https://doi.org/10.3799/dqkx.2018.317

大地电磁六元素张量阻抗理论及其应用

胡祥云1,金钢燮1,2

1.中国地质大学地空学院,湖北武汉 430074
 2.金策工业综合大学工程科学中心,朝鲜平壤 999093

摘要:在经典大地电磁(MT)理论中,张量阻抗[Z]定义为电场分量和磁场分量之间的线性关系.估算张量阻抗[Z]及和它有关的其他参数(例如视电阻率、相位、倾子等)是 MT 数据处理中的一个重要环节.引入了六元素张量阻抗[R]的全新概念,并开发了相应的处理方法.为检验本方法的特征和抗噪性能,对采集自朝鲜的 MT 野外资料进行了分析.分析结果表明在 MT 资料处理中新定义的六元素张量阻抗[R]比传统的四分量张量阻抗[Z]提高测深曲线的相干度至少 0.1 以上,并且改善了大地电磁资料处理的质量.

关键词:MT法;张量阻抗;信噪比;地球物理. 中图分类号: P315 文章编号: 1000-2383(2018)10-3399-08

A Trial for Introducing 6-Element Tensor Impedance in Magnetotelluric Method and Its Application

Hu Xiangyun¹, Kim Kangsop^{1, 2}

1.Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China2.Center of Engineering Sciences, Kimchaek University of Technology, Pyongyang 999093, DPRK

Abstract: The conventional magnetotelluric method is theoretically based upon definition of impedance tensor $[\mathbf{Z}]$ and the relationship between the electrical and magnetic components E_x , E_y , H_x , H_y , H_z of MT field, the main purpose of MT data processing is to obtain inpedance tensor, apparent resistivity, phase, tipper, skewness and other parameters. In this paper, we propose the definition of 6-elements tensor impedance and briefly describe its some characteristics and determination techniques in the comparison with the former impedance tensor $[\mathbf{Z}]$. Furthermore, we explain the necessity of the proposed method and demonstrate its applicability by some field tests conducted in Democratic People's Republic of Korea.

Key words: magnetotelluric exploration; impedance tensor; signal to noise ratio; geophysics.

大地电磁测深法(简称 MT 法)是一种成本较低、 探测深度较大的地球物理勘探方法(刘文才等, 2015).经过几十年的发展,MT 法在石油勘探(Tripp, 2005;曹中林等,2006)、地热勘探(Muñoz,2014;李德 威和王焰新,2015)、水文勘探(Auken *et al.*,2017)、海 洋勘查(de Groot-Hedlin and Constable, 2004; Linde and Pedersen, 2004)等方面均获得了广泛应用.相应 地,MT数据处理、正演和反演算法也引起了许多地 球物理学家的兴趣(García and Jones, 2002; Yin, 2003; 胡祖志和胡祥云, 2005; 张莹和张胜业, 2005). 然而由于 MT法采用天然场源,采集到的数据 很容易受到种类繁多、性质复杂的噪声影响,因此提

收稿日期:2018-05-11

基金项目:国家自然科学基金项目(No.41474055);中国地质大学(武汉)地学长江计划(No.CUGCJ1707).

作者简介:胡祥云(1966-),男,教授,主要从事地震层析成像研究.ORCID: 0000-0003-3623-8304.E-mail: xyhu@cug.edu.cn

高信噪比(S/N)是 MT 法研究的一个重要课题(王家 映和徐义贤, 1998).

实际上,MT法中观测的物理量一般是地面上的3个磁场分量和2个水平电场分量,利用这些分量获得阻抗张量和倾子矢量的估计值,并评价资料质量.获得可靠的阻抗和倾子数据是大地电磁数据处理的主要任务.除了自然噪声会引起测量数据中较大的误差棒外,铁路、变压器等工业设备也是不容忽视的电磁噪声源;前者的噪声在 500 kHz~1 Hz频率范围内的影响最强,后者对更低频有较大影响,其底限依赖于当地的电性特征(Pedersen and Engels, 2005).

为了解决上述问题,目前已提出了许多方法技 术,可以概括为两个部分:第一方面是改善观测方法 及装备.其中效果最好的方法就是远点参考观测方 式(Gamble et al., 1979),该方法已在一些论文当 中介绍,并且诸多实例已证明它可以改善噪声严重 的环境中采集到的 MT 资料质量.通过最近几十年 的研究,该方法已从近点参考改进到远点参考,从两 点同步测量发展到三点同步测量法(Ri et al., 2002).此外,1~5 kHz 频率域内 AMT 信号的能量 可以随日随季节变化,白天磁场的振幅经常低于磁 场探头的噪声水平.针对这一问题,García and Jones (2005)在综合频率域地电一地电观测(T-T)和地电 一地磁观测(T-MT)的基础上提出了一种新的观测 处理方式, RMT (14~250 kHz) 法和可控源 MT (CSMT)(1~12 kHz)结合可应用于厚度几十米左 右的粘土透镜下面砂岩中的地下水勘探.

第二方面是和改进观测数据的数学处理方法有 关,学者们也已提出了许多不同方法,例如单点观测 数据处理中利用权函数消除噪声(Yee et al., 1988),时间域阻抗张量的自适应重建方法(Gómez-Treviño and Mondragón, 1995),利用张量阻抗的 实部和虚部计算视电阻率(Egbert and Livelybrooks, 1996),张量阻抗的 Robust 估计方法(王书 明和王家映, 2004)等.其中, Robust 资料处理方法 被认为是一种特别有效的资料处理方法.还有学者 提出了利用高阶统计量 MT 信号的高斯性检验(Xu and Wang, 2000)和基于小波变换(Gupta and Choubey, 2015)的时变大地电磁信号频谱估计方法.

另一方面,Lilley(1998)提出了一种新方法,他 把张量阻抗分解为全局部分和局部部分,此方法的 目的并不是为了克服人文噪声,而是为了减小由于 三维局部近地表地质体引起的电流畸变效应. Groom and Bailey(1991)曾提出的阻抗张量分解也 是和上述方法类似.

然而即使有上述各种途径,目前 MT 法的信噪 比问题仍有待提高,这意味着还需要开发除改进观 测方法和处理方法以外的解决方法.

从此问题出发,笔者再次考虑 MT 法数据处理 的基本方程组.经典 MT 法处理基于电场 *E* 与磁场 *H* 之间的线性方程组,

$$E_x = Z_{xx}H_x + Z_{xy}H_y, \qquad (1)$$

$$E_{y} = Z_{yx}H_{x} + Z_{yy}H_{y}, \qquad (2)$$

$$H_{z} = T_{zx}H_{x} + T_{zy}H_{y}, \qquad (3)$$

式中 E_x 、 E_y 、 H_x 、 H_y 、 H_z 分别表示大地电磁场的 x,y方向电场分量和x、y、z方向磁场分量,并且:

$$\mathbf{Z} = \begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix}, \tag{4}$$

$$\boldsymbol{T} = \begin{bmatrix} T_{xx} \\ T_{zy} \end{bmatrix},\tag{5}$$

分别为张量阻抗及倾子矢量(Xu, 1987; García and Jones, 2002).

需要指出的是,(1)~(5)式并不是表示大地电 磁场中5个分量之间互相关系的唯一表达式.Berdichevsky(1968)详细解释了这些方程组的意义,他 先把大地电磁场中的 $E_x \ E_y \ H_x \ H_y \ H_z$ 分量表 示为相互独立的线极化 $H_x^i \ H_y^i$ 的总和,即:

$$E_{x} = a_{1x}H_{y}^{i} + a_{2x}H_{x}^{i}, (6)$$

$$E_{y} = a_{1y} H_{y}^{i} + a_{2y} H_{x}^{i}, \qquad (7)$$

$$E_{z} = a_{1z}H_{y}^{i} + a_{2z}H_{x}^{i}, \qquad (8)$$

$$H_{r} = b_{1r} H_{v}^{i} + b_{2r} H_{r}^{i}, \qquad (9)$$

$$H_{y} = b_{1y} H_{y}{}^{i} + b_{2y} H_{x}{}^{i}, \qquad (10)$$

$$H_{z} = b_{1z} H_{y}{}^{i} + b_{2z} H_{x}{}^{i}, \qquad (11)$$

上述式中, a_{1x} 、 a_{2x} 、…、 b_{1z} 、 b_{2z} 是复数系数.

从(9)、(10)式,求解入射波振幅 *H_xⁱ*、*H_yⁱ*后, 再分别代入到(6)、(7),可以获得如下:

 $E_x = Z_{xx}H_x + Z_{xy}H_y,$

 $E_{y} = Z_{yx}H_{x} + Z_{yy}H_{y},$
 $\vec{x} + :$

$$\mathbf{Z} = \begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix} =$$

从另一方面看,如果我们假定的 $D_2 = b_{1y}b_{2x}$ -

 $b_{2x}b_{1y} \neq 0$ 条件,那经过对(10)、(11)式进行类似的 推导可获得如下方程组

$$E_{x} = Z_{xy}H_{y} + Z_{xz}H_{z}, \qquad (1')$$

$$E_{y} = Z_{yy}H_{y} + Z_{yz}H_{z}, \qquad (2')$$

$$\mathbf{Z} = \begin{bmatrix} Z_{xy} & Z_{xz} \\ Z_{yy} & Z_{yz} \end{bmatrix}.$$
 (4')

同样地,从(9)、(11)式出发,假定 $D_3 = b_{1x}b_{2x} - b_{2x}b_{1z} \neq 0$ 的条件,又可以如下关于张量阻抗的定义:

$$E_{x} = Z_{xx}H_{x} + Z_{xz}H_{z}, \qquad (1'')$$

$$E_{y} = Z_{yx} H_{x} + Z_{yz} H_{z}, \qquad (2'')$$

$$\mathbf{Z} = \begin{bmatrix} Z_{xx} & Z_{xz} \\ Z_{yx} & Z_{yz} \end{bmatrix}, \qquad (4'')$$

从对上述(1)、(2)、(4)式,(1')、(2')、(4')式, 和(1")、(2")、(4")式分析可以看出,MT 张量阻抗 的定义可以有三种 2×2 阶的矩阵形式.换句话说, 用 2×2 阶矩阵形式来表示张量阻抗并不是唯一的.

张量阻抗就是磁场分量转换到电场分量的一种 变换矩阵,显然更一般的形式是在(4)式中把张量阻 抗表示为 3×3 阶矩阵,而非 2×2 阶矩阵.

最初将 MT 阻抗张量定义为 4 个元素是基于 假定:大地电磁场 5 个分量中 H_z 分量是由于地下 电阻率的水平不均匀性及其他噪声影响而产生的. 这一假定在一维模型条件下有其合理性,然而在实 际处理中忽视 H_z 分量对 E_x 、 E_y 分量的影响(即按 照 1、2、3 式处理)可能会导致张量阻抗估计计算的 误差.

基于上述考虑,本文发展了一种新的理论—— 大地电磁六元素张量阻抗的资料处理方法.

1 六元素张量阻抗的定义及其特征

任何电磁场中电场与磁场之间的矢量关系可以 用如下线性方程组式来表述:

$$E_{x} = R_{xx}H_{x} + R_{xy}H_{y} + R_{xz}H_{z}, \qquad (12)$$

$$E_{y} = R_{yx}H_{x} + R_{yy}H_{y} + R_{yz}H_{z}, \qquad (13)$$

$$E_{z} = R_{zx}H_{x} + R_{zy}H_{y} + R_{zz}H_{z}, \qquad (14)$$

因 MT 测量中总有 *E*_z=0,所以不必考虑(14) 式,只考虑前两式,从而可以定义张量阻抗如下:

$$\boldsymbol{R} = \begin{bmatrix} R_{xx} & R_{xy} & R_{xz} \\ R_{yx} & R_{yy} & R_{yz} \end{bmatrix}.$$
 (15)

将[**R**]称为六元素张量阻抗.以字符[**R**]表示该 张量阻抗就是为了强调它也具有电阻的单位,并且 与常规张量阻抗[**Z**]有所区别.

首先讨论张量阻抗[R]与张量阻抗[Z]的相互

关系.将式(3)分别代入到式(12)和式(13),然后将 它们与(1)、(2)式对比,得到以下方程:

$$Z_{xx} = R_{xx} + R_{xz}T_{zx},$$

$$Z_{xy} = R_{xy} + R_{xz}T_{zy},$$

$$Z_{yx} = R_{yx} + R_{yz}T_{zx},$$

$$Z_{yy} = R_{yy} + R_{yz}T_{zy},$$
(16)

上式可以再改写为下面矩阵形式:

$$\begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix} = \begin{bmatrix} R_{xx} & R_{xy} \\ R_{yx} & R_{yy} \end{bmatrix} + R_{xz} \quad R_{yz} \begin{bmatrix} T_{zx} & T_{zy} \end{bmatrix}.$$
(16')

上述两组方程表示常规张量阻抗[Z]、重新定义的张量阻抗[R]和倾子[T]之间的互相关系.由此可以讨论在一维或二维的情况下的张量阻抗[R]的特点.

在一维水平均匀介质的情况下,电场与磁场矢 量总相互垂直,即:

 $\boldsymbol{E} \cdot \boldsymbol{H} = \boldsymbol{E}_{x}\boldsymbol{H}_{x} + \boldsymbol{E}_{y}\boldsymbol{H}_{y} + \boldsymbol{E}_{z}\boldsymbol{H}_{z} = 0,$ 于是,可以得到如下方程:

$$\frac{E_x}{H_y} = -\frac{E_y}{H_x} = R , \qquad (17)$$

即张量阻抗[**R**]变成常规张量阻抗[**Z**]的一个模量. 在二维 TE 模式下($E_y = E_z = H_z = 0$),从(12)

式可以得到以下方程组 $E_{x} = R_{xy}H_{y} + R_{xy}H_{z}$,

$$Z_{xy} = R_{xy} + R_{xz} T_{zy}, \qquad (18)$$

同样,在二维介质中的 TM 模式中,考虑 $E_x = E_y = H_z = 0$,由(13)式可得

 $E_{y} = R_{yx} H_{x}, Z_{yx} = R_{yx} .$ (19)

从上面的推导可以获得如下结论:张量阻抗 [**R**]在一般情况下与张量阻抗[**Z**]不一致,但如果已 知**T**与[**R**],就较容易地可以取得[**Z**].

另外还要考虑六元素张量阻抗[**R**]的坐标转换 问题.为此,假设[**R**]为定义在 XOY 坐标系中的六 元素张量阻抗,[**R**]'为将[**R**]向[**Z**]轴周围旋转 θ 而得到的 X'OY'坐标系内的张量阻抗. 那经过简单 推导之后可以得到如下方程

$$R'_{xx} = R_1 - R_2 \cos 2\theta - R_3 \sin 2\theta,$$

$$R'_{xy} = R_4 + R_3 \cos 2\theta - R_2 \sin 2\theta,$$

$$R'_{yx} = -R_4 + R_3 \cos 2\theta - R_2 \sin 2\theta,$$

$$R'_{yy} = R_1 + R_2 \cos 2\theta + R_3 \sin 2\theta,$$

$$R'_{xz} = R_{xz} \cos \theta - R_{yz} \sin \theta,$$

$$R'_{yz} = R_{xz} \sin \theta + R_{yz} \cos \theta,$$

(20)

式中,

$$2R_{1} = R_{xx} + R_{yy}$$
 , $2R_{2} = R_{yy} - R_{xx}$,

 $2R_3 = R_{xy} + R_{yx}, R_4 = R_{xy} - R_{yx}$. (21) 在此可以证明,与张量阻抗[**Z**]类似地, (21)式中 的 R_1, R_4 和 $R_0 = R_{xx}R_{yy} - R_{xy}R_{yx}$ 也是张量不变量.

2 六元素张量阻抗的估计

假设任意频率 MT 场 5 个分量的 n 组复数振 幅测量数据为(右上角参数表示测量次数,T 表示转 置矩阵)

$$\mathbf{E} = \begin{bmatrix} E_x & E_y \end{bmatrix}, \mathbf{H} = \begin{bmatrix} H_x & H_y & H_z \end{bmatrix},$$
$$E_{\tau} = \begin{bmatrix} E_{\tau}^{-1}, \cdots, E_{\tau}^{-n} \end{bmatrix}^T, \tau = x, y,$$
$$H_{\tau} = \begin{bmatrix} H_{\tau}^{-1}, \cdots, H_{\tau}^{-n} \end{bmatrix}^T, \tau = x, y, z.$$
(22)

若将式(12)和(13)作为回归方程,可以建立关 于回归系数 $R_{\tau x}$, $R_{\tau y}$, $R_{\tau z}$ ($\tau = x, y$)的最小二乘问题.

$$Q_{\rm r} = \sum_{i=1}^{n} |E_{\rm r}^{i} - (R_{\rm rx}H_{x}^{i} + R_{\rm ry}H_{y}^{i} + R_{\rm rz}H_{z}^{i})|^{2} = \min_{i} \tau = x \cdot y, \qquad (23)$$

从式(23)分离实、虚部后,取

$$\frac{\partial Q_{\tau}}{\partial \operatorname{Re} R_{\tau x}} = \frac{\partial Q_{\tau}}{\partial \operatorname{Im} R_{\tau x}} = \frac{\partial Q_{\tau}}{\partial \operatorname{Re} R_{\tau y}} = \frac{\partial Q_{\tau}}{\partial \operatorname{Im} R_{\tau y}} =$$

 $\frac{\partial Q_{\tau}}{\partial \operatorname{Re} R_{\tau z}} = \frac{\partial Q_{\tau}}{\partial \operatorname{Im} R_{\tau z}} = 0, \tau = x, y,$

即可获得对于 6 个未知数 ReR_{ra}, ImR_{ra}, ReR_{ra}, ImR_{ra}, ReR_{ra}, ImR_{ra}, ReR_{ra}, ImR_{ra}, SeR_{ra}, SeR_{ra}

在此,任何两个复变量的平均功率谱表示为

$$\overline{AB} = \frac{1}{n} \sum_{i=1}^{n} \overline{A^{i}} B^{i} .$$
⁽²⁵⁾

结合上述六个表达式后,可得下面的矩阵方程 (上横线表示复数共轭)

$$\begin{bmatrix} \overline{H_x H_x} & \overline{H_x H_y} & \overline{H_x H_z} \\ \overline{H_y H_x} & \overline{H_y H_y} & \overline{H_y H_z} \\ \overline{H_z H_x} & \overline{H_z H_y} & \overline{H_z H_z} \end{bmatrix}^{-1} \cdot \begin{bmatrix} R_{xx} & R_{yx} \\ R_{xy} & R_{yx} \\ R_{xz} & R_{yx} \end{bmatrix} = \begin{bmatrix} \overline{H_x E_x} & \overline{H_x E_y} \\ \overline{H_y E_x} & \overline{H_y E_y} \\ \overline{H_z E_x} & \overline{H_z E_y} \end{bmatrix}, \quad (26)$$

这样六元素张量阻抗的估计公式为

$$\begin{bmatrix} R_{xx} & R_{yx} \\ R_{xy} & R_{yx} \\ R_{xz} & R_{yx} \end{bmatrix} = \begin{bmatrix} \frac{1}{H_x H_x} & \frac{1}{H_x H_y} & \frac{1}{H_x H_z} \\ \frac{1}{H_y H_x} & \frac{1}{H_y H_y} & \frac{1}{H_y H_z} \\ \frac{1}{H_z H_x} & \frac{1}{H_z H_y} & \frac{1}{H_z H_z} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{H_x E_x} & \frac{1}{H_x E_y} \\ \frac{1}{H_z E_x} & \frac{1}{H_z E_y} \\ \frac{1}{H_z E_y} \end{bmatrix},$$
(27)

展开上式,可得每个 $R_{ij} = (i = x, y; j = x, y, z)$ 的表达式.

由此可以知道为了估计[Z]需要最少两次测量 资料,但为了估计[R]至少需要3次测量.

方程(27)一般可以写为

$$\begin{bmatrix} R_{xx} & R_{yx} \\ R_{xy} & R_{yx} \\ R_{xz} & R_{yx} \end{bmatrix} =$$

$$\overline{AH_{x}} \quad \overline{AH_{y}} \quad \overline{AH_{z}} = \begin{bmatrix} \overline{AE_{x}} & \overline{AE_{y}} \\ \overline{BH_{x}} & \overline{BH_{y}} & \overline{BH_{z}} \\ \overline{CH_{x}} & \overline{CH_{y}} & \overline{CH_{z}} \end{bmatrix}^{-1} \begin{bmatrix} \overline{AE_{x}} & \overline{AE_{y}} \\ \overline{BE_{x}} & \overline{BE_{y}} \\ \overline{CE_{x}} & \overline{CE_{y}} \end{bmatrix}. \quad (28)$$

可以将 E_x , E_y , H_x , H_y , H_z 中的任意三个量 选择为上式中的(A, B, C), 于是, 张量阻抗[\mathbf{R}]一 共有 $C_5^2 = \frac{5!}{3! \cdot 2!} = 10$ 种估计方法, 但常规张量阻抗 [\mathbf{Z}]的估计方法只有 6 种.

考虑(22)和(25)式,(26)和(27)式可以简化为 (* 表示 Hermitian 矩阵):

- $[H * H] [R] = [H * E] , \qquad (26')$
- $[R] = [H * H]^{-1} [H * E] , \qquad (27')$

远点参考 MT 测量中计算六元素张量阻抗仍 然可行.如果将在测点 1,远点 2 同时测量的电场, 磁场分别用 E_1 , H_1 , E_2 , H_2 表示,两个测点的六元 素张量阻分别用 R_1 , R_2 表示, R_1 , R_2 的估计计算式 为如下:

$$[R_{1}] = [H_{2} * H_{1}]^{-1} [H_{2} * E_{1}],$$

$$[R_{2}] = [H_{1} * H_{2}]^{-1} [H_{1} * E_{2}].$$
(29)

3 六元素张量阻抗的应用实例

本文中引用的 MT 数据均由朝鲜开发的五通 道 KTU-MT-1 系统(384-0.001Hz 频段)采集.

首先对比分析MT资料中磁场垂直分量和水

表 1 MT 时间序列中磁场分量的振幅比较

Table 1 Comparison of amplitudes of magnetic components from MT records

频率段	采样率 t(s) -	磁场分量平均振幅 (mA/m)			
		H_x	H_y	H_z	
1	$6.510 \ 4 \times 10^{-4}$	0.562	1.893	0.560	
2	$1.016\ 7 \times 10^{-2}$	0.078	0.041	0.063	
3	0.166 667	0.183	0.149	0.350	
4	2.666 67	6.279	10.748	17.410	
平均	1.775	3.208	4.596		

Fig.1 The curves of coherencies versus frequency number between observed electircal and magnetic components at a MT station 图 a 为 E_x 和 H_x 、 H_y 、 H_z 之间相干度;图 b 为 E_y 和 H_x 、 H_y 、 H_z 之间相干度

表 2 图 1 中的测点 $E_i(i=x,y)$ 和 $H_j(j=x,y,z)$ 之间的平均相干度

Table 2	Coherencies	between	$E_i(i=x,y)$) and H	$_{i}(j$	= x, y, z	components
---------	-------------	---------	--------------	---------	----------	-----------	------------

$Coh(E_x,H_x)$	$Coh\left(E_{x},H_{y}\right)$	$Coh\left(E_x,H_z\right)$	$Coh(E_y,H_x)$	$Coh\left(E_y,H_y\right)$	$Coh(E_y,H_z)$
0.488	0.456	0.409	0.473	0.419	0.405

表 3 图 1 中的 MT 测点中用[Z]和[R]时 E_i, E_i^p 之间平 均相干度

Table 3 Comparison of coherencies between E_i , E_i^{p} com-

1 En -

0.692

ponents whe	en using [Z] and	
相干度	$Coh(E_x)$	$Coh(E_y)$
$\lceil Z \rceil$	0.659	0.641

0.692

 $\lceil R \rceil$

平分量的平均振幅,此时,时间域中各个分量的平均 绝对振幅可以按照如下公式计算

$$\overline{H_{i}} = \frac{1}{N_{s}} \sum_{s=1}^{N_{s}} \left(\frac{1}{N} \sum_{n=1}^{N_{t}} | H_{i}(s,n) | \right), i = x, y, z$$

式中 N_s 为 MT测量点的总数, N_i 为在测点上观测时间列的总采样数, $H_i(s,n)$ 为在第S个MT测点第i次磁场分量的第n个采样.

表 1 为磁场三个分量的振幅分析结果,此试验 中使用的大地电磁测点总数为 70 个以上.

图 2 图 1 中的 MT 测点实测电场和用[Z], [R]预测的电场之间的相干度曲线

Fig.2 Curves of coherencies between observed and predicted electrical components by using [Z] or [R], respectively at the MT station in Fig.1

图 a 为与 E_x 有关的相干度;图 b 为与 E_y 有关的相干度

Fig.3 Comparison of ρ_{xy} , ρ_{yx} apparent resistivity curves by the use of [**Z**](a) and [**R**](b) at the MT station in Fig.1,2

图 4 图 2 中的 MT 数据视电阻率 ρ_{xy} , ρ_{yx} 曲线的反演结果对比

Fig.4 Comparison of effective apparent resistivity curves (a) and inverted resitivity models versus depth(b) at the MT station in Fig.1-3, based on $\lceil Z \rceil$ and $\lceil R \rceil$

图 a 为实测与正演理论视电阻率曲线,1,2 分别为用[Z], [R]得到的;图 b 为反演得到的深度一电阻率模型,3,4 分别为从 1,2 的反演得到的

从表1可知,在4个频率范围内垂直磁场分量 的振幅几乎等于水平磁场分量,因此不能忽视垂直 磁场分量对水平电场分量的影响.图1为在一个人 文噪声严重的 MT 测点随频率变化的电场与磁场 分量之间的相干度曲线,相干度计算公式为:

 $coh(E_iH_j) = \frac{\overline{|E_iH_j|}}{[E_iE_i \cdot H_jH_j]^{1/2}}, i = x, y, j = x, y, z.$ (30)

表 2 为上述测点中算出的 $E_i(i = x, y)$ 分量和 $H_j(j = x, y, z)$ 分量之间的平均相干度.

从图 1 和表 2 可以看出,在大多数频点中 E_i 和 H_z 之间相干度 $coh(E_iH_z)(i=x,y)$ 不小于 E_i 和 $H_x(或者 H_y)$ 之间相干度 $coh(E_iH_x)(或者 coh(E_iH_y))(i=x,y)$,这意味着不能忽视 H_z 分量对 E_x 和 E_y 分量的影响,使用传统的四元张量阻抗将带来显著的误差.

通常 MT 法中为了评估观测数据的质量,可以 利用实测电场与预测电场之间的相干度,即:

$$coh(E_i) = \frac{\overline{|E_iE_i^p|}}{[E_iE_i \cdot E_i^pE_i^p]^{1/2}}, i = x, y.$$

图 2 为相同的 MT 测点中用上式算出来的 $coh[E_i(R)]$ 和 $coh[E_i(Z)]$ 曲线的对比例子,此时 利用张量阻抗[Z]和[R]预测到的电场分别为:

 $E_i^{p}(Z) = Z_{ix}H_x + Z_{iy}H_y,$

 $E_{i}^{p}(R) = R_{ix}H_{x} + R_{iy}H_{y} + R_{iz}H_{z}$.

表 3 为用张量阻抗[**Z**]和[**R**]得到的 E_i 和 E_i^p 之间的平均相干度.

通过实际数据处理可以明显地看到对于大多频

率点 $coh[E_i^{p}(R)] \ge coh[E_i^{p}(Z)]$,即利用六元素 张量阻抗[R]比利用常规四元素张量阻抗[Z]可以 提高实测电场和预测电场之间的相干度,从而改善大地电磁资料的信噪比.

图 3 为在和图 1、2 相同的 MT 测点上利用常规 阻抗张量[Z]和新的阻抗张量[R]得到的视电阻率 ρ_{xy} 、 ρ_{yx} 曲线.实验表明,虽然两条曲线基本上符合, 但由[Z]得到的曲线比由[R]得到的曲线更分散,常 规方法的抗噪性能不如六元素张量阻抗方法.

图 4 表示由图 3 的曲线计算出的等效视电阻率 曲线和由它的反演获得的深度一电阻率曲线.此时, 图 4a 的 1,2 分别表示用张量阻抗[**Z**]和[**R**]计算的 等效视电阻率曲线,它们反演出来的结果分别为图 4b 中的深度一电阻率曲线(层状电阻率模型)3 和 4;图 4a 中的实线表示对应于图 4b 中电阻率模型 3,4 的正演拟合视电阻率曲线.

为了实现 MT 视电阻率曲线的反演,利用与直流电阻率法中的 Zohdy 反演(1989)类似的方法,即 先利用 Bostick 公式获得深度及电阻率的初始值, 按照两条视电阻率曲线(实测与正演计算曲线)的符 合程度,改正深度和电阻率,该方法速度较快,收敛 稳定.由此可见,虽然在高频、中频段里两条曲线的 一致性较差,但基本上得到了较满意的反演结果.

4 结论

在 MT 资料处理中新定义的六元素张量阻抗 [**R**]比传统的四分量张量阻抗[**Z**] 提高测深曲线的 相干度至少为 0.1 以上,并且改善了大地电磁资料 处理的质量.但是,本文所提出的方法需要较多的观 测数据,其数据量至少为传统方法的 1.5 倍,这是该 方法的一个不足之处.

目前所有的 MT 法均以四元素张量阻抗的定 义作为理论基础,本文提出的六元张量阻抗方法还 在试验阶段,需要进一步的研究.为了利用已有成熟 的四元素张量阻抗处理和反演方法,我们可以将六 元素张量阻抗[**R**]作为计算常规张量阻抗[**Z**]的中 间辅助变量,同样可以提高数据质量.

References

Auken, E., Boesen, T., Christiansen, A. V., 2017. A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications from 2007 to 2017. Advances in Geophysics.

- Berdichevsky, M. N., 1968. Electrical Prospecting with Magnetotelluric Profiling. Nedra, Moscow(in Russia).
- Cao, Z.L., He, Z.X., Chang, Y.J., 2006. A Simulation Study of Induced Polarization Effect of Magnetotelluric and Its Application in Oil and Gas Detection. *Progress in Geophysics*, 21(4): 1252 - 1257 (in Chinese with English abstract).
- de Groot-Hedlin, C., Constable, S., 2004. Inversion of Magnetotelluric Data for 2D Structure with Sharp Resistivity Contrasts. Geophysics, 69(1):78-86. https://doi.org/ 10.1190/1.1649377
- Egbert, G. D., Livelybrooks, D. W., 1996. Single Station Magnetotelluric Impedance Estimation: Coherence Weighting and the Regression M-Estimate. *Geophysics*, 61 (4):964-970.https://doi.org/10.1190/1.1444045
- Gamble, T.D., Goubau, W.M., Clarke, J., 1979. Magnetotellurics with a Remote Magnetic Reference. *Geophysics*, 44 (1):53-68.https://doi.org/10.1190/1.1440923
- García, X., Jones, A. G., 2002. Atmospheric Sources for Audio-Magnetotelluric (AMT) Sounding. Geophysics, 67(2):448-458.https://doi.org/10.1190/1.1468604
- García, X., Jones, A. G., 2005. A New Methodology for the Acquisition and Processing of Audio-Magnetotelluric (AMT) Data in the AMT Dead Band. *Geophysics*, 70 (5):G119-G126.https://doi.org/10.1190/1.2073889
- Gómez-Treviño, E., Mondragón, M., 1995. Uneven Effect of Random Noise in Magnetotelluric Apparent Resistivity Definitions. *Geophysics*, 60(4):1238–1242. https://doi. org/10.1190/1.1443853
- Groom, R. W., Bailey, R. C., 1991. Analytic Investigations of the Effects of Near-Surface Three-Dimensional Galvanic Scatterers on MT Tensor Decompositions. *Geophysics*, 56(4):496-518.https://doi.org/10.1190/1.1443066
- Gupta, D., Choubey, S., 2015. Discrete Wavelet Transform for Image Processing. International Journal of Emerging Technology and Advanced Engineering, 4(3):598-602.
- Hu,Z.Z., Hu,X.Y., 2005. Review of Three Dimensional Magnetotelluric Inversion Methods. Progress in Geophysics, 20(1):214-220(in Chinese with English abstract).
- Li, D. W., Wang, Y. X., 2015. Major Issues of Research and Development of Hot Rock Geothermal Energy. *Earth Science*,40(11):1858-1869 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2015.166
- Lilley, F.E.M., 1998. Magnetotelluric Tensor Decomposition: Part I, Theory for a Basic Procedure. *Geophysics*, 63 (6):1885-1897.https://doi.org/10.1190/1.1444481
- Linde, N., Pedersen, L. B., 2004. Characterization of a Fractured Granite Using Radio Magnetotelluric (RMT) Da-

ta.*Geophysics*,69(5):1155-1165.https://doi.org/10. 1190/1.1801933

- Liu, W. C., Zhang, S. Y., Yang, L. B., et al., 2015. Three-Dimensional Electrical and Deep Structure Features of Akebasitao Area in Western Junggar by AMT Data. *Earth Science*, 40(3):441-447 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2015.036
- Muñoz, G., 2014. Exploring for Geothermal Resources with Electromagnetic Methods. *Surveys in Geophysics*, 35(1):101-122. https://doi.org/10.1007/s10712-013-9236-0
- Pedersen, L. B., Engels, M., 2005. Routine 2D Inversion of Magnetotelluric Data Using the Determinant of the Impedance Tensor. *Geophysics*, 70(2):G33-G41.https:// doi.org/10.1190/1.1897032
- Ri, G., Kim, K., Ri, Y., 2002. The Magnetotelluric Exploration. Publisher of Industry, Pyong Yang.
- Tripp, A.C., 2005. Acheron's Rainbow: Free Associations on 75 Years of Exploration Geo-Electromagnetics. Geophysics, 70 (6): 25 - 31. https://doi.org/10.1190/1. 2127107
- Wang, J.Y., Xu, Y.X., 1998. Methods and Advances for Estimation of Magnetotelluric Response Function Abroad. *Earth Science Frontiers*, 5(2): 217 - 222 (in Chinese with English abstract).
- Wang, S. M., Wang, J. Y., 2004. Application of Higher-Order Statistics in Magnetotelluric Data Processing. *Chinese Journal of Geophysics*, 47 (5): 928 - 934 (in Chinese with English abstract).
- Xu, Y.X., Wang, J.Y., 2000. A Spectrum Estimation Method for Magnetotelluric Signal Based on Continuous Wavelet Transforms. *Chinese Journal of Geophysics*, 43(5): 717-723.https://doi.org/10.1002/cjg2.86
- Xu,Z.,1987. The Processing of Five-Component Magnetotelluric Sounding Data. Oil Geophysical Prospecting, 22 (4):435-444.

- Yee, E., Kosteniuk, P. R., Paulson, K. V., 1988. The Reconstruction of the Magnetotelluric Impedance Tensor: An Adaptive Parametric Time-Domain Approach.*Geophysics*, 53 (8): 1080 - 1087. https://doi.org/10.1190/1. 1442544
- Yin, C. C., 2003. Inherent Nonuniqueness in Magnetotelluric Inversion for 1D Anisotropic Models. *Geophysics*, 68 (1):138-146.https://doi.org/10.1190/1.1543201
- Zhang, Y., Zhang, S. Y., 2005. A study of the EH-4 Processing and Interpertation System. Chinese Journal of Engineering Geophysics, 2(4):311-315(in Chinese with English abstract).
- Zohdy, A.A.R., 1989. A New Method for the Automatic Interpretation of Schlumberger and Wenner Sounding Curves. Geophysics, 54(2): 245-253. https://doi.org/ 10.1190/1.1442648

附中文参考文献

- 曹中林,何展翔,昌彦君,2006.MT 激电效应的模拟研究及 在油气检测中的应用.地球物理学进展,21(4): 1252-1257.
- 胡祖志,胡祥云,2005.大地电磁三维反演方法综述.地球物理 学进展,20(1):214-220.
- 李德威,王焰新,2015.干热岩地热能研究与开发的若干重大 问题.地球科学,40(11):1858-1869.https://doi.org/ 10.3799/dqkx.2015.166
- 刘文才,张胜业,杨龙彬,等,2015.西准噶尔阿克巴斯陶地区 三维电性结构和深部地质特征.地球科学,40(3):441-447.https://doi.org/10.3799/dqkx.2015.036
- 王家映,徐义贤,1998.国外大地电磁响应函数估计方法.地学前缘,5(2):217-222.
- 王书明,王家映,2004.高阶统计量在大地电磁测深数据处理 中的应用研究.地球物理学报,47(5):928-934.
- 张莹,张胜业,2005.EH-4 资料处理解释系统的研究.工程 地球物理学报,2(4):311-315.