https://doi.org/10.3799/dqkx.2018.280



# 琼东南盆地渐新统煤系(扇)辫状河三角洲特征

李增学1,宋广增2,王东东1\*,张功成3,陈 莹3,吕大炜1,刘海燕1

1.山东省沉积成矿作用与沉积矿产重点实验室,山东科技大学,山东青岛 266590

2.济南大学资源与环境学院,山东济南 250022

3.中海油研究总院,北京 100029

摘要:(扇)辫状河三角洲的沉积模式和类型研究有待丰富.在沉积学、层序地层学理论指导下,精细刻画了琼东南盆地渐新统 煤系(扇)辫状河三角洲的发育与分布特征,建立了渐新统层序地层格架,识别出6个三级层序,分别与崖城组和陵水组的3个 段对应;根据同沉积地貌、断层活动性等特征,划分了断崖型、断坡型、断沟型、横向背斜型与断弯型5种(扇)辫状河三角洲类 型(可进一步细化为外部物源、内部物源两个亚类),分析了渐新统不同沉积期(扇)辫状河三角洲的发育特征与分布规律,归 纳了低位、海侵和高位体系域中(扇)辫状河三角洲的发育特征,阐明了层序地层格架下不同体系域内(扇)辫状河三角洲的发 育位置、规模和纵向叠加的差异和规律.

关键词:(扇)辫状河三角洲;类型划分;发育特征;渐新统;琼东南盆地;石油地质.

**中图分类号:** P618 **文章编号:** 1000-2383(2018)10-3471-14 **收稿日期:** 2018-04-28

## Characteristics of (Fan) Braided River Delta in Oligocene Coal Measures of Qiongdongnan Basin

Li Zengxue<sup>1</sup>, Song Guangzeng<sup>2</sup>, Wang Dongdong<sup>1\*</sup>, Zhang Gongcheng<sup>3</sup>, Chen Ying<sup>3</sup>, Lü Dawei<sup>1</sup>, Liu Haiyan<sup>1</sup>

1.Key Laboratory of Sedimentary Mineralization and Sedimentary Minerals of Shandong Province, Shandong University of Science and Technology, Qingdao 266590, China

2. School of Resources and Environment Jinan University, Jinan 250022, China

3.CNOOC Research Institute, Beijing 100029, China

**Abstract**: More studies are needed in the analyse of sedimentary patterns and types of (fan) braided river deltas. In order to understand the development features and distribution of (fan) braided river delta of Oligocene coal measures in Qiongdongnan Basin, sedimentology and sequence stratigraphy have been studied on the basis of related theories and methods. Through the systematic analysis, the characteristics of the coal measures (fan) braided river delta of the Oligocene were described in detail, the basin wide sequence stratigraphic framework of the Oligocene was established, and 6 third-order sequences were identified, respectively corresponding to the 3 sections of Yacheng Formation and Lingshui Formation. According to the characters of the synsedimentary landform, fault activity, etc, five types of (fan) braided river delta (bluff, cut slope, groove type, horizontal type anticline and fault bend) were divided in Oligocene, and two sub-types of internal source and external source were further identified. It is concluded that the sequence stratigraphic framework show differences and regularity in the location, scale, and longitudinal superposition of (fan) braided river delta in different system tracts.

Key words: (fan) braided river delta; type division; development characteristics; Oligocene; Qiongdongnan Basin; petroleum geology.

作者简介:李增学(1954-),男,教授,博士,主要从事煤地质学与盆地分析方面的教学与科研工作.ORCID: 0000-0002-8418-0947.

E-mail: lizengxue@126.com

\* 通讯作者:王东东,ORCID: 0000-0002-7170-5329.E-mail: wdd02\_1@163.com

引用格式:李增学,宋广增,王东东,等,2018.琼东南盆地渐新统煤系(扇)辫状河三角洲特征.地球科学,43(10):3471-3484.

基金项目:国家科技重大专项(No.2016ZX05026007);国家自然科学基金项目(No.41672096);山东省自然科学基金项目(No.ZR2016DB29).

### 0 引言

扇三角洲是由冲积扇提供物源并沉积在活动扇 与静止水体分界面处的、部分位于水下的沉积体.到 目前为止,为大家广泛接受的扇三角洲模式还是经 典的牙买加模式(斜坡型)、阿拉斯加模式(陆棚型) 和吉尔伯特模式.辫状河三角洲是辫状河推进到水 体(海、湖)中形成的一种粗碎屑三角洲.在断陷盆地 里,(扇)辫状河三角洲是常见的沉积相带.数十年 来,沉积学家提出了大量的扇三角洲沉积模式:Gilbert型扇三角洲沉积模式(Colella, 1988)、近火山 受冰川影响的扇三角洲沉积模式(Eyles and Eyles, 1989)、河口坝型扇三角洲沉积模式(Billi et al., 1991)、水下扇三角洲沉积模式(Postma, 1990)、发 育阶地和断崖的扇三角洲沉积模式(Sanchez et al., 1995)、巨型三角洲一水下扇复合体沉积模式 (Qayyum et al., 1997)、与生物和碳酸盐岩相关的 扇三角洲沉积模式(Bruner and Smosna, 2000; Siggerud et al., 2000)、河流扇三角洲沉积模式 (Sáez et al., 2007)、末梢扇的演化模式(Cain and Mountney, 2009).辫状河三角洲的沉积模式研究相 对较少,胡张明等(2016)在对多级构型要素定性定 量识别基础上,建立了以分流水道与河口坝为主体 的长轴缓坡辫状河三角洲前缘储层构型模式.贾珍 臻等(2014)根据单一分流河道的平面形态以及空间 接触关系,建立了浅水三角洲储层简单层状叠加模 式、交错迁移叠加模式和孤立单一河道模式3种空 间结构类型.

此外,还有不少专家对扇三角洲进行了更为精 细的分类.根据扇三角洲发育的位置将其分为靠山 型和靠扇型(吴崇筠和薛叔浩,1992);根据扇三角洲 进积的蓄水盆地性质不同将其分为入湖型和入海型 (李思田,1996);根据沉积物供给速率、可容空间增 长速率及盆缘断裂产状等因素,将其划分出退积型、 加积型、前积型、陡坡型和缓坡型(焦养泉等,1998); 根据断陷盆地断裂调节带对砂体形态控制作用,归 纳了4种断裂调节带控砂模式:断弯型、断阶型、断 层交叉型、断沟型(高晓辉等,2008);根据盆地同沉 积断层和砂体展布规律,划分出两种断层控扇模式: 单一断层控制型和多级断层调节型断层控扇模式 (文全,2011).

随着研究的积累,(扇)辫状河三角洲的沉积模 式和类型还在不断推陈出新.但是,所有的模式都来 自于对特殊现象的考察,没有任何一个模式会完全 符合现在的任何研究对象,多了解一些沉积模式有助于对研究对象的理解和判断(张昌民等,2015),对于具体的研究对象还需要具体研究其控制因素和类型,进而指导整个研究区(扇)辫状河三角洲的识别和分布研究.

中国南海渐新统煤系发育大量扇三角洲和近源 辫状河三角洲,以往研究表明这些扇三角洲和近源辫 状河三角洲的平原是有利的聚煤场所(李增学等, 2010;Li et al., 2011;张功成等,2012),而煤系烃源岩 正是南海地区天然气的主要源岩(李文浩等,2011;李 友川等,2011).根据断陷盆地"源控论"的指导思想,寻 找煤系烃源岩是南海地区油气勘探的重要工作内容, 但南海地区煤系扇三角洲和辫状河三角洲的研究较 为薄弱,严重制约了该地区的油气勘探.

本研究以中国南海琼东南盆地渐新统煤系为 例,研究扇三角洲、辫状河三角洲的发育特征和控制 因素,梳理主要的沉积类型,分析其发育与分布规 律,为研究区扇三角洲平原、辫状河三角洲平原煤系 烃源岩的预测提供一定的理论指导.

### 1 琼东南盆地地质概况

琼东南盆地处于南海北部大陆边缘的西段,水深 100~300 m,面积约 8×10<sup>4</sup> km<sup>2</sup>,为古近纪一第四纪 期间形成的被动大陆边缘盆地.盆地经历了多期构造 演化与沉积演化,古近纪始新世一渐新世处于断陷 期,新近纪一第四纪处于拗陷期(李绪宣,2004);渐新 世早期,主要为海陆过渡相沉积,沉积了崖城组;渐新 世晚期一第四纪为海相沉积,自下而上依次沉积了陵 水组、三亚组、梅山组、黄流组与莺歌海组等(张功成 等,2007;蔡国富等,2013)(图 1).

琼东南盆地的构造区划,主要表现为"两坳两 隆",即为北部坳陷、北部隆起、中央坳陷、南部隆起 4个一级构造单元,还可以进一步划分为20多个二 级构造单元(李绪宣,2004).北部坳陷由崖北、松西、 松东3个凹陷组成,中央坳陷由乐东、崖南、陵水、松 南、宝岛、北礁6个凹陷组成.琼东南盆地构造区划 在平面具有"南北分带"、"东西分块"的特点(图1).

## 2 琼东南盆地渐新统(扇)辫状河三角 洲识别

通过岩石学特征、测井响应特征以及地震反射





特征,本文识别出琼东南盆地古近纪沉积扇体主要 为扇三角洲,局部发育辫状河三角洲.盆地的构造形 态、构造演化控制了扇体的时空分布,并对扇体类 型、发育位置与扇体特征等具有重要的控制作用.

### 2.1 岩石学特征

(扇)辫状河三角洲以牵引流为主,其分流河道 (水下分流河道)发育底冲刷、泥砾、交错层理、平行 层理等,整体具正旋回特征;河口坝发育波状层理、 脉状层理及平行层理;支流间湾泥岩中水平层理发 育(庞军刚等,2011).在琼东南盆地崖城组钻井岩心 中,可观察到扇三角洲平原砾岩,以及辫状河三角洲 中的透镜状、脉状沉积构造等,并见生物扰动构造, 反映了动荡的浅水沉积环境(图 2).

### 2.2 测井响应特征

琼东南盆地渐新统崖城组扇三角洲与辫状河三

角洲均具有显著的测井曲线特征.扇三角洲平原多 期辫状河道形成的自然伽马(GR)曲线组合形态为 多个钟型或箱型的垂向叠加,河道间为较薄层的低 幅平直或微齿自然伽马曲线形态(图 3a);前缘席状 砂的自然伽马曲线表现为低幅指型(图 3b);水下分 流河道表现为高幅箱型、齿化箱型或钟型自然伽马 曲线形态,水下分流河道间的自然伽马曲线表现为 低幅齿型(图 3c);河口坝的自然电位曲线表现为齿 化漏斗型,反映构造冲刷作用减弱(图 3d).河口砂 坝在自然电位(SP)、自然伽马曲线上漏斗状的特 征,是识别扇三角洲前缘的典型标志,尤其是在进积 型扇三角洲沉积序列中.辫状河三角洲的自然电位 和自然伽马曲线常表现为中高幅的箱型、钟型或者 是中幅漏斗型,并在地震剖面上表现为中一弱振幅、 连续性差的席状或者楔状反射(图 4).



图 2 琼东南盆地崖城组(扇)辫状河三角洲沉积

Fig.2 Core features of (fan) braided river delta of Yacheng Formation in Qiongdongnan Basin a.扇三角洲砾岩;b.扇三角洲砾岩;c.辫状河三角洲粗砂岩;d.岩心辫状河三角洲砾岩夹泥砾;e.辫状河三角洲砂岩夹泥质条带和虫孔,辫状 河三角洲透镜状、脉状构造



图 3 崖 13-1 地区崖城组扇三角洲相的几种微相的测井特征

Fig.3 Log responses of several microfacies of fan delta of Yacheng Formation in Ya13-1 region



图 4 崖 13-1 区崖城组辫状河三角洲不同微相测井响应特征

Fig.4 Log responses of different kinds of microfacies of Yacheng Formation in Yal3-1 region

a.辫状河道,中高幅箱型;b.上部为河口坝、中幅漏斗型,中部为水下分流河道间、GR高值异常,下部为水下分流河道、中高幅钟型;c.河口坝,中高幅漏斗型;d.上部和下部为远砂坝、中幅小规模漏斗型,中部为席状砂、中低幅细指状

#### 2.3 地震反射特征

扇三角洲平原为平行中等频率中等振幅地震反 射特征,扇三角洲前缘呈高频强振幅前积反射特征. 扇三角洲平原入湖(海)时,在入口处通常有一个古 地理突变带——扇三角洲前缘斜坡带.在斜坡带上 沉积作用以前积方式为主,地震反射特征呈明显的 前积倾斜地震反射特征.扇三角洲前缘斜坡之上为 河流入湖(海)时由于水流作用变动产生的扇三角洲 前缘河口坝,在地震体中常呈丘型反射.河口坝之上 为扇三角洲平原沉积.前积地震反射还可以在一定 意义上指示物源的方向.通常情况下在顺物源及水 流方向呈前积反射特征,在垂直物源方向扇三角洲 前缘为丘型地震反射特征(张玺华等,2013;王升兰 和刘晖,2014).

在琼东南盆地渐新统崖城组,扇三角洲主要发 育于始新世等盆地初始裂陷期与早渐新世强烈裂陷 期,尤其分布于凹陷边缘的控盆断层根部,例如陵水 凹陷北部2号断层、北礁凹陷南部11号断层.扇三 角洲纵剖面在地震剖面中呈现多种类型的地震反射 特征,主要包括强振幅前积楔形反射、反"S"型前积 叠加反射等,在纵向上可见多期扇体的相互叠置,并 在三级层序顶部发育顶超现象;扇三角洲横剖面则 呈现透镜反射,反射体内部可见多期扇体的相互叠 置(图 5).

辫状河三角洲主要发育于晚渐新世,即盆地的 断一坳转换期;此时盆地差异沉降减慢,盆地边缘地 貌坡度变缓,如松东凹陷北部.辫状河三角洲平面延 伸距离较远,在地震剖面中呈现平缓的反"S"型前 积反射、强振幅亚平行前积反射,并在局部可见水下 分流河道中呈现透镜反射的砂体(图 5).

### 3 琼东南盆地渐新统煤系层序地层特征

地震层序分析是沉积层序研究的重要基础,是 建立层序地层格架的重要手段和方法.在钻井资料 较少的地区(如琼东南盆地深水区),地震资料的分

| 沉积<br>扇体 | 时空<br>分布                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 地震反<br>射特征                                                                  | 沉积扇体及地震反射特征                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|          | 崖城水凹。<br>城水山部<br>2号断隆盘.<br>下                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 强根友子<br>最低的一个,<br>是一个,<br>是一个,<br>是一个,<br>是一个,<br>是一个,<br>是一个,<br>是一个,<br>是 | (wu)回akg/m      36      人      内部朵体多期叠置沉积        1005 0005 0005 0005 0005 0005 0005 0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|          | 陵三长陷部洼盆凹下<br>水段昌东小陷缘断降<br>建。四南型内控层盘.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 强形体充置,<br>强形体在登上的,<br>超出,<br>超出,<br>超出,<br>超出,<br>超出,<br>超出,<br>超出,<br>超出   | (sun)回拍 指 俗 凶 融 X<br>(sun)回拍 指 俗 凶 融 X<br>(sun)回拍 指 俗 凶 融 X<br>(sun)回拍 指 俗 凶 融 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|          | 陵 武 殿 (○)  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □  □ □ | 叠瓦状前积<br>反射,总计<br>发育4期扇三<br>角明显的上<br>超现象.                                   | 000 g th m m m m m m m m m m m m m m m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| 扇三角洲     | 崖城礁四部<br>北礁南部控<br>11断降<br>上<br>下降盘.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 反"S"型前<br>积反射,多<br>期扇上相互叠<br>置.                                             | www.<br>magental and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|          | 陵二二章                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 盆缘中强<br>振幅前积<br>楔形反射.                                                       | 4000 3500<br>3-900<br>小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|          | 崖城回<br>崖南东南<br>部3号控<br>凹断层<br>下降盘.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 盆楔反前反交<br>多反体平齿.<br>一次交互.                                                   | (sw)回相格区型      3      第三角洲与瓦        1      第三角洲安亞      第        1      第      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1      1        1      1 |  |  |  |  |  |  |  |  |
|          | 崖城组,<br>松南凹<br>陷西南<br>部2号控<br>凹断层<br>下降盘.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 盆幅形形原具的反<br>缘前反原具的反<br>头的反<br>机射与有地射<br>是<br>相异.                            | (w)<br>(w)<br>(w)<br>(w)<br>(w)<br>(w)<br>(w)<br>(w)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| 辫状河三角洲   | 陵三段涛北<br>松段,凹部<br>缓坡.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 亚积反射体远,<br>平反射体远,<br>伸顶,超<br>现<br>超<br>现<br>象.                              | 1005F<br>005F<br>0005<br>0005<br>0005<br>0005<br>0005<br>0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |

图 5 琼东南盆地渐新统沉积扇体及其地震相反射特征

Fig.5 Deltas and relevant seismic facies characteristics of Oligocene in Qiongdongnan Basin

| 地层系统 |     | 厚   |     | 年  | 三里桃      | 层底        |                                                                                                             |            |                                                                     |        | 古生物                      |      | 古    | 海平面升降    | 基准面旋回       | I A    | 层序地层                       |                | 盆地构                |          |                |        |
|------|-----|-----|-----|----|----------|-----------|-------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|--------|--------------------------|------|------|----------|-------------|--------|----------------------------|----------------|--------------------|----------|----------------|--------|
| 系    | 约   | ñ   | 组   | 段  | 度<br>(m) | 龄<br>(Ma) | 剖面                                                                                                          | 界面         | 岩 性 简 述                                                             |        | 沉积相                      | 有孔虫  | 超微   | 孢粉<br>组合 | 气候          | 升 ←→ 降 | 中<br>长<br>超<br>期<br>期<br>期 | 体系域            | 三级                 | 二级       | 造演             | i化     |
|      |     |     |     | 一段 | 0~368    | 21<br>23  |                                                                                                             | T60        | 浅灰色砾状砂岩、砂岩<br>中-粗砂岩与灰-深灰色<br>泥岩不等厚互层                                |        |                          | N4 F | NN4F |          |             |        |                            | HS<br>TS<br>LS | T<br>T Sq4<br>T    |          |                |        |
| +    |     | 上   | 陵水  | 二段 | 0~582    | 25.5      |                                                                                                             | 101        | 灰-深灰色泥岩为主,<br>夹浅灰色薄层砂岩                                              |        | 滨海                       |      | NP25 | QP2      | 暖           |        |                            | HS<br>TS<br>LS | T<br>T<br>T        | 超层       | 裂陷晚期           |        |
| 白    | 渐   | 572 | 组   | 三段 | ~730     | 2010      | •      •      •        •      •      •        •      •      •        •      •      •        •      •      • | T62<br>T63 | 灰白-浅灰色黏土砾状<br>砂岩、含砾砂岩、中-粗<br>砂岩夹浅灰色泥岩                               | 海      | 浅海                       | P22  | NP24 | YC       | 温带          |        |                            | HS<br>TS<br>LS | T<br>T<br>Sq2      | 序<br>III | 快速裂陷           | 裂      |
| 近    | 新   |     |     |    | 0        | 30        | • •<br>                                                                                                     | T70        |                                                                     | 相      |                          |      |      |          |             | 7      |                            | HS<br>TS<br>LS | T<br>Sq1<br>T      |          |                | 陷      |
|      |     |     | 崖   | 一段 | 0~266.5  |           | · · · · ·                                                                                                   | T71        | 灰白色砂砾岩、砂状砾岩<br>砂岩与深灰色泥砂、砾质<br>泥岩互层,夹煤层或炭屑                           |        | 滨浅海<br>泻湖-潮坪             | P21  |      |          | -           | 二级     |                            | HS<br>TS<br>LS | T<br>T Sq3<br>T    | 超        | 裂陷中            | 阶<br>段 |
| 系    | 统   | 下统  | 城   | 二段 | 0~221    |           | • • • •<br>• • • •<br>• • •                                                                                 | T72        | 浅灰、黄灰色泥岩,粉砂<br>质泥岩与浅黄灰色泥质沙<br>砾岩、中砂岩等厚互层                            |        | 1-0 190 190 21           |      | NP23 | YQP1     | 南<br>亚<br>热 |        |                            | HS<br>TS<br>LS | T<br>T<br>Sq2<br>T | 层序       | 甲期缓            |        |
|      |     |     | 211 | 三段 | 0~422.5  | 36        |                                                                                                             | 780        | 上部为灰白色砂岩与深灰<br>色泥页岩互层夹煤层,下<br>部为灰白、浅灰色砂砾岩<br>含砾砂岩为主,夹薄层深<br>灰色粉砂质泥岩 | 过渡相    | 辫状河三<br>角洲<br>扇三角洲<br>河流 | P20  |      |          | 带           |        |                            | HS<br>TS<br>LS | T<br>Sq1<br>T      | п        | 慢<br>裂<br>陷    |        |
|      | 女亲约 | 台所充 | 岭头组 |    |          | 46        |                                                                                                             | T-00       | 浅棕红色泥质砂岩与<br>浅灰色含砾砂岩互层                                              | 陆<br>相 | 湖相<br>扇三角洲<br>冲积扇        |      |      |          |             |        |                            |                | Sq <sub>E</sub>    | 超层序I     | 初期<br>快速<br>裂陷 |        |
| 前古近系 |     |     |     |    |          |           |                                                                                                             | Ig         | 花岗岩、白云岩、<br>凝灰岩、火山集快岩等                                              |        | 基 底                      |      |      |          |             |        |                            | -              |                    |          |                |        |



Fig.6 Comprehensive map of sequence division of Oligocene in Qiongdongnan Basin 层序划分方案为本次研究成果,古生物、古气候、海平面升降与盆地构造演化等依据蔡国富等(2013)

| 组            | 段   | 界面              | 层序划分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |             | 层序界面特征                                                                                                                                                                     |  |  |  |  |  |  |
|--------------|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 陵水组          | 陵一段 | - S60 -         | IIV-98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |             | S60为一角度不整合界面,界面上下盆地结构类型发生转变,界面以下为古近纪<br>断陷盆地,界面以上为新近纪坳陷盆地,在中国东部盆地之间可以进行对比,<br>为1级层序界面在NW-SE向地震剖面中,界面之上可见上超与下切谷发育,界面<br>之下可见力下伏地是的削截。界面发育范围较广,<br>典型凹陷:松南凹陷、长昌凹陷、北礁凹陷、北部坳陷带 |  |  |  |  |  |  |
|              | 陵二段 | - S61 -         | IV-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6层序 |             | \$61为一角度不整合-整合界面,中-好连续性中强振幅反射.在凸起部位常被<br>\$60削截.在凹陷边缘,界面呈现上超下削的角度不整合接触;向凹陷中部,则渐<br>变为整合接触,界面没育范围较为局限.<br>典型凹陷;陵水凹陷,松南凹陷、长昌凹陷、北部坳陷带                                         |  |  |  |  |  |  |
|              | 陵三段 | - s62 -         | SQ-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |             | S62为一角度不整合-整合界面,中-好连续性中等振幅反射,部分位置界面上<br>地震相略有差异.在凹陷边缘,界面呈现上超下削的角度不整合接触;向凹陷<br>部,则渐变为整合接触.界面发育范围较广.<br>典型凹陷:松南凹陷、长昌凹陷、北礁凹陷                                                  |  |  |  |  |  |  |
|              | 崖一段 | - s70 -         | Q-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | <b>波</b> 层序 | S70为一角度不整合界面,中等连续性中等振幅反射,界面上超下削现象比较明<br>显,尤为NW-SE向剖面中,可见盆源向盆内的下超反射,界面上下发生地震相变<br>化,为断略期向断动转换期过或的界面,为II级层序界面,界面分布范围较广,<br>典型凹陷:北礁凹陷、北部坳陷带                                   |  |  |  |  |  |  |
| <u>н</u> я   |     | <b>- S</b> 71 - | - North Contraction of the second sec | -   | I           | S71为一角度不整合-整合界面,中-差连续性中弱振幅反射,在凸起部位常被<br>S70削截,界面上下地震相略有差异,界面发育范围较为局限.<br>典型凹陷;陵水凹陷、松南凹陷、长昌凹陷、北礁凹陷                                                                          |  |  |  |  |  |  |
| /<br>重城<br>组 | 崖二段 |                 | ガンジェンジェンジェンジェンジェンジェンジェンジェンジェンジェンジョン 11-92<br>72 II-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |             | S72为一角度不整合-整合界面,中-差连续性中弱振幅反射.特征不明显,局部界<br>面之上可见上超,界面上下略有地震相差异。界面发育范围较广.<br>典型凹陷:松南凹陷、北礁凹陷                                                                                  |  |  |  |  |  |  |
|              | 崖三段 | - 872 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             | S80为一角度不整合-整合界面,中-差连续性中弱振幅反射,界面上超基底界面<br>之上,界面上下略有地震相差异.界面发育范围局限.<br>典型凹陷:松南凹陷、北礁凹陷                                                                                        |  |  |  |  |  |  |
| <u> </u>     |     | - s80 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             | S100为一角度不整合界面,中-强连续性中弱振幅反射,在NW-SE向地震剖面中<br>界面之上上超现象明显,界面之下为盆地基底的杂乱反射.界面上下具有显著的<br>地震地差界。两位全点期位行                                                                            |  |  |  |  |  |  |
| 始新统          |     |                 | sQ-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |             | 北 <u>屋</u> 田左开, <u>在四</u> 风月10日秋),<br>典型凹陷:松南凹陷、北礁凹陷、北部坳陷带                                                                                                                 |  |  |  |  |  |  |
|              |     | L S100 _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |                                                                                                                                                                            |  |  |  |  |  |  |

图 7 琼东南盆地渐新统地震层序划分依据

Fig.7 Seismic sequence division of Oligocene in Qiongdongnan Basin



图 8 琼东南盆地古近纪层序地层格架

Fig.8 The Paleogene sequence stratigraphic framework of Qiongdongnan Basin

析和利用尤为重要.因此地震资料为层序界面识别的重要依据,也是进行沉积层序内部单元划分和对 比的重要数据基础.

在琼东南盆地古近系渐新统发育有不同规模和 级别的同沉积断裂,形成了对盆地格架、内部结构和 沉积充填型式具有明显控制作用的断坡带.因此,复 杂断坡型层序构型是琼东南盆地古近系渐新统的主 要层序组成类型,可以进一步区分出高水位断坡带 和低水位断坡带,洪泛往往发生在构造沉降期或全 球海平面上升期,控制着体系域单元及其叠置样式.

已有较多专家和学者针对琼东南盆地渐新统的 层序地层学特征开展过相应研究(解习农和葛立刚, 1997; 王根发等, 1998; 魏魁生等, 2001; 王东东, 2009; 张亚雄, 2009; 朱伟林, 2010), 将崖城组划分为 1个或3个三级层序,将陵水组划分为3个或4个 三级层序, 层序划分方案具有较大的相似性.

在前人研究基础之上,通过对琼东南盆地古近 系崖城组和陵水组各种层序地层界面识别与对比, 对地震层序、钻井层序、测井层序以及井一震层序综 合分析,结合沉积相发育与演化、古生物与古气候、 构造演化等研究,以琼东南盆地主干地震测线解释 为基础,对研究区全区进行了地震资料解释的加密 与闭合,解释密度达2km×2km,建立了琼东南盆 地渐新统的层序地层格架.整个渐新统共划分出6 个三级层序,崖城组和陵水组各划分出3个三级层 序(图6,7,8).各三级层序自下而上可进一步划分为 低水位体系域、海侵体系域、高水位体系域.

## 4 琼东南盆地渐新统煤系(扇)辫状河 三角洲特征

琼东南盆地(扇)辫状河三角洲类型较多,(扇) 辫状河三角洲的展布、规模等特征受构造、物源以及 沉积基准面旋回等多因素的影响(冯有良,2006;宋 广增等,2014).

#### 4.1 (扇)辫状河三角洲成因类型划分

同沉积地貌、同沉积断层活动性与组合样式,以 及物源供给强弱、物源方向等均对琼东南盆地古近 纪沉积扇体具有重要的控制作用.在沉积扇体识别 的基础上,结合同沉积地貌、断层活动性等,将琼东 南盆地古近纪沉积扇体划分为断崖型、断坡型、断沟 型、横向背斜型与断弯型等5种类型,且每种类型在 盆地中具有不同的分布位置与发育层位,并根据物 源背景,多种类型扇体可进一步划分为外部物源与 内部物源2个亚类(图9).

琼东南盆地断崖型扇体中,断层控制形成沉降 中心,断层根部可容空间最大,沉积扇体纵向沉积厚 度较大,横向延伸规模较小;由于扇体的快速堆积, 碎屑物分选较差,该类型扇体主要发育于始新世初 始裂陷期与早渐新世强烈裂陷期.在晚渐新世裂陷 衰减期,盆缘断层活动性减弱,失去对沉降中心的控 制性,沉降中心偏离主干断层而向盆地中心迁移;此 时在盆地断控陡坡带形成断坡型扇体,其对断崖型 扇体具有一定的继承性;但由于地貌坡度变缓,因此 延伸规模较大,且扇体易于向盆地中心发生滑塌形 成浊积扇.半地堑凹陷中,断层下降盘因断层的强烈 活动而发生弯曲,在凹陷缓坡形成断弯带,控制断弯 型扇体的发育;因地貌向盆地中心逐渐降低,可容空 间增加缓慢,沉积扇体在纵向叠置厚度较小,横向多 延伸规模较远,且因卸载缓慢而分选较好.同沉积断 层倾没端可以控制物源输入,且碎屑物入盆后沿断 层控制形成的沟道进行运移与卸载,形成断沟型扇 体.同沉积断层活动性沿走向发生变化,在构造活动 性减弱的部位则可形成横向背斜,控制物源输入位 置以及扇体的展布,形成横向背斜型扇体.多数扇体 可进一步划分为外部物源与内部物源两个亚类.始

|             | 扇体类型     | 地貌背景                   |          | 物源背景                  |
|-------------|----------|------------------------|----------|-----------------------|
| 断           |          | 断层活动性强,沉降              | 内部<br>物源 | 盆地内部凸起、低凸起等           |
| 型           | - Part - | 中心仅临断层分布               | 外部<br>物源 | 盆地南部永乐隆起区、北<br>部海南隆起区 |
| 断           |          | 断层活动性减弱,沉降中心偏离断层转向     | 内部<br>物源 | 盆地内部凸起、低凸起等           |
| 坡型          |          | 盆地中心                   | 外部<br>物源 | 盆地南部永乐隆起区、北<br>部海南隆起区 |
| 断           |          | 断层倾没端控制了物源输入,入盆后碎屑     | 内部<br>物源 | 陵南低凸起、南部隆起            |
| ×4<br>型     |          | 物沿断层控制形成沟<br>道进行运移与卸载  | 外部<br>物源 | 南部海南隆起区               |
| 横向北         |          | 横向背斜控制了物源              | 内部<br>物源 | 陵水低凸起、松涛凸起            |
| 月<br>斜<br>型 |          | 输入与扇体友育                | 外部<br>物源 | 北部海南隆起区               |
| 断弯型         |          | 断层下降盘因断层的<br>强烈活动而发生弯曲 | 内部物源     | 陵南低凸起、松南低凸起           |

图 9 渐新统(扇)辫状河三角洲的主要类型与特征

Fig.9 Main types and characteristics of (fan) braided river delta of Oligocene



图 10 琼东南盆地崖城组沉积相展布

新世与早渐新世,盆地内部凸起与低凸起等局部高 地暴露于地表,提供内部物源,但因物源供给不充 足,形成的扇体规模较小,表现为横向延伸短或纵向 叠置厚度小.研究表明,盆地南部永乐隆起区、北部 海南隆起区可作为琼东南盆地的外部物源,因物源 供给较为充足,由该物源形成的扇体规模较大,表现 为横向延伸较远或纵向叠置较厚,且分选较好.

### 4.2 琼东南盆地渐新统(扇)三角洲发育与展布

琼东南盆地渐新统崖城组主要发育浅海、滨海、 潮坪、潟湖、扇三角洲、辫状河三角洲、海沼沙岭平原 和冲积平原沉积.(扇)辫状河三角洲主要发育在北 部坳陷带北缘和中央坳陷带的南、北缘,大致形成3 个大的(扇)辫状河三角洲发育带(图 10).

琼东南盆地渐新统陵水组的(扇)辫状河三角洲

Fig.10 Sedimentary facies distribution of Yacheng Formation in Qiongdongnan Basin I.断崖型,II.断坡型,III.断沟型,IV.横向背斜型,V.断弯型



图 11 琼东南盆地陵水组三段沉积相展布

Fig.11 Sedimentary facies distribution of the third section of Lingshui Formation in Qiongdongnan Basin I.断崖型,II.断坡型,III.断沟型,IV.横向背斜型,V.断弯型

主要发育在陵水组三段,之后海水大幅度上升,(扇) 辫状河三角洲的发育非常局限.陵水组三段沉积期, 主要发育浅海、滨海沉积,在古隆起的周缘往往发育 (扇)辫状河三角洲.(扇)辫状河三角洲继承了崖城 组格局,仍然主要发育在北部坳陷带北缘和中央坳 陷带的南、北缘,大致形成 3 个大的(扇)辫状河三角 洲发育带(图 11).

在沉积相平面图中,断崖型扇体分布于盆地最 北部断层下降盘、中央坳陷带北部断层下降盘以及 北礁凹陷南部 11 号断层下降盘;在平面上侧向连片 分布而向前延伸规模较小;断坡型扇体在崖城组同 沉积期发育较少,主要分布于长昌凹陷南北两侧,因 为此处断层在早渐新世普遍活动较弱;在陵水组同 沉积期,断坡型扇体发育较多,分布较广,因其普遍 由断崖型扇体演化形成,平面分布具有一定继承性; 断沟型扇体与横向背斜型扇体因受特殊地貌的影 响,分布较为局限;断沟型主要分布于早渐新世北礁 凹陷西南部、松南凹陷西部、乐东凹陷南部,均与控 凹断层的活动性有关;横向背斜型扇体主要分布于 晚渐新世早期(陵水组三段沉积期)松南凹陷与陵水



Fig.12 Synsedimentary fault map of Paleogene in Qiongdongnan Basin





Fig.13 The 2D distribution of sedimentary fan in third-order sequence system of Qiongdongnan Basin 据 Song *et al.*(2014)修改.a.断崖带及其控制形成的层序地层样式; b.断坡带及其控制形成的层序地层样式; c.断弯带及其控制形成的层序 地层样式;SB.层序界面;MFS.最大洪泛面;TS.初始洪泛面

凹陷过渡部位,与2号断层沿走向的活动性变化有 关;断弯型扇体时空分布均较为广泛,主要分布于北 部坳陷带南部、中央坳陷带北部以及北礁凹陷北部, 扇体延伸相对较远,但侧向连片性较差.

### 4.3 基准面旋回对(扇)辫状河三角洲的控制作用

沉积基准面的变化,可以控制形成不同沉积体 系域.在不同体系域中,沉积扇体的纵向叠置样式、 扇体规模等受沉积基准面变化快慢的影响而具有不 同的特征.在扇三角洲的形成过程中,基准面的升降 变化对扇三角洲的扇面沟道发育情况、扇体前积与加积、扇体形态、扇三角洲平原的向前推移、扇体的 面积、沉积物的分异程度等均有影响(鄢继华等, 2009).

在本次研究中,为详细研究不同体系域中沉积 扇体的展布、叠置等,选取纵向沉积扇体的典型地震 剖面绘制古近纪同沉积断面图.图 12 为琼东南盆地 深水区陵水凹陷东部同沉积地震剖面,走向 NW-SE.因北部 2 号断层的强烈活动,使凹陷呈半地堑结





Fig.14 The 3D distribution of sedimentary fan in third-order sequence system of Qiongdongnan Basin 据 Chen et al.(2014)修改.a.断崖带与断弯带及控制形成的沉积扇体特征; b.断坡带与断弯带及控制形成的沉积扇体特征

构,北部为断层控制形成的陡坡带(断控陡坡带),南 部为断块旋转掀斜形成的弯折带(断弯带);在断控 陡坡带,根据断层是否控制沉降中心,分为断崖带与 断坡带(图 13).不同坡折带类型控制形成不同的层 序格架结构及其内部沉积扇体的纵向叠置、横向展 布与组合等.根据同沉积断面图,结合构造坡折带, 笔者绘制了 3 种不同的层序地层样式(图 13,14), 以形象反映不同体系域中沉积扇体特征.

在3种层序地层样式中,低位体系域(LST)沉 积时由于沉积基准面较低,沉积范围较小而物源范 围较广,其提供的碎屑物供给充足;此时形成的扇体 规模相对较大,且主要展布在靠近盆地中心位置;沉 积基准面的上升,使沉积扇体在纵向上具有一定的 叠置厚度;在海侵体系域(TST)中,沉积基准面上升 速度加快,可容空间快速增加,沉积范围快速增加, 物源供给速率相对减慢,因此沉积扇体规模较小,甚 至缺少扇体的发育,沉积扇体在纵向上呈退积叠置; 在高位体系域(HST)中,沉积基准面上升速度减 慢,甚至在后期趋于停止,沉积物供给速率相对增 加,此时沉积扇体横向延伸规模较远;在纵向上呈现 进积叠置,相对于低位域远离盆地中心而更趋近于 盆缘,并在体系域顶部存在因沉积基准面上升停止 而形成的顶超现象.

除上述共同特征外,每种层序地层样式具有独特的特征.在断崖带控制形成的层序地层样式中(图13a),边界断层根部沉降量最大,盆缘扇体纵向堆积厚度达到最大,但横向延伸规模最小,不具有向前发 生滑塌的地貌条件,因此缺少盆底扇或斜坡扇;与之 不同,在断坡带控制形成的层序地层样式中,由于沉 降中心位于盆地中心,地貌坡度较为平缓,盆缘扇体 横向延伸规模变大,具备向前发生滑塌的地貌条件, 可形成盆底扇、斜坡扇或高位域远端滑塌浊积体;在 断弯带中,此时地形坡度最缓,盆缘可容空间最小, 沉积扇体纵向叠置厚度最小,但向前延伸规模最大, 且具备向前发生滑塌的地貌条件,可形成低位域盆 底扇、斜坡扇或高位域远端滑塌浊积体.

比较沉积基准面在3种不同地貌类型中对沉积 扇体的影响,可以得出:在断崖带中,缺少低位域盆 底扇或斜坡扇,沉积扇体纵向叠置厚度最大,横向延 伸规模最小(图14a);在断坡带中,沉积扇体横向延 伸规模较断崖带增大,沉积扇体可向前发生滑塌(图 14b);在断弯带中,沉积扇体延伸规模达到最大,纵 向叠置厚度最小,易于向前发生滑塌.

根据以往研究的煤系(扇)辫状河三角洲成煤规 律和研究区的煤层发育特征,笔者认为断沟型(扇) 辫状河三角洲最有利于煤层发育,其次为断坡型、横 向背斜型、断崖型与断弯型(扇)辫状河三角洲.在层 序地层学基准面旋回过程中,海侵体系域聚煤较好, 其次是高水位体系域.

### 5 结论

(1)盆地范围内,在渐新统内识别出6个三级层序,各层序均由低水位、海侵和高水位体系域组成, (扇)辫状河三角洲主要发育在低水位和高水位体系域.

(2)根据同沉积地貌、断层活动性等,将琼东南盆 地渐新统沉积扇体划分为断崖型、断坡型、断沟型、横 向背斜型与断弯型5种类型,并进一步划分为外部物 源与内部物源两个亚类;并据此分析了崖城组和陵水 组三段沉积期各类扇体的发育与分布特征.

(3)在低位体系域中形成的扇体,规模相对较 大,且在靠近盆地中心位置,扇体在纵向上具有一定 的叠置厚度;在海侵体系域中形成的扇体,规模普遍 较小,纵向上呈退积叠置;在高位体系域中形成的扇 体,规模相对较大,在体系域顶部可见到顶超现象.

#### References

- Billi, P., Magi, M., Sagri, M., 1991. Pleistocene Lacustrine Fan Delta Deposits of the Valdarno Basin, Italy. SEPM Journal of Sedimentary Research, 61(2): 280 - 290. https://doi. org/10.1306/d42676ef-2b26-11d7-8648000102c1865d
- Bruner, K. R., Smosna, R., 2000. Stratigraphic Tectonic Relations in Spain's Cantabrian Mountains Fan Delta Meets Carbonate Shelf. Journal of Sedimentary Research, 70 (6):1302-1314.
- Cai, G.F., Shao, L., Qiao, P.J., et al., 2013. Marine Transgression and Evolution of Depositional Environment in the Paleogene Strata of Qiongdongnan Basin, South China Sea. Acta Petrolei Sinica, 34(S2):91-101 (in Chinese with English abstract).
- Cain, S.A., Mountney, N.P., 2009. Spatial and Temporal Evolution of a Terminal Fluvial Fan System: The Permian Organ Rock Formation, South-East Utah, USA. Sedimentology, 56(6):1774-1800. https://doi.org/10.1111/ j.1365-3091.2009.01057.x
- Chen, S., Wang, H., Wu, Y.P., et al., 2014. Stratigraphic Architecture and Vertical Evolution of Various Types of Structural Slope Breaks in Paleogene Qikou Sag, Bohai Bay Basin, Northeastern China. Journal of Petroleum Science and Engineering, 122:567 – 584. https://doi. org/10.1016/j.petrol.2014.07.003
- Colella, A., 1988. Fault-Controlled Marine Gilbert-Type Fan Deltas. *Geology*, 16(11): 1031 - 1034. https://doi.org/ 10.1130/0091-7613(1988)016<1031:fcmgtf>2.3.co;2
- Eyles, C.H., Eyles, N., 1989. The Upper Cenozoic White River "Tillites" of Southern Alaska: Subaerial Slope and Fan-Delta Deposits in a Strike-Slip Setting. *Geological Society of America Bulletin*, 101(8):1091-1102. https://doi.org/10.1130/0016-7606(1989)101<1091: tucwrt>2.3.co;2
- Feng, Y. L., 2006. Control of Valley and Tectonic Slops Break Zone on Sand Bodies in Rift Subsidence Basin. Acta Petrolei Sinica, 27(1):13-16 (in Chinese with English abstract).
- Gao, X. H., Fang, J., Zhang, J., et al., 2008. Control Factors for Structure of Stratigraphic and Lithologic Reservoirs in the Lower Cretaceous of Erlian Basin. Acta Petrolei Sinica, 29 (5):663-669 (in Chinese with English abstract).
- Hu,Z.M., Zheng, L.J., Yin, S.L., et al., 2016. Reservoir Architecture of Braided Delta Front on Gentle Slope. *China Science pa per*, 11(9): 1005 - 1010 (in Chinese with English abstract).
- Jia,Z.Z., Lin, C. Y., Dong, C. M., et al., 2014. Shallow Delta Reservoir Architecture Analysis on Putaohua Oil Formation in Shengping Oilfield. Journal of China Univer-

sity of Petroleum (Natural Science Edition), 38(6): 9-17 (in Chinese with English abstract).

- Jiao, Y.L., Zhou, H.M., Zhuang, X.G., et al., 1998. Fan Deltaic Depositional Systems and Their Relationship to Oil and Gas Accumulation. Acta Sedimentologica Sinica, 16(1):70-75 (in Chinese with English abstract).
- Li, S. T., 1996. Study on Sedimentary System of Energy-Bearing Basin. China University of Geosciences Press, Wuhan (in Chinese).
- Li, W. H., Zhang, Z. H., Li, Y. C., et al., 2011. Geochemical Characteristics and Hydrocarbon Generation of Paleogene Oligocene Source Rocks in Qiongdongnan Basin. *Natural Gas Geoscience*, 22(4):700-709 (in Chinese with English abstract).
- Li, X.X., 2004. Study on Structural Dynamics and Hydrocarbon Accumulation in Qiongdongnan Basin (Dissertation), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
- Li, Y.C., Mi, L.J., Zhang, G.C., et al., 2011. The Formation and Distribution of Source Rocks for Deep Water Area in the Northern of South China Sea. Acta Sedimentologica Sinica, 29(5):970-979 (in Chinese with English abstract).
- Li, Z. X., He, Y. P., Liu, H. Y., et al., 2010. Sedimentology Characteristics and Coal-Forming Models in Yacheng Formation of Qiongdongnan Basin. Acta Petrolei Sinica, 31(4):542-547 (in Chinese with English abstract).
- Li,Z.X.,Lü,D.W., Han, M.L., et al., 2011.Coal Forming Environments of the Third Member of Yacheng Formation of the Paleogene in Qiongdongnan Basin for an Example. *Energy Exploration & Exploitation*, 29(2):179-195. https://doi.org/10.1260/0144-5987.29.2.179
- Pang, J.G., Yang, Y.Y., Pu, X.G., 2011. Identification Characteristics of Fan Delta, Nearshore Subaqueous Fan and Sublacustrine Fan in Fault trough Lake Basin. Journal of Lanzhou University (Natural Sciences), 47 (4): 17-25 (in Chinese with English abstract).
- Postma, G., 1990. An Analysis of the Variation in Delta Architecture. *Terra Nova*, 2(2): 124 - 130. https://doi. org/10.1111/j.1365-3121.1990.tb00052.x
- Qayyum, M., Lawrence, R.D., Niem, A.R., 1997. Discovery of the Palaeo-Indus Delta-Fan Complex. Journal of the Geological Society, 154(5):753-756. https://doi.org/ 10.1144/gsjgs.154.5.0753
- Sáez, A., Anadón, P., Herrero, M. J., et al., 2007. Variable Style of Transition between Palaeogene Fluvial Fan and Lacustrine Systems, Southern Pyrenean Foreland, NE

Spain. Sedimentology, 54 (2): 367 - 390. https://doi. org/10.1111/j.1365-3091.2006.00840.x

- Sanchez, E.N., Orozco, R.C., Gorsline, D.S., 1995. Morphology and Sedimentology of Two Contemporary Fan Deltas on the Southeastern Baja California Peninsula, Mexico. Sedimentary Geology, 98(1-4):45-61.https://doi. org/10.1016/0037-0738(95)00026-5
- Siggerud, E.I. H., Steel, R. J., Pollard, J. E., 2000. Bored Pebbles and Ravinement Surface Clusters in a Transgressive Systems Tract, Sant Llorenç Del Munt Fan-Delta Complex, SE Ebro Basin, Spain. Sedimentary Geology, 138(1-4):161-177.https://doi.org/10.1016/s0037-0738(00)00148-2
- Song, G.Z., Wang, H., Gan, H.J., et al., 2014. Paleogene Tectonic Evolution Controls on Sequence Stratigraphic Patterns in the Central Part of Deepwater Area of Qiongdongnan Basin, Northern South China Sea. *Journal of Earth Science*, 25 (2): 275 – 288. https://doi.org/10. 1007/s12583-014-0433-7
- Song, G.Z., Wang, H., Sun, Z.P., et al., 2014. Paleogene Sydepositional Fault and Its Control on Sequence Architecture of Lingshui Sag, Deepwater Area of Qiongdongnan Basin, South China Sea. Journal of China University of Petroleum (Natural Science Edition), 38(4):9-18 (in Chinese with English abstract).
- Wang, D.D., 2009. Study of High-Resolution Sequence on Paleogene System in Area of Qiongdongnan Basin(Dissertation). Shandong University of Science and Technology, Qingdao (in Chinese with English abstract).
- Wang, G.F., Wu, C.L., Zhou, J.Y., et al., 1998. Sequence Stratigraphic Analysis of the Tertiary in the Qiongdongnan Basin. *Experimental Petroleum Geology*, 20(2):124-128 (in Chinese with English abstract).
- Wang, S.L., Liu, H., 2014. Seismic Reflection and Depositional System of the Enping Formation in the Kaiping Depression of the Zhujiangkou Basin. Science & Technology Review, 32(28-29):64-69 (in Chinese with English abstract).
- Wei, K.S., Cui, H.Y., Ye, S.F., 2001. High-Precision Sequence Stratigraphy in Qiongdongnan Basin. Earth Science, 26 (1):59-66 (in Chinese with English abstract).
- Wen, Q., 2011. Sedimentary Characteristic of Hailaer Basin in Cretaceous. Journal of Daqing Petroleum Institute, 35 (3):17-23 (in Chinese with English abstract).
- Wu,C.J., Xue, S.H., 1992. Sedimentology and Oil and Gas Occurrence of Meso-Cenozoic Petroliferous Basins in China.Petroleum Industry Press, Beijing (in Chinese).

Xie, X. N., Ge, L. G., 1997. Sequence Stratigraphic Model in

Nearshore Fault Basin—Case Study on the Rifting Stage of Qiongdongnan Basin. *Scientia Geologica Sinica*, 32(1):47-55 (in Chinese with English abstract).

- Yan, J. H., Chen, S. Y., Cheng, L. H., 2009. The Consideration on the Quantitative Division of Fan Delta Subfacies. *Journal of China University of Petroleum*, 33(6):1-4 (in Chinese with English abstract).
- Zhang, C.M., Zhu, R., Yin, T.J., et al., 2015. Advances in Fan Deltaic Sedimentology. *Xinjiang Petroleum Geology*, 36 (3):362-369 (in Chinese with English abstract).
- Zhang, G. C., He, Y. P., Shen, H. L., 2012. Distribution of Yachen Formation Coal Measure in Yabei Sag in Qiongdongnan Basin. *Natural Gas Geoscience*, 23(4):654-662 (in Chinese with English abstract).
- Zhang, G.C., Mi, L.J., Tao, W.X., et al., 2007. Deepwater Area—The New Prospecting Targets of Northern Continental Margin of South China Sea. Acta Petrolei Sinica, 28(2):15-21 (in Chinese with English abstract).
- Zhang, X. H., Lin, L. B., Chen, H. D., et al., 2013. Fan Delta Sedimentary Reservoir Seismic Prediction: A Case Study in the Ziliujing Formation Zhengzhuchong Member in Yuanba Area, Northeast Sichuan. Natural Gas Geoscience, 24 (2): 423-429 (in Chinese with English abstract).
- Zhang, Y. X., 2009. Sequence Stratigraphy and Sand Body Prediction of Paleogene Lingshui Formation in Qiongdongnan Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
- Zhu, W.L., 2010. Petroleum Geology in Deepwater Area of Northern Continental Margin in South China Sea. Acta Petrolei Sinica, 31(4):21-27 (in Chinese with English abstract).

#### 附中文参考文献

- 蔡国富,邵磊,乔培军,等,2013.琼东南盆地古近纪海侵及沉积环境演化.石油学报,34(增刊2):91-101.
- 冯有良,2006.断陷湖盆沟谷及构造坡折对砂体的控制作用. 石油学报,27(1):13-16.
- 高晓辉,方杰,张静,等,2008.二连盆地下白垩统岩性地层油 藏构造控制因素.石油学报,29(5):663-669.
- 胡张明,郑丽君,印森林,等,2016.长轴缓坡辫状河三角洲前 缘储层构型研究.中国科技论文,11(9):1005-1010.
- 贾珍臻,林承焰,董春梅,等,2014.大庆升平油田葡萄花油层 葡一油组浅水三角洲储层构型研究.中国石油大学学 报(自然科学版),38(6):9-17.
- 焦养泉,周海民,庄新国,等,1998.扇三角洲沉积体系及其与 油气聚集关系.沉积学报,16(1):70-75.
- 李思田,1996.含能源盆地沉积体系研究.武汉:中国地质大学 出版社.
- 李文浩,张枝焕,李友川,等,2011.琼东南盆地古近系渐新统

烃源岩地球化学特征及生烃潜力分析.天然气地球科学,22(4):700-709.

- 李绪宣,2004.琼东南盆地构造动力学演化及油气成藏研究 (博士学位论文).广州:中国科学院研究生院(广州地 球化学研究所).
- 李友川,米立军,张功成,等,2011.南海北部深水区烃源岩形 成和分布研究.沉积学报,29(5):970-979.
- 李增学,何玉平,刘海燕,等,2010.琼东南盆地崖城组煤的沉积学特征与聚煤模式.石油学报,31(4):542-547.
- 庞军刚,杨友运,蒲秀刚,2011.断陷湖盆扇三角洲、近岸水下 扇及湖底扇的识别特征.兰州大学学报(自然科学版), 47(4):17-25.
- 宋广增,王华,孙志鹏,等,2014.琼东南盆地深水区陵水凹陷 古近纪同沉积断裂对层序构成样式的控制.中国石油 大学学报(自然科学版),38(4):9-18.
- 王东东,2009.琼东南盆地古近系高分辨率层序地层研究(硕 士学位论文).青岛:山东科技大学.
- 王根发,吴冲龙,周江羽,等,1998.琼东南盆地第三系层序地 层分析.石油实验地质,20(2):124-128.
- 王升兰,刘晖,2014.珠江口盆地开平凹陷恩平组地震反射特 征与沉积体系展布.科技导报,32(28-29):64-69.
- 魏魁生,崔旱云,叶淑芬,2001.琼东南盆地高精度层序地层 学研究.地球科学,26(1):59-66.

- 文全,2011.海拉尔盆地下白垩统扇三角洲沉积特征.大庆石 油学院学报,35(3):17-23.
- 吴崇筠,薛叔浩,1992.中国含油气盆地沉积学.北京:石油工 业出版社.
- 解习农,葛立刚,1997.琼东南盆地断陷期层序地层模式.地质 科学,32(1):47-55.
- 鄢继华,陈世悦,程立华,等,2009.湖平面变化对扇三角洲发 育影响的模拟试验.中国石油大学学报(自然科学版), 33(6):1-4.
- 张昌民,朱锐,尹太举,等,2015.扇三角洲沉积学研究进展.新 疆石油地质,36(3):362-369.
- 张功成,何玉平,沈怀磊,2012.琼东南盆地崖北凹陷崖城组 煤系烃源岩分布及其意义.天然气地球科学,23(4): 654-662.
- 张功成,米立军,陶维祥,等,2007.深水区-南海北部大陆边 缘油气勘探新领域.石油学报,28(2):15-21.
- 张玺华,林良彪,陈洪德,等,2013.扇三角洲沉积储层地震预 测方法研究——以川东北元坝地区自流井组珍珠冲段 为例.天然气地球科学,24(2):423-429.
- 张亚雄,2009.琼东南盆地古近系陵水组层序地层研究与砂 体预测(硕士学位论文).北京:中国石油大学.
- 朱伟林,2010.南海北部深水区油气地质特征.石油学报,31 (4):21-27.