	1759	2359	-27.3	-10.5	1.0	-0.97
BC3-9-068	449	0.086 070	0.002 874	0.002424	0.000 078	0.282 478	0.000 031	0.282457	1137	1513	-10.4	-1.2	1.1	-0.93
BC3-9-069	465	0.024269	0.000 251	0.000761	0,000 009	0.282512	0.000 024	0.282505	1 040	1 396	-9.2	0.8	0.8	-0.98
BC3-9-070	815	$0.027\ 274$	0.000 305	0.000 818	0.000 008	0.282 285	0.000 023	0.282273	1 358	1697	-17.2	0.3	0.8	-0.98
BC3-9-071	824	0.020 875	0.000 019	0.000613	0.000 002	$0.282\ 137$	0.000 021	0.282127	1555	2018	-22.5	-4.6	0.7	-0.98
BC3-9-072	457	0.018 692	0.000 073	0.000 512	0.000001	0.282625	0.000 027	0.282620	877	1 141	-5.2	4.7	1.0	-0.98
BC3-9-073	631	0.023 557	0.000 026	0.000617	0.000 002	0.281868	0.000 029	0.281861	1924	2 7 2 8	-32.0	-18.3	1.0	-0.98
BC3-9-074	757	0.022691	0.000 330	0.000 603	0.000 008	0.282 141	0.000 024	0.282132	1549	2049	-22.3	-5.9	0.9	-0.98
BC3-9-075	459	0.016943	0.000 230	0.000 460	0.000 005	0.282 530	0.000 027	0.282526	1 008	1 353	-8.6	1.4	1.0	-0.99
BC3-9-076	469	0.012024	0.000 142	0.000 333	0.000 003	0.282465	0.000 030	0.282462	1 093	1 490	-10.9	-0.6	1.1	-0.99
BC3-9-077	836	$0.037\ 611$	0.000 444	0.001118	0.000 009	0.282141	0.000 028	0.282124	1569	2018	-22.3	-4.5	1.0	-0.97
BC3-9-078	1811	0.012608	0.000 070	0.000 350	0.000001	0.281382	0.000 020	0.281369	2568	3 078	-49.2	-9.3	0.7	-0.99
BC3-9-079	388	0.031042	0.000 302	0.001 001	0.000 009	0.282 520	0.000 022	0.282513	10.36	1427	-8.9	-0.6	0.8	-0.97
BC3-9-081	751	0.048 490	0.001 083	0.001485	0.000 022	0.281931	0.000 033	0.281910	1881	2 548	-29.8	-13.9	1.2	-0.96
BC3-9-082	932	0.033 558	0.000 235	0.000 882	0.000 005	0.282068	0.000 023	0.282052	1662	2 117	-24.9	-4.9	0.8	-0.97
BC3-9-083	2428	0.027319	0.001 095	0.000 769	0.000 031	0.281419	0.000 026	0.281383	2545	2624	-47.8	5.4	0.9	-0.98
BC3-9-084	895	0.004963	0.000 098	0.000 113	0.000 003	0.281963	0.000 018	0.281961	1771	2344	-28.6	-8.9	0.6	-1.00
BC3-9-085	839	0.029 729	0.000024	0.000 859	0.00001	0.282310	0.000 021	0.282296	1325	1629	-16.3	1.7	0.8	-0.97
BC3-9-086	975	0.031039	0.000 118	0.000802	0.000 001	0.282 093	0.000022	0.282078	1623	2032	-24.0	-3.0	0.8	-0.98
BC3-9-087	1545	0.049014	0.000 428	0.001463	0.000 017	0.281577	0.000 023	0.281535	2372	2 883	-42.2	-9.4	0.8	-0.96
BC3-9-088	827	0.039 549	0.000 826	0.001 030	0.000 019	0.281 982	0.000 024	0.281966	1 788	2 376	-27.9	-10.3	0.9	-0.97

买 附表 2														
样品点	年龄(Ma)	$^{176}{\rm Yb}/^{177}{\rm Hf}$	2σ	$^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$	2σ	$176{\rm Hf}/{177}{\rm Hf}$	2σ	$^{176}{ m Hf}/^{177}{ m Hf}_{ m i}$	$T_{\rm DM}({\rm Ma})$	$T_{\rm DM}^{\rm C}({ m Ma})$	ε _{Hf} (0)	$\varepsilon_{\rm Hf}(t)$	2σ	$f_{\mathrm{Lu/Hf}}$
BC3-9-090	2 339	0.012 824	0.000 055	0.000 340	0.000 001	0.281 283	0.000 022	0.281 268	2 699	2 950	-52.7	-0.8	0.8	-0.99
BC3-9-091	2663	0.020 562	0.000 038	0.000 595	0.000 003	0.281 133	0.000 021	0.281103	2918	3 095	-57.9	0.8	0.8	-0.98
BC3-9-092	2 573	$0.027\ 123$	0.000 319	0.000726	0.000 006	0.281 105	0.000 024	0.281069	2,966	3 235	-58.9	-2.4	0.9	-0.98
BC3-9-093	1 756	0.060 373	0.000 602	0.001692	0.000014	0.281 585	0.000 031	0.281 528	2 376	2758	-42.0	-4.9	1.1	-0.95
BC3-9-094	2514	0.021204	0.000 273	0.000664	0.000 010	$0.281\ 122$	0.000 027	0.281090	2938	3 229	-58.3	-3.1	0.9	-0.98
BC3-9-095	818	0.032 656	0.000 125	0.000 873	0.000 001	0.282 081	0.000 025	0.282 067	1 644	2 156	-24.4	-6.9	0.9	-0.97
BC3-9-096	447	0.042978	0.000 396	0.001 192	0.000 011	0.282 447	0.000 029	0.282437	1 144	1560	-11.5	-2.0	1.0	-0.96
BC3-9-097	472	0.021924	0.000 065	0.000 582	0.000 001	0.282 525	0.000 026	0.282519	1 018	1 359	-8.7	1.5	0.9	-0.98
BC3-9-098	475	0.030 473	0.000 189	0.000 839	0.000 003	0.282 245	0.000 029	$0.282\ 237$	1415	1 988	-18.6	-8.5	1.0	-0.97
BC3-9-099	1864	0.109 516	0.000 656	0.002817	0.000 006	0.281 678	0.000 024	0.281578	$2 \ 315$	2573	-38.7	-0.6	0.9	-0.92
BC3-9-100	925	0.019952	0.000 443	0.000 522	0.000 009	0.281 736	0.000 023	0.281727	2099	2845	-36.6	-16.5	0.8	-0.98
BC3-9-101	1 066	0.028 096	0.000 359	0.000715	0.000 008	0.281946	0.000 023	0.281931	1823	2 303	-29.2	-6.1	0.8	-0.98
BC3-9-102	777	0.032 306	0.000 388	0.000 866	0.000 008	0.282 111	0.000 025	0.282098	1 601	2112	-23.4	-6.7	0.9	-0.97
BC3-9-103	458	0.008 741	0.000 073	0.000 281	0.000 002	0.281924	0.000 027	0.281921	1832	2697	-30.0	-20.0	1.0	-0.99
BC3-9-104	472	0.080 360	0.006 264	0.002104	0.000156	0.282 497	0.000 029	0.282478	$1 \ 100$	1 452	-9.7	0.0	1.0	-0.94
BC3-9-105	802	0.008 430	0.000 081	0.000240	0.000 003	0.282 515	0.000 030	0.282511	1 022	$1 \ 1 \ 65$	-9.1	8.5	1.1	-0.99
BC3-9-106	1 812	0.018 897	0.000 446	0.000515	0.000 012	0.281390	0.000 025	0.281372	2568	3 071	-48.9	-9.1	0.9	-0.98
BC3-9-107	735	0.026 037	0.000 042	0.000 750	0.000 001	$0.282\ 216$	0.000 029	0.282206	1451	1898	-19.7	-3.8	1.0	-0.98
BC3-9-108	2 351	0.010 220	0.000 117	0.000 257	0.000 001	0.281064	0.000 025	0.281052	2,985	$3\ 426$	-60.4	-8.2	0.9	-0.99
BC3-9-109	389	0.026 865	0.000 121	0.000 709	0.000 003	0.282 279	0.000 025	0.282274	1362	1958	-17.4	-9.1	0.9	-0.98
BC3-9-110	1752	0.002 349	0.000 008	0.000 051	0.000 000	0.281 475	0.000 024	0.281473	$2\ 424$	2884	-45.9	-6.9	0.8	-1.00
BC3-9-111	786	0.045 118	0.001 738	0.001234	0.000 046	0.282 054	0.000 024	0.282 036	1 697	$2\ 2\ 46$	-25.4	-8.7	0.8	-0.96
BC3-9-112	471	0.040 486	0.000 132	0.001 069	0.000002	0.282 498	0.000 028	0.282 488	1068	1429	-9.7	0.3	1.0	-0.97
BC3-9-113	601	0.025 789	0.000 119	0.000 655	0.000004	0.281 898	0.000 024	0.281890	1885	2680	-30.9	-18.0	0.9	-0.98
BC3-9-114	799	0.034 587	0.001 317	0.000 883	0.000 025	0.282260	0.000 024	0.282247	1 395	1766	-18.1	-0.9	0.8	-0.97
BC3-9-115	1 305	0.025 165	0.000 205	0.000 604	0.000 003	0.281 965	0.000 025	0.281951	1790	2105	-28.5	-0.1	0.9	-0.98
BC3-9-116	918	0.019703	0.001 858	0.000516	0.000 051	0.282161	0.000 026	0.282152	1517	1902	-21.6	-1.6	0.9	-0.98
BC3-9-117	786	0.016 690	0.000 049	0.000 528	0.000 002	0.282246	0.000 027	0.282 238	1402	1794	-18.6	-1.5	1.0	-0.98
BC3-9-118	890	0.028 848	0.000 089	0.000 808	0.000 001	0.282 311	0.000 025	0.282298	$1 \ 321$	1592	-16.3	2.9	0.9	-0.98
BC3-9-119	1 903	0.002461	0.000 021	0.000 067	0.00001	0.281 435	0.000 026	0.281432	2478	2875	-47.3	-4.9	0.9	-1.00
BC3-9-120	1 922	0.009 463	0.000 032	0.000251	0.000 000	0.281 405	0.000 023	0.281396	2 530	2945	-48.3	-5.8	0.8	-0.99
BC3-9-121	2 419	0.020 586	0.000 035	0.000 635	0.000 003	0.281 452	0.000 029	0.281423	2 491	2540	-46.7	6.6	1.0	-0.98
BC3-9-122	506	0.042182	0.000 121	0.001027	0.000 004	0.282244	0.000 033	0.282234	1423	1 977	-18.7	-7.9	1.2	-0.97
BC3-9-123	2 024	0.021854	0.000 203	0.000529	0.000 007	0.281 285	0.000 029	0.281265	2709	3 170	-52.6	-8.1	1.0	-0.98
BC3-9-124	814	0.016479	0.000 053	0.000469	0.000 001	$0.282\ 180$	0.000 026	0.282173	1 490	1923	-20.9	-3.2	0.9	-0.99
BC3-9-125	794	0.023261	0.000 095	0.000 646	0.000 001	0.282 237	0.000 020	$0.282\ 227$	1 418	1813	-18.9	-1.7	0.7	-0.98
BC3-9-126	1 801	0.025 863	0.000 047	0.000 678	0.000 001	0.281 502	0.000 026	0.281479	2426	2 838	-44.9	-5.6	0.9	-0.98