https://doi.org/10.3799/dqkx.2017.599

羌塘盆地东部那益雄组玄武岩地球化学特征及构造意义

李学仁^{1,2,3},王 剑^{3,4*},万友利^{3,4},付修根^{3,4}

中国地质科学院,北京 100037
 中国地质大学地球科学与资源学院,北京 100083
 国土资源部沉积盆地与油气资源重点实验室,四川成都 610081
 中国地质调查局成都地质调查中心,四川成都 610081

摘要:羌塘盆地东部那益雄组玄武岩作为裂谷演化最后阶段的喷发产物,其成岩年龄和地球化学特征为裂谷的关闭时间和二 叠纪构造演化提供了重要约束.在剖面地质调查基础上,对那益雄组玄武岩进行了 LA-ICP-MS 锆石 U-Pb 测年及全岩分析测 试,结果显示:那益雄组玄武岩锆石 U-Pb 年龄为 257.2±2.9 Ma,形成于晚二叠世;该玄武岩属于大陆拉斑玄武岩系列,轻微 富集 Ta 元素而轻微亏损 Nb 元素,是软流圈地幔物质上涌与岩石圈地幔相互作用的产物,形成于裂谷关闭碰撞后的伸展背 景.羌塘地块东部二叠纪玄武岩的地球化学数据显示,早二叠世一晚二叠世玄武岩具有由 OIB 型玄武岩向火山弧型玄武岩过 渡的演化趋势,表明羌塘地块东部板内裂谷在早二叠世打开,中二叠世进入裂谷演化阶段,于晚二叠世关闭. 关键词:羌塘盆地;那益雄组;玄武岩;U-Pb 定年;构造意义;地球化学;地质年代学. 中图分类号: P597 文章编号: 1000-2383(2018)02-0401-16 收稿日期: 2017-10-07

Geochemical Characteristics and Tectonic Implications of Nayixiong Formation Basalts in Eastern Qiangtang Basin, Tibet

Li Xueren^{1,2,3}, Wang Jian^{3,4*}, Wan Youli^{3,4}, Fu Xiugen^{3,4}

1. Chinese Academy of Geological Sciences, Beijing 100037, China

2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

3. Key Laboratory for Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources, Chengdu 610081, China

4. Chengdu Center of China Geological Survey, Chengdu 610081, China

Abstract: The Nayixiong Formation basalts in the eastern Qiangtang basin were the eruption products of the last stage of rift evolution, and their diagenetic age and geochemical characteristics provided important constraints for the closure time of the rift and the tectonic evolution of the Permian. Based on the profile geological survey, LA-ICP-MS zircon U-Pb dating and whole rock analysis of the Nayixiong Formation basalts were carried out in this study. Nayixiong Formation basalt samples yield the concordant age with a weighted mean 206 Pb/ 238 U age of 257.2±2.9 Ma. The geochemical characteristics of the basalts show a tholeiitic basalt affinity, with slight enrichment of Ta and slight negative Nb anomalies, as well as exhibiting no Eu-anomalies. The Nayixiong Formation basalts were likely resulted from the interaction between the upwelling asthenosphere and the lithospheric mantle that formed by the predated underplating, we propose that the basalts formed in an extensional setting after the closure of the Permian rift. All of the Permian basalts geochemical data show a transitional trend that the Early Permian-Late Permian basalts gradually evolved from OIB continental basalt to volcanic arc basalt, demonstating that the Permian rift under-

基金项目:中国地质调查局项目(Nos.121201010000161110, DD20160159);国家青年科学基金项目(Nos. 41502112, 41702119).

作者简介:李学仁(1986-),男,博士研究生,主要从事古生物学与地层学研究.ORCID:0000-0001-9619-0985.E-mail: xueren.li@foxmail.com * 通讯作者:王剑,ORCID:0000-0002-1159-5439.E-mail: w1962jian@163.com

going the opening, rifting and closing from Early Permian to Late Permian in eastern Qiangtang terrane. The Nayixiong Formation basalts formed in an extensional setting after the amalgamation of intra-plate rift, confirming that the Qiangtang terrane was a tectonic transitional phase experiencing extension and closure of intra-plate rift (limited ocean) in the Late Permian. Key words: Qiangtang basin; Nayixiong Formation; basalts; U-Pb dating; tectonic implications; geochemistry; geochronology.

0 引言

东特提斯构造域在晚古生代爆发了大规模的火 山活动,羌塘地块、拉萨地块、喜马拉雅地块、三江地 区、塔里木地块、印度板块北缘等地区相继有二叠纪 玄武岩和基性侵入岩的报道(陈汉林等,1997; Xu et al., 2001; 沈上越等, 2002; 朱同兴等, 2002; 李才 等,2004;Zhu et al.,2010;Ali et al.,2013; Zhai et al.,2013; Zhang et al.,2013; Liao et al.,2015; 张克 信等, 2015; Stojanovic et al., 2016; 代友旭等, 2017),且学者们普遍认为此次岩浆活动与晚古生代 冈瓦纳超大陆东北缘大规模裂解相关.近年来,关于 这次裂解的动力学机制已经有人提出了 Panjal Traps、Sakmarian-Kungurian 地幔柱的模式 (Garzanti et al., 1999; Zhang and Zhang, 2017), 说 明晚古生代时期东特提斯构造域整体处于拉张构造 背景.羌塘地块位于特提斯构造域东段,沿中央隆起 带同样有大量二叠纪火山岩出露.但前人的研究主 要集中于西部地区,中东部地区只在1:25万区调报 告中有零星报道.羌塘盆地中央隆起带西段和东段 的地质情况和研究程度存在差异,对羌塘地块中部 二叠纪的构造属性仍存在分歧(王成善等,1987;李 才等,1995;李勇等,2006;王剑等,2009;牛志军等, 2011; Zhang and Zhang, 2017). 王成善等(1987)首 次提出在羌塘地块西部存在一条查布一查桑二叠纪 夭折裂谷,邓万明等(1996)将该裂谷进一步解释为 以陆壳为基底的初始拉张的板内裂陷槽,李才等 (1995)和翟庆国等(2009)提出龙木措一双湖洋的观 点.而羌塘地块东部在二叠纪时期为具陆壳结构的 裂陷盆地,且经历了裂解一扩张一闭合的完整构造 演化;早二叠世形成初始裂谷,随后进入"泛裂谷化" 阶段,晚二叠世裂谷关闭,乌丽群顶部与晚三叠世地 层的角度不整合宣告了裂谷演化阶段的终结(白云 山等,2004;段其发等,2010;牛志军等,2011).乌丽 群那益雄组玄武岩作为裂谷演化最后阶段的喷发产 物,其成岩年龄和地球化学特征为裂谷的关闭时间 和构造演化提供了重要约束.

前人依据那益雄组生物化石将其归为晚二叠世 乌丽群,但仅依据生物化石进行地层划分缺乏准确 性.本文选取羌塘盆地东部周琼玛鲁地区晚二叠世 那益雄组玄武岩为研究对象,通过精确的 LA-ICP-MS 锆石 U-Pb 年龄和地球化学数据,获得其确切年 代并探讨其形成构造背景,为羌塘地块东部二叠纪 构造演化提供新证据.

1 区域地质背景

羌塘盆地地处青藏高原北部,位于特提斯域东 段,是在前寒武系古老的结晶基底上发育的中生代 海相沉积盆地(谭富文等,2016).盆地北与金沙江一 可可西里缝合带相接,南与班公湖-怒江缝合带相 邻,中部被中央隆起带分隔,总体上具有两坳一隆的 构造格局(图 1a),即北羌塘坳陷、南羌塘坳陷和中 央隆起带(王剑等,2004,2009).该盆地为青藏高原 上发育的最大的含油气盆地,近年来成为青藏高原 油气勘探的首选目标(Fu et al., 2016).研究区位于 羌塘盆地中央隆起带东段北缘,二叠系分布广泛,地 层之间分层标志较明显且有古生物化石依据,基本 控制了下二叠统尕笛考组、中二叠统诺日巴尕日保 组、中二叠统九十道班组和上二叠统那益雄组的时 代格架.尕笛考组主要为灰岩和基性火山岩互层、 中一细粒岩屑长石石英砂岩夹层,灰岩中含丰富的 有孔虫化石,也采到少量的蛭和植物以及浅海相底 栖生物化石,地质年代为早二叠世栖霞期;诺日巴尕 日保组主要由薄层粉砂质泥岩、蚀变玄武岩、薄层 细一中粒岩屑砂岩和砾岩组成,含少量中二叠世化 石;九十道班组为一套稳定的浅水碳酸盐台地沉积, 主要为中层生物介壳微晶灰岩,富含大量有孔虫、 蛟、珊瑚等化石,地质年代为茅口期;那益雄组底部 为一套紫色含砾砂岩、砾岩,中部为细粒岩屑石英砂 岩以及粉砂岩夹薄层灰黑色碳质泥岩,上部主要是 绿色蚀变玄武岩夹薄层硅质岩,地层中所含化石归 属为晚二叠世吴家坪期和长兴期,在开心岭、乌丽等 地区上二叠统乌丽群那益雄组之上整合沉积拉卜查 日组,而研究区仅见那益雄组.二叠系在区域上多为 零星出露,很少有完整序列.剖面地质调查结果显示 在周琼玛鲁地区有较为完整的二叠系剖面出露,且 有化石标定层位,周琼玛鲁二叠系剖面是青藏高原

图 1 羌塘盆地构造位置及二叠纪火山岩分布(a),研究区地质简图及采样位置(b)和周琼玛鲁二叠系柱状图(c) Fig.1 Tectonic outline of the Qiangtang basin and the distribution of the Permian volcanic rocks (a), simplified geological map of the study area and locations of the samples (b), the Permian stratigraphic column of Zhouqiongmalu (c) TR.塔里木盆地;QD.柴达木盆地;AKMS.阿尼玛卿一昆仑一木孜塔格缝合带;HJS.可可西里一金沙江缝合带;SP.松潘甘孜复理石杂岩; HXP.可可西里山前褶皱带;QT.羌塘盆地;BNS.班公湖一怒江缝合带;LS.拉萨地体;YTS.雅鲁藏布缝合带;HMLY.喜马拉雅地体;图 1 中 年龄数据见表 1

北部出露最完整的剖面之一.该剖面自下而上发育 3 套岩性组合,下部为陆源碎屑岩与基性火山岩组合、 中部为浅水台地-深水碳酸盐岩组合、上部为陆源 碎屑岩与蚀变火山岩组合,并且中一下二叠统为断 层接触,中一上二叠统为平行不整合接触,中二叠统 诺日巴尕日保组和九十道班组为整合接触.

2 样品采集及测试方法

本次研究样品采自通天河以北周琼玛鲁一带 (图 1b 和表 1),剖面露头良好,层序清楚(图 1c).玄 武岩新鲜面为灰绿色(图 2a),呈细粒隐晶质,可见 显微斑状结构,斜长石斑晶呈细针状、长板状,暗色 组分呈致密状充填于斜长石晶隙间而形成间隔结构 (图 2c).笔者共采集 1 件锆石 U-Pb 测年样品和 8 件岩石地球化学样品. 样品破碎和锆石挑选由河北省廊坊区域地质调 查研究院地质实验室完成,锆石制靶和阴极发光 (CL)拍照在武汉上谱分析科技有限责任公司完成. LA-ICP-MS 锆石 U-Pb 定年分析在中国地质大学 (武汉)地质过程与矿产资源国家重点实验室完成, 采用 Agilent 7500a 的 ICP-MS 仪器与装配有 193 nm气体激光的 GeoLas 2005 激光剥蚀系统联 机进行,激光束斑直径为 32 μm.U-Pb 同位素定年 中采用锆石标准91500作外标进行同位素分馏校

	Table 1	Summary of t	ne Permian ba	sic rocks from Qlangtang	g basin
样品	岩性	测试方法	年龄(Ma)	纬度(N),经度(E)	数据来源
Qsm01	辉绿岩	Sm-Nd	299	戈木日东侧	李才(2004)
GS26-1	玄武岩	SHRIMP	287	莫云一带	李善平(2008)
Ge06	辉绿岩	SHRIMP	284	33°28′12″,85°19′24″	翟庆国(2009)
E0812	辉绿岩	SHRIMP	279	33°18′29″,86°01′38″	Zhai et al.(2013)
Ge0815	辉长岩	SHRIMP	282	33°10′39″,85°15′39″	Zhai et al.(2013)
LG0801	辉绿岩	SHRIMP	285	33°51′22″,84°01′06″	Zhai et al.(2013)
LG0802	辉绿岩	SHRIMP	285	33°41′35″,84°03′55″	Zhai et al.(2013)
T41	辉绿岩	LA-ICP-MS	291	33°59′07″,84°14′03″	Xu et al.(2013)
T51	辉绿岩	LA-ICP-MS	292	33°55′10″,84°20′13″	Xu et al.(2013)
L07	辉绿岩	LA-ICP-MS	290	34°27′57″,84°58′38″	Xu et al.(2016)
L26	辉绿岩	LA-ICP-MS	290	34°03′55″,84°56′03″	Xu et al.(2016)
QZ5-X1	玄武岩	LA-ICP-MS	267	角木茶卡	未发表
15 R 3	玄武岩	LA-ICP-MS	257	34°53′48″,91°51′21″	本文

表1 羌塘盆地二叠纪基性岩

. . . 1. .

图 2 玄武岩野外露头及显微照片 Fig.2 Outcrop photograph and micrograph of the basalts

正,每分析 8 个样品点分析 2 次 91500,GJ-1 锆石作 为标样监控测试过程的稳定性,NIST610 作为外标 计算锆石样品的 Pb、U、Th 含量,保证了测试过程 的精确可靠.数据处理采用 ICPMSDataCal 10.2 完 成(Liu *et al.*,2008a,2010),年龄数据处理及谐和图 绘制采用 Isoplot 3.75 程序(Ludwig,2012).

笔者选择新鲜、不发育杏仁的样品磨制薄片,在电子显微镜鉴定基础上选择 8 件样品用于地球化学分析. 首先用刀片切割岩石风化表面,抛光至露出新鲜面,然 后研磨至粉末,粒度小于 200 目.岩石地球化学分析测 试全部在核工业北京地质研究院分析测试中心完成, 主量元素使用 Axiosm AX 荧光光谱仪(XRF)测试,分 析结果精度优于 1%;微量元素使用 ELEMENT XR 高 分辨电感耦合等离子体质谱仪(ICP-MS)测定,分析精 度优于 5%.具体分析测试流程参见 Liu *et al.*(2008b). 文中与主、微量元素等相关岩石地球化学图解均采用 Geokit 绘制(路远发,2004).

3 测试结果

3.1 锆石年龄

笔者选择了玄武岩样品的 55 颗锆石用于 U-Pb 定年(表 2).CL 图像中锆石颗粒多呈长柱状,自形 程度较好,震荡环带清晰(图 3a),长轴为 50~ 120 μ m,短轴为 40~60 μ m;多数锆石内部无残留 核,Th/U 比值为 0.2~2.3,普遍大于 0.4,表明为岩 浆锆石.其中 12 颗锆石²⁰⁶ Pb/²³⁸ Pb 年龄大于 1 000 Ma,为羌塘地块古老结晶基底的年龄或锆石 核部的继承年龄;其余 43 颗锆石²⁰⁶ Pb/²³⁸ Pb 年龄均 小于 1 000 Ma 且谐和度较高,从测试年龄数据的分 布范围来看,大致可以得出三组较为集中的年龄(图 3b): 423.7±2.3 Ma(n = 11, MSWD = 0.79)、 354.4±2.8 Ma(n = 10, MSWD = 0.13)和 257.2± 2.9 Ma(n = 9, MSWD = 0.092).其中 423.7±2.3 Ma 和 354.4±2.8 Ma两组年龄为岩浆上侵过程中捕获

图 3 那益雄组玄武岩典型锆石 CL 图像(a)和 U-Pb 谐和图(b)

Fig.3 Representative zircon CL images (a) and U-Pb concordia diagram (b) of the Nayixiong Formation basalts 图 a 中白色圆圈代表锆石 U-Pb 测年点,数字为测点编号

2 那益雄组玄武岩锆石 LA-ICP-MS U-Pb 同位素分析结果	Zircon LA-ICP-MS U-Pb data of the Nayixiong Formation basalt
表	Table 2

406

	全日	量(10 ⁻⁶)		11/ htt		同位素	ミ比値				同位素年齢	伶(Ma)		
件面亏	Pb	Th	n	1 I/ U	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	1σ	$^{207}{ m Pb}/^{235}{ m U}$	1σ	$^{206}{ m Pb}/^{238}{ m U}$	1σ
15R3-01	30 517	1 423	348 898	0.004 1	0.8114	0.0288	0.0975	0.0015	617	72.2	603	16.1	600	8.7
15R3-02	312 592	$119 \ 199$	40 665	2.9313	10.7954	0.2610	0.480 3	0.005 6	2 483	39.2	2506	22.5	2 528	24.3
15R3-03	105 123	268145	$172\ 334$	1.5560	0.5829	0.0228	0.0660	0.000 8	746	83.3	466	14.6	412	4.6
15R3-04	162839	98849	171 085	0.5778	3.0087	0.064 5	0.2453	0.0027	1 398	38.6	1 410	16.4	1414	14.2
15R3-05	51 932	$199 \ 447$	251 198	0.7940	0.2983	0.022 0	0.0411	0.0010	343	181	265	17.2	259	6.5
15R3-06	$52\ 714$	$122\ 710$	285 648	0.429 6	0.4232	0.023 3	0.0567	0.0010	398	133	358	16.6	355	5.8
15R3-07	64794	$212\ 195$	225 994	0.9389	0.330 2	0.0196	0.0454	0.000 9	328	153	290	14.9	286	5.3
15R3-08	$94\ 225$	216599	208 163	1.040 5	0.5357	0.0188	0.0665	0.000 8	543	75.9	436	12.4	415	4.8
15R3-09	92754	$187\ 918$	215 763	0.870 9	0.5782	0.0263	0.0714	0.0012	546	90.7	463	16.9	444	7.5
15R3-10	91965	$193\ 280$	$214\ 299$	0.9019	0.5888	0.028 6	0.0707	0.0010	633	102	470	18.3	440	5.9
15R3-11	54561	177 841	$260\ 271$	0.683 3	0.3128	0.018 5	0.0403	0.000 8	487	150	276	14.3	255	5.1
15R3-12	77612	$307\ 022$	180.672	1.699 3	0.3159	0.0214	0.0405	0.0010	528	174	279	16.5	256	6.0
15R3-13	222 497	67700	105531	0.6415	11.2755	0.2269	0.4745	0.005 3	2 576	30.7	2546	18.8	2 503	23.2
15R3-14	$69\ 032$	$160\ 332$	$249\ 020$	0.643 9	0.4694	0.0203	0.060 5	0.0010	476	89.8	391	14.0	379	5.9
15R3-15	64 393	$159\ 206$	255 099	0.6241	0.3960	0.0187	0.0546	0.000 8	350	114	339	13.6	343	5.1
15R3-16	56743	207 668	$244\ 209$	0.8504	0.3041	0.0164	0.0407	0.000 6	389	119	270	12.8	257	3.6
15R3-17	$100\ 200$	$234\ 055$	190 755	1.2270	0.4862	0.0176	0.0660	0.000 8	339	79.6	402	12.1	412	4.7
15R3-18	120963	285644	$154 \ 447$	1.849 5	0.4879	0.0178	0.0654	0.000 9	372	75.0	403	12.2	409	5.4
15R3-19	$90\ 205$	352551	151526	2.3267	0.2678	0.0128	0.0407	0.000 8	200	-71	241	10.3	257	5.0
15R3-20	96106	230 617	$194\ 137$	1.187 9	0.5252	0.019 5	0.0634	0.000 8	591	106	429	13.0	396	5.1
15R3-21	77 070	199086	216974	0.9176	0.4858	0.0346	0.0569	0.0012	728	156	402	23.6	357	7.1
15R3-22	102 458	232~924	184537	1.2622	0.5520	0.0228	0.0667	0.0011	620	92.6	446	15.0	416	6.5
15R3-23	119 009	275 270	153~774	1.790 1	0.4831	0.0197	0.0649	0.0010	383	94.4	400	13.5	405	6.3
15R3-24	214522	$163 \ 165$	95 427	1.709 8	2.2056	0.0791	0.2075	0.0031	$1 \ 124$	72.2	1183	25.1	$1\ 216$	16.7
15R3-25	273 138	64528	67 663	0.9537	12.1848	0.303 3	0.5202	0.0072	2 550	39	2619	23.4	2 700	30.4
15R3-26	101 858	112995	227 229	0.497 3	0.680 5	0.0258	0.0838	0.0013	565	81	527	15.6	519	7.7
15R3-27	$64\ 237$	96893	284968	0.3400	0.4471	0.020 5	0.0590	0.0010	398	98.1	375	14.4	369	6.2
15R3-28	229 639	119 379	96.674	1.234.9	3.4387	0.081 1	0.2569	0.0040	1569	42.9	1513	18.6	1 474	20.6
15R3-29	179 107	79 920	99 729	0.8014	3.3131	0.085 3	0.2614	0.003 9	1454	43	1484	20.1	1497	20.1
15R3-30	145 833	266262	139 347	1.9108	0.6191	0.020 6	0.0697	0.0010	767	72	489	12.9	434	6.1
15R3-31	225 667	$119 \ 913$	$111 \ 426$	1.0762	2.9587	0.080 6	0.2402	0.0040	$1 \ 411$	50	$1 \ 397$	20.7	1388	21.0
15R3-32	81 637	237 231	$212\ 821$	1.1147	0.2726	0.0141	0.0408	0.0007	109	124.1	245	11.3	258	4.6
15R3-33	183	393	1 922	0.204 3	0.4029	0.0119	0.0565	0.000 6	254	64.8	344	8.6	354	3.4
15R3-34	239	614	1 396	0.4397	0.4830	0.0141	0.0619	0.000 6	476	69	400	9.6	387	3.6
15R3-35	111	370	384	0.965 0	0.4206	0.029 5	0.0565	0.000 8	398	159	356	21.1	354	4.9

Λ	\cap	7
4	υ	1

	全日	量(10 ⁻⁶)		11/11		同位素	ぎ比値				同位素年龄	(Ma)		
牛崩ち	Pb	Th	n	1 II/ C	$^{207}{ m Pb}/^{235}{ m U}$	1σ	$^{206}{ m Pb}/^{238}{ m U}$	1σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	1σ	$^{207}{ m Pb}/^{235}{ m U}$	1σ	$^{206}{ m Pb}/^{238}{ m U}$	1σ
15R3-36	252	703	824	0.853 6	0.4680	0.020 9	0.0667	0.000 8	235	106	390	14.5	416	4.8
15R3-37	141	397	657	0.603 8	0.4309	0.0262	0.0564	0.0010	457	136	364	18.6	354	6.2
15R3-38	740	1 369	2561	0.5344	0.7141	0.0183	0.0919	0.000 9	454	19.4	547	10.9	567	5.5
15R3-39	216	293	1 207	0.2427	0.5694	0.0193	0.0671	0.000 6	657	72.2	458	12.5	419	3.9
15R3-40	328	1 004	1780	0.564 2	0.4007	0.0140	0.0565	0.000 7	257	78	342	10.1	354	4.3
15R3-41	281	1 182	$1 \ 437$	0.822 5	0.2877	0.0144	0.0405	0.000 5	276	110	257	11.4	256	3.4
15R3-42	251	705	1736	0.406 0	0.395 5	0.0132	0.0566	0.000 6	217	74	338	9.6	355	3.5
15R3-43	127	374	522	0.7178	0.4177	0.023 3	0.0570	0.000 7	367	121.3	354	16.7	357	4.5
15R3-44	775	483	663	0.7287	3.800 5	0.086 0	0.2796	0.0027	1591	39.7	1593	18.2	1590	13.7
15R3-45	3729	3 251	5 767	0.5638	2.5881	0.047 9	0.1976	0.0013	1 517	33	1297	13.6	$1 \ 162$	6.9
15R3-46	324	918	$1 \ 312$	0.699 6	0.4551	0.0176	0.0613	0.000 8	346	84	381	12.3	384	4.8
15R3-47	189	455	698	0.6513	0.5310	0.0212	0.0689	0.000 9	465	91	433	14.1	429	5.5
15R3-48	210	658	$1 \ 012$	0.649 6	0.4028	0.0144	0.0571	0.000 7	243	79	344	10.4	358	4.2
15R3-49	95	356	726	0.4904	0.2783	0.0158	0.0410	0.0007	176	135.2	249	12.5	259	4.1
15R3-50	128	589	501	1.175 0	0.3044	0.020 5	0.0408	0.000 7	394	157.4	270	15.9	258	4.3
15R3-51	3 214	1 401	3 179	0.4407	8.8921	0.168 5	0.409 3	0.003 6	2 417	31	2 327	17.4	2 212	16.6
15R3-52	171	492	632	0.7777	0.4312	0.020 3	0.0615	0.000 7	235	111	364	14.4	385	4.4
15R3-53	430	1 204	2 137	0.5634	0.4814	0.012 1	0.0633	0.000 6	409	57	399	8.3	396	3.9
15R3-54	401	276	357	0.7714	3.8413	0.107 2	0.2821	0.003 3	1589	51.4	1601	22.5	1602	16.6
15R3-55	1 011	332	494	0.673 3	13.610.3	0.307 1	0.5335	0.004.9	2,684	37.0	2.723	91.4	2.756	20.6

表 3 那益雄组玄武岩主量元素(%)和微量元素(10⁻⁶)分析结果

Table 3 Major elements (%) and trace elements (10^{-6}) data of the Nayixong Formation basalts

	15D0 1101	15D0 1100	1500 1100	1500 1104	1500 1105	1500 1100	15 Do 1107	1500 1100
— 杆品亏	15 R 9- H 31	15R9-H32	15R9-H33	15 R 9- H 34	15 R 9- H 35	15 R 9- H 36	15 R 9- H 37	15 R 9- H 38
SiO_2	47.43	47.23	42.15	42.90	42.00	42.51	43.47	44.92
TiO_2	1.57	1.57	1.30	1.45	1.45	1.35	1.45	1.24
$\mathrm{Al}_2\mathrm{O}_3$	13.81	13.56	11.14	12.89	12.51	11.55	12.98	10.60
Fe_2O_3	3.59	3.69	4.90	3.65	0.85	4.19	3.79	7.66
FeO	8.82	8.73	5.73	7.27	9.56	6.16	7.29	2.08
MnO	0.19	0.19	0.14	0.19	0.17	0.16	0.17	0.14
MgO	8.07	8.11	6.78	7.39	7.38	6.86	7.44	2.25
CaO	8.88	8.95	11.94	10.40	11.02	11.91	9.58	14.47
Na_2O	2.54	2.58	3.18	2.73	3.03	2.76	3.04	4.33
K_2O	1.42	1.45	0.32	1.51	0.84	0.90	1.11	0.64
P_2O_5	0.12	0.12	0.10	0.11	0.12	0.10	0.11	0.12
LOI	2.63	2.90	11.69	8.77	10.10	10.91	8.81	11.31
Total	99.07	99.08	99.37	99.26	99.03	99.37	99.24	99.75
La	7.51	7.99	7.18	6.87	8.05	7.50	7.75	9.49
Ce	20.00	19.80	17.00	17.10	19.60	17.50	18.60	22.10
Pr	2.85	2.84	2.63	2.48	2.81	2.54	3.05	2.81
Nd	13.70	13.70	12.40	12.50	14.20	13.90	13.80	13.20
Sm	3.65	3.79	3.20	3.49	3.76	3.67	3.46	3.61
Eu	1.34	1.37	1.34	1.26	1.37	1.38	1.42	1.28
Gd	4.08	4.42	3.63	3.67	4.20	3.96	3.92	3.75
Tb	0.78	0.82	0.68	0.75	0.82	0.72	0.78	0.72
Dy	4.19	4.50	3.54	3.89	4.30	4.07	4.05	3.79
Ho	0.82	0.82	0.72	0.74	0.80	0.73	0.79	0.70
Er	2.06	2.12	1.86	1.94	2.05	1.98	2.09	1.92
Tm	0.30	0.32	0.27	0.28	0.30	0.28	0.31	0.28
Yb	1.80	1.90	1.68	1.75	1.81	1.76	1.82	1.66
Lu	0.26	0.28	0.23	0.26	0.27	0.25	0.25	0.23
Y	20.00	20.70	17.90	19.10	21.50	20.00	19.90	18.10
Sr	524.00	515.00	278.00	379.00	447.00	392.00	426.00	303.00
Rb	48.70	49.90	11.50	49.40	31.10	32.00	42.30	34.40
Ba	395.00	396.00	48.80	389.00	179.00	145.00	234.00	55.50
Th	0.98	0.96	0.83	0.77	0.91	0.75	0.86	0.99
Ta	0.38	0.43	0.36	0.38	0.43	0.35	0.39	0.36
Nb	5.27	5.63	4.81	4.79	5.55	4.34	5.26	5.01
Zr	95.40	85.00	78.90	85.80	90.70	75.70	87.80	76.80
Hf	2.74	2.73	2.53	2.58	2.80	2.06	2.46	2.12
V	335.00	354.00	293.00	325.00	338.00	295.00	320.00	291.00
Cr	360.00	408.00	275.00	338.00	333.00	281.00	352.00	292.00
U	0.27	0.30	0.21	0.20	0.25	0.18	0.25	0.30
Ni	103.00	105.00	90.10	94.00	98.30	84.70	101.00	98.20
(La/Yb) _N	2.99	3.02	3.07	2.82	3.19	3.06	3.05	4.10
δEu	1.06	1.02	1.20	1.07	1.05	1.10	1.17	1.05

的早期围岩中的岩浆锆石,可能与泥盆纪一石炭纪古 特提斯洋开始俯冲消减相对应(王立全等,2008;刘函 等,2015).因此,最小一组²⁰⁶ Pb/²³⁸ Pb 平均年龄 (257.2±2.9 Ma)代表了那益雄组玄武岩的结晶年 龄,与那益雄组古生物定年年龄一致(李勇等,2006).

3.2 全岩地球化学

玄武岩样品的主、微量元素分析结果见表 3.由 于风化蚀变作用,本文将成分换算到干体系下讨论. 玄武岩样品的 SiO₂ 含量略低(47.23%~50.79%), TiO₂ 含量为 1.48%~1.63%,属于低 Ti 玄武岩,全 铁(FeO^T)含量为 9%~12%,MgO 含量为8.11%~ 8.30%,Mg[#]值(Mg[#] = 100 × Mg/(Mg+Fe),原子 个数之比)为 54~56,略低于原生岩浆范围(Mg[#] 值 为 68~75;Wilson,1989),表明经历了一定程度的 结晶分异作用;Al₂O₃ 含量为12.0%~14.24%,CaO 含量为 8.88%~16.36%,Na₂O₅K₂O 含量分别为

图 5 那益雄组(a,b)、诺日巴尕日保组(c,d)、尕笛考组(e,f)玄武岩稀土元素配分模式和微量元素蛛网图

Fig.5 Chondrite-normalized REE patterns and PM-normalized trace element spider diagrams for Nayixiong Formation (a,b), Nuoribagaribao Formation (c,d) and Gadikao Formation (e,f) basalts

诺日巴尕日保组、尕笛考组玄武岩数据引自1:25万直根尕卡幅;OIB型玄武岩数据引自 Sun and McDonough(1989)

2.54%~4.90%和 0.72%~1.67%,K₂O 含量变化 较大,可能是由于受到后期蚀变作用的影响.那益雄 组玄武岩在图 4a 中属于亚碱性玄武岩,在图 4b 中 样品全部落入拉斑玄武岩系列.

玄武岩样品具有较低的稀土含量, Σ REE为56×10⁻⁶、c5×10⁻⁶,在球粒陨石标准化稀土元素配分模 式图上表现为较为平直的右倾型(图 5a),轻稀土元素 富集不明显((La/Yb)_N=2.32~4.10),无 Eu 异常 (δ Eu=1.02~1.17),表明没有发生明显的斜长石分离 结晶作用.在原始地幔标准化蛛网图上明显富集 Rb、 Sr、K等大离子亲石元素而亏损 Nb、P、Hf 等高场强 元素(图 5b),Ta 和 Nb 元素分别呈弱正异常与弱负 异常,表明源区有大陆地壳物质较浅程度的混染,可 能来自与俯冲消减相关的岩石圈地幔,大陆拉斑玄武 岩常常具有此类特征(徐夕生和邱检生,2010).

4 讨论

4.1 玄武岩年龄对那益雄组时代的约束

那益雄组最初被青海省地质矿产局(1991)划归 于晚二叠世乌丽群,依据是其古生物组合与昌都、贵 州、四川等地相同层位的对比结果,并将其时代归为 上二叠统长兴阶.1:25 万乌兰乌拉湖幅在其上覆地 层拉卜查日组中采有䗴类和非蝾有孔虫组合,其时代 属于上二叠统长兴阶上部;在那益雄组采有蜡 Reichelina sp.,非蛇有孔虫 Paracolaniella leei,钙藻 Permacalus sp.等,其中 Paracolaniella leei 主要见于长兴 阶;那益雄组与拉卜查日组为整合接触,同时结合地 层接触关系将那益雄组归于上二叠统长兴阶下部. 1:25万温泉兵站幅在该套地层中采有晚二叠世有 孔虫化石,据此将其归为上二叠统吴家坪阶和长兴 阶.李勇等(2006)在唐古拉山中段地质调查中亦将那 益雄组归为上二叠统.笔者得到玄武岩的锆石 U-Pb 年龄为 257.2±2.9 Ma, 地层年代相当于上二叠统吴 家坪阶,与古生物定年结果相吻合.在前人研究基础 上,结合地层接触关系、古生物定年和岩浆锆石 U-Pb 年龄,本文将那益雄组限定为晚二叠世地层.

4.2 源区性质及构造环境

那益雄组玄武岩轻度亏损 Nb 元素而 Ta、Ti 元 素无明显亏损甚至呈弱正异常,与典型的 OIB 型玄 武岩在微量元素图解上有明显区别,与典型的 Nb-Ta-Ti 重度亏损的岛弧型玄武岩也不完全相同,表 明其并非形成于大洋环境.Nb/U、Nb/La、La/Sm 等元素比值可以用来判断地壳物质的混染程度 (Taylor and McLennan, 1985; Rudnick and Fountain,1995).那益雄组玄武岩的 Nb/U 值为 16.7~ 24.4, 而 OIB 型玄武岩的 Nb/U 值为 27~47; 其 Nb/La 值为 0.5~0.7, 略低于大陆地壳平均值 (0.7);La/Sm 值为 2.0~2.6,变化范围不大,如果混 染了地壳物质 La/Sm 值将迅速增高(一般>5;Lassiter and Depaolo,1997).综上可知玄武质岩浆遭受 地壳物质混染不明显,仅有少量参与,这与测年样品 中存在捕获锆石一致.玄武岩主量元素比值 CaO/ Al₂O₃(0.7)和微量元素比值 Zr/Ba(0.2)被用来区 分地幔岩浆的来源(Ormerod et al., 1988; Turner and Hawkesworth, 1995), 那益雄组玄武岩的 CaO/ Al₂O₃ 值为 0.64~1.37、Zr/Ba 值为 0.22~1.38,说 明玄武质岩浆总体具有软流圈地幔来源的特征.那 益雄组玄武岩样品的微量元素整体偏离 OIB 型玄 武岩(图 6a、6b),显示岩浆并非完全源自软流圈,壳 源物质混染微弱表明其可能受到了岩石圈地幔物质 的影响.因此,那益雄组玄武岩是软流圈地幔物质上 涌与岩石圈地幔相互作用的产物,且由于岩浆粘度 较小或地壳减薄,其在快速上涌过程中没有来得及 与陆壳发生深度混染.

利用 Nb、V、Zr、Y、Zr/Y 等稳定元素及其比值 可以有效区分大陆玄武岩和岛弧玄武岩(Meschede,1986;夏林圻等,2007).那益雄组玄武岩样 品分别落入火山弧玄武岩区和板内玄武岩区(图 6a、6b), 而在图 6c 和 6d 中依然落在大陆玄武岩区, 表明其为大陆板内玄武岩但继承了岩石圈地幔俯冲 消减的特征.由于地球化学特征具有多解性,应结合 区域地质背景对其进一步约束.前人在区域地质调 查的基础上认为晚二叠世火山岩形成于与大陆岛弧 相关的构造背景(白云山等,2004;牛志军等,2011), 沱沱河地区晚二叠世石英正长斑岩同样显示具有陆 缘俯冲的岛弧特征(张洪瑞等,2010).由于前人的研 究并没有精确的测年依据,并且酸性岩显示与俯冲 相关的岛弧特征,显然在时代上略早于那益雄组,属 于裂谷关闭碰撞时期的产物,这与本文源区继承有 该时期俯冲消减的特征相吻合.研究区上二叠统那 益雄组与下覆中二叠统九十道班组为平行不整合接 触,见明显的侵蚀面,底部发育一套石英质底砾岩, 属类磨拉石建造.乌丽地区上二叠统乌丽群也发育 一套巨厚层底砾岩,并以不整合接触关系覆盖于石 炭系之上,而晚二叠世之前的地层均显示为板内裂 谷拉张环境,充分证实晚二叠世是一个构造转换阶 段.此外,在差塘盆地北侧的可可西里地区,上二叠

图 6 二叠纪玄武岩构造背景判别图解

图 a 据 Meschede(1986),图 b 据 Pearce and Norry (1979),图 c 据 Cabanis and Lecolle (1989),图 d 据 Shervais (1982);A1.板内碱性玄武岩, A2.板内碱性玄武岩和板内拉斑玄武岩,B.富集型洋中脊玄武岩,C.板内拉斑玄武岩和火山弧型玄武岩,D.亏损型洋中脊玄武岩和火山弧型 玄武岩;1A.钙碱性玄武岩,1B.过渡型,1C.火山弧拉斑玄武岩,2A.大陆玄武岩,2B.弧后盆地玄武岩,3A.大陆裂谷碱性玄武岩,3B.富集型洋 中脊玄武岩,3C.富集型洋中脊玄武岩,3D.正常洋中脊玄武岩;WPB.板内玄武岩,MORB.洋中脊玄武岩,IAB.岛弧玄武岩,OIB.洋岛玄武岩, CFB.大陆泛流玄武岩,IAT.岛弧拉斑玄武岩,AB.钙碱性玄武岩

统为一套稳定的碎屑岩建造,底部为石英砂岩和底砾岩,并与下伏石炭系一中二叠统呈角度不整合接触(Bian et al.,2001),表明晚古生代裂谷盆地已由拉张洋盆转化为挤压型大陆边缘.据此笔者推测那益雄组玄武岩属于裂谷或局限洋汇聚拼贴后在北羌塘地块南缘伸展背景下形成的板内玄武岩.

4.3 构造意义

晚古生代冈瓦纳超大陆东北缘发生大规模裂 解,羌塘地块随之从中裂解出来,在羌塘地块中部形 成了一条板内裂谷或局限洋,中央隆起带西部、中部 和东部都存在证据,但是关于裂谷的后续演化学者 们的认识不同.羌塘地块东部早一晚二叠世地层中 均发育玄武质岩石,尤以下二叠统尕笛考组玄武岩 在区域上分布最为广泛,前人通过岩石学、地球化 学、同位素等综合分析认为其形成于大陆裂谷环境, 属于 OIB 型碱性玄武岩,是地幔柱活动的产物(段 其发等,2006,2010;马丽艳等,2007;李善平等, 2008;李莉等,2009;牛志军等,2011).在羌塘地块西 部角木茶卡、托和平错等地同样发育早二叠世基性 岩墙和玄武岩(李才等,2004;王权等,2006;翟庆国 等,2009;Zhai et al.,2013;Xu et al.,2016),其地球 化学特征及形成构造背景与羌塘地块东部尕笛考组 玄武岩相同.二叠纪玄武岩集中分布于中央隆起带 及其南北两侧(图 1a),这也充分说明了羌塘盆地中 部在早二叠世发生了大规模的大陆板内裂谷活动, 其形成机制与晚古生代冈瓦纳大陆东北缘大陆裂解 密切相关,中二叠世玄武岩呈夹层状产于中二叠世 陆源碎屑和碳酸盐岩地层中,在羌塘地块东部主要 产于诺日巴尕日保组中,而在中西部主要分布于龙 格组和鲁谷岩组中,其地球化学特征显示存在较多 地壳物质的混染,与早二叠世 OIB 型玄武岩存在一 定差别,但同样形成于大陆裂谷环境中(潘术娟,

2011).晚二叠世玄武岩出露极少,而那益雄组玄武 岩填补了晚二叠世羌塘地块岩浆活动的空白,并显 示了裂谷关闭后局部伸展的特征,本文结合那益雄 组和羌塘东部早一中二叠世玄武岩数据,通过稀土 和微量元素标准化图解对裂谷演化的不同阶段进行 直观清晰的分析对比.排除不稳定元素 Rb、Sr、K 的 干扰,早二叠世玄武岩与 OIB 型玄武岩配分模式完 全一致(图 5),表明羌塘地块东部早二叠世确实存 在地幔柱型的大陆裂谷活动;而中二叠世玄武岩已 经与 OIB 型玄武岩存在不同,表现出 Nb 或 Ta 元 素的轻度亏损(图 5),表明此时依然处于板内裂谷 环境,但促使裂谷拉张的能量已经得到一定程度的 释放,软流圈地幔岩浆上涌速度减慢,因此混染了较 多大陆地壳物质;中二叠世晚期九十道班组为一套 稳定的浅水碳酸盐台地沉积,代表了火山活动的停 止,此时裂谷已停止扩张甚至可能开始关闭.晚二叠 世玄武岩则与 OIB 型玄武岩明显不同,表现出较为 复杂的地球化学特征,表明羌塘地块东部已经由板 内裂谷拉张阶段进入拼贴、关闭阶段.早二叠世一晚 二叠世玄武岩呈现由 OIB 型大陆裂谷玄武岩逐渐 向火山弧型玄武岩过渡的演化趋势(图 6c、6d).

尔笛考组主要以生物碎屑泥晶灰岩与中一细粒 岩屑长石石英砂岩不等厚互层为特点,夹大量火山 岩,含少量深水浮游生物,说明其沉积环境为较深水 的混积陆棚环境,由于周边频繁的火山活动伴随沉 积了大量的火山岩碎屑,显示裂谷开启的特征;诺日 巴尕日保组以砾岩、岩屑长石砂岩、灰岩夹多层玄武 岩为特征,被划分为三角洲、深水碳酸盐岩、海底扇 和火山喷溢4种沉积相,显示了火山喷发→沉积间 歇的韵律性,且发育多个向上变细的沉积旋回,整体

显示为裂谷演化的沉积特征(李勇等,2006).早一中 二叠世岩屑砂岩的地球化学特征表明源区构造背景 以活动陆缘为主,另有少量大陆岛弧和被动陆缘,显 示出拉张背景下以陆壳为基底的裂谷盆地物源的多 样化;该时期硅质岩的 MnO/TiO2 比值也接近大陆 坡和陆缘海沉积比值,表明在沉积过程中受到陆源 物质影响,属裂谷沉积环境;碳酸盐岩的碳同位素组 成负偏明显,原因是火山活动导致 CO₂和 CH₄释 放到大气中(牛志军等,2011;宋海军和童金南, 2016;叶茜和江海水,2016);以上沉积特征显示裂谷 由开启到演化阶段的火山喷发和间歇沉积,是典型 的裂谷沉积环境.据1:25万曲柔尕卡幅和温泉兵 站幅区调报告,上二叠统那益雄组砂岩碎屑成分显 示其物源区构造背景为岛弧和再旋回造山带,这意 味着晚二叠世裂谷已经进入关闭和碰撞阶段;那益 雄组与下伏中二叠统九十道班组为平行不整合接 触,乌丽群底部沉积了一套巨厚层的类磨拉石砾岩, 该套砾岩代表了研究区上二叠统最底部岩层,是对 裂谷关闭的沉积响应;综上所述,晚二叠世早期南北 羌塘已经拼贴甚至出现碰撞造山,仅有少量的那益 雄组火山岩出露于中央隆起带东段北缘(图7),说 明裂谷(局限洋)关闭的极向是由南向北,并且是缓 慢的拼贴.那益雄组玄武岩证实羌塘地块东部板内 裂谷在早二叠世打开,中二叠世停止扩张,晚二叠世 拼贴、关闭,为羌塘地块二叠纪板内裂谷的完整演化 提供了非常重要的约束.

5 结论

(1) 羌塘地块中央隆起带东段北缘那益雄组玄

Fig.7 Simplified formation model of the Nayixiong Formation basalts

图 7 那益雄组玄武岩形成模式示意图

武岩的锆石 U-Pb 年龄为 257.2±2.9 Ma,与古生物 定年结果一致,表明那益雄组形成时代为晚二叠世.

(2)那益雄组玄武岩样品富集 Rb、Sr、K 等大离 子亲石元素而轻微亏损 Nb 元素,显示其为继承有 俯冲消减特征的大陆拉斑玄武岩,形成于裂谷关闭 碰撞后的伸展背景.

(3)羌塘盆地东部在早二叠世形成初始裂谷,中 二叠世晚期停止扩张并开始关闭,晚二叠世南北羌 塘地块拼贴碰撞、裂谷(局限洋)关闭.

致谢:衷心感谢成都地质调查中心羌塘油气项 目组成员在野外采样和文章写作过程中给予的大力 帮助,同时感谢编辑以及两位匿名审稿人的宝贵意 见和建议!

References

- Ali, J. R., Cheung, H. M. C., Aitchison., J. C., et al., 2013. Palaeomagnetic Re-Investigation of Early Permian Rift Basalts from the Baoshan Block, SW China: Constraints on the Site-of-Origin of the Gondwana-Derived Eastern Cimmerian Terranes. *Geophysical Journal Internation*al, 193 (2): 650 - 663. https://doi.org/10.1093/gji/ ggt012
- Bai, Y.S., Li, L., Niu, Z.J., et al., 2004. Features and Tectonic Setting of Late Permian Nayixiong Fm. Volcanic Rocks in the Source Area of the Yangtze River. Geology & Mineral Resources of South China, (1):7-10 (in Chinese with English abstract).
- Bian, Q.T., Gao, S. L., Li, D. H., et al., 2001. A Study of the Kunlun-Qilian-Qinling Suture System. Acta Geologica Sinica (English Edition), 75(4): 364 - 374. https:// doi.org/10.1111/j.1755-6724.2001.tb00054.x
- Bureau of Geology and Mineral Resources of Qinghai Province, 1991. Regional Geology of Qinghai Province. Geological Publishing House, Beijing, 115-137 (in Chinese).
- Cabanis, B., Lecolle, M., 1989. Le Diagramme La/10-Y/15-Nb/8: Unoutil Pour la Discrimination des Series Volcaniques et la Mise en Evidence des Processus de Melange et/ou de Contamination Crustale. *Comptes Rendus del' Académie des Sciences*, 309(20):2023-2029.
- Chen, H. L., Yang, S. F., Dong, C. W., et al., 1997. Confirmation of Permian Basalt Zone in Tarim Basin and Its Tectonic Significance. *Geochemica*, 26(6):77-87 (in Chinese with English abstract).
- Dai, Y. X., Zhang, X. Y., Yan, K., et al., 2017. Zircon U-Pb Chronology, Geochemical Characteristics of the Early Permian Basalt in the Keping Area, Xinjiang and Their Geological Significance. *Geological Science and Tech*-

nology Significance, 36(1): 1 - 13 (in Chinese with English abstract).

- Deng, W.M., Yin, J.X., Guo, Z.P., 1996. Basic-Ultrabasic and Volcanic Rocks in Chabu-Shuanghu Area of Northern Xizang (Tibet), China. Science China Earth Science, 26 (4):296-301 (in Chinese with English abstract).
- Duan, Q.F., Wang, J.X., Bai, Y.S., et al., 2010. Geochemistry and Mantle Source Characteristics of the Permian Basalts in Moyun Area, Eastern Tanggula Range. Acta Petrologica et Mineralogica, 29(2):125-138(in Chinese with English abstract).
- Duan, Q.F., Yang, Z.Q., Wang, J.X., et al., 2006. Geochemical Characteristics of Permian High-Ti Basalt in the Eastern Part of the Northern Qiangtang Basin, Qinghai-Tibet Plateau. Geological Bulletin of China, 25 (1): 156-162(in Chinese with English abstract).
- Fu, X. G., Wang, J., Tan, F. W., et al., 2016. New Insights about Petroleum Geology and Exploration of Qiangtang Basin, Northern Tibet, China: A Model for Low-Degree Exploration.*Marine and Petroleum Geology*, 77:323-340.https://doi.org/10.1016/j.marpetgeo.2016.06.015
- Garzanti, E., Le Fort, P., Sciunnach, D., 1999. First Report of Lower Permian Basalts in South Tibet: Tholeiitic Magmatism during Break-Up and Incipient Opening of Neotethys. Journal of Asian Earth Sciences, 17(4):533-546. https://doi.org/10.1016/s1367-9120(99)00008-5
- Li,C.,Cheng,L.R.,Hu,K.,et al.,1995.Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu, Tibet. Geological Publishing House,Beijing (in Chinese).
- Li,C., He, Z. H., Li, H. M., 2004. U-Pb and Sm-Nd Dating of Mafic Dike Swarms in Southern Qiangtang, Qinghai-Tibet Pleatau and Its Tectonic Significance. *Geology in China*, 31 (4):384-389(in Chinese with English abstract).
- Li, L., Bai, Y. S., Ma, L. Y., et al., 2009. Geochemical Characteristics and Tectonic Significance of Qixianian Volcanic Rocks in Zhigengaka Area, Zhiduo County, Eastern Qiangtang. *Geology in China*, 36 (6): 1289 - 1301 (in Chinese with English abstract).
- Li,S.P., Ma, H.Z., Shen, C.X., et al., 2008. Geochemical Characteristics and Tectonic of Volcanic Rocks of the Permian Gadikao Formation in the Jiezha Area, Northern Qiangtang, Qinghai-Tibet Plateau. Northwestern Geology, 41(2): 31-40 (in Chinese with English abstract).
- Li, Y., Li, Y.L., Wang, M., et al., 2006. Tanggula Mountains. the Middle of the Geological Features and Resources and the Environment. Geological Publishing House, Beijing, 22-44 (in Chinese).

Liao, S.Y., Wang, D.B., Tang, Y., et al., 2015. Late Paleozoic

第43卷

Woniusi Basaltic Province from Sibumasu Terrane: Implications for the Breakup of Eastern Gondwana's Northern Margin. *Geological Society of America Bulletin*, 127 (9 - 10): 1313 - 1330. https://doi.org/10. 1130/b31210.1

- Liu, H., Wang, B. D., Chen, L., et al., 2015. Early Carboniferous Subduction of Lungmu Co-Shuanghu Paleo-Tethys Ocean: Evidence from Island Arc Volcanic Rocks in Riwanchaka, Central Qiangtang. *Geological Bulletin of China*, 34(2-3):274-282 (in Chinese with English abstract).
- Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. *Journal of Petrology*, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
- Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. *Chemical Geology*, 257 (1-2): 34-43. https://doi. org/10.1016/j.chemgeo.2008.08.004
- Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. *Chemical Geology*, 247(1):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
- Lu,Y.F.,2004.Geokit—A Geochmaical Toolkit for Microsoft Excel.*Geochimica*,33(5):459-464 (in Chinese with English abstract).
- Ludwig, K. R., 2012. Isoplot, rev. 3. 75 : A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
- Lassiter, J.C., Depaolo, D.J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J.J., Coffin, M.F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, Washington, D.C., 335-355.https://doi.org/10.1029/gm100p0335
- Ma,L.Y., Niu,Z.J., Bai, Y.S., et al., 2007.Sr, Nd and Pb Isotopic Geochemistry of Permian Volcanic Rocks from Southern Qinghai and Their Geological Significance. *Earth Science*, 32(1):22-28(in Chinese with English abstract).
- Meschede, M.A., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. *Chemical Geology*, 56 (3 - 4): 207 - 218. https://doi.org/10.

1016/0009-2541(86)90004-5

- Ormerod, D. S., Hawkesworth, C. J., Rogers, N. W., et al., 1988. Tectonic and Magmatic Transitions in the Western Great Basin, USA. *Nature*, 333:349-353.https:// doi.org/10.1038/333349a0
- Niu, Z. J., Wu, J., Duan, Q. F., et al., 2011. Permian Tectonic Setting of Southern Qinghai and Its Tectonic Evolution. *Geological Review*, 57(5):609-622 (in Chinese with English abstract).
- Pan, S.J., 2011. Sedimentary Characteristics and Significance of Kaixinling Group in Western Qamdo Block, Xi Zang (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
- Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192
- Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. *Reviews of Geophysics*, 33(3):267-309. https:// doi.org/10.1029/95rg01302
- Shen, S. Y., Feng, Q. L., Liu, B. P., et al., 2002. Study on Ocean Ridge, Ocean Island Volcanic Rocks of Changning-Menglian Belt. *Geological Science & Technology Information*, 21 (3):13-17 (in Chinese with English abstract).
- Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59 (1): 101 – 118. https://doi.org/10. 1016/0012-821x(82)90120-0
- Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian-Triassic Crisis. *Earth Science*, 41 (6):901-918 (in Chinese with English abstract).https://doi.org/ 10.3799/dqkx.2016.077
- Stojanovic, D., Aitchison, J. C., Ali, J. R., et al., 2016. Paleomagnetic Investigation of the Early Permian Panjal Traps of NW India: Regional Tectonic Implications. *Journal of Asian Earth Sciences*, 115(9-11):114-123.https://doi.org/10.1016/j.jseaes.2015.09.028
- Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Ocean Basins. *Geological Society*, *London*, *Special Publications*, 42: 313 – 345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
- Tan, F. W., Zhang, R. H., Wang, J., et al., 2016. Discussion on Basement Structures of the Late Triassic-Early Cretaceous Qiangtang Rift Basin in Tibet, China. Journal of Chengdu University of Technology (Science & Tech-

nology Edition), 43(5): 513 - 521 (in Chinese with English abstract).

- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Boston, 196-197.
- Turner, S., Hawkesworth, C., 1995. The Nature of the Sub-Continental Mantle: Constraints from the Major-Element Composition of Continental Flood Basalts. *Chemical Geology*, 120(3-4):295-314. https://doi.org/10. 1016/0009-2541(94)00143-v
- Wang, C. S., Hu, C.Z., Wu, R.Z., et al., 1987. Significance of the Discovery of Chabu-Chasang Rift in Northern Xizang. Journal of Chengdu College of Geology, 14 (2):36-49 (in Chinese with English abstract).
- Wang, J., Ding, J., Wang, C.S., et al., 2009. Investigation and Evaluation of the Qinghai-Tibet Plateau Oil and Gas Resources Strategy Constituency. Geological Publishing House, Beijing (in Chinese).
- Wang, J., Tan, F. W., Li, Y. L., et al., 2004. The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai-Xizang Plateau. Geological Publishing House, Beijing (in Chinese).
- Wang, L. Q., Pan, G. T., Li, C., et al., 2008. SHRIMP U-Pb Zircon Dating of Eoaleozoic Cumulate in Guoganjianian Mt.from Central Qiangtang Area of Northern Tibet— Considering the Evolvement of Proto- and Paleo-Tethys.*Geological Bulletin of China*, 27 (12): 2045 – 2056 (in Chinese with English abstract).
- Wang, Q., Xu S. C., Wei, R. Z., et al., 2006. Characteristics and Tectonic Setting of Volcanic Rocks of the Permian Zhanjin Formation in the Tuoheping Co Area, Northern Qiangtang, Qinghai-Tibet Plateau. *Geological Bulletin of China*, 25 (1-2):146-155 (in Chinese with English abstract).
- Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach.Chapman & Hall, London.
- Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2007. The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26 (1):77-89 (in Chinese with English abstract).
- Xu, W., Dong, Y.S., Zhang, X.Z., et al., 2016. Petrogenesis of High-Ti Mafic Dykes from Southern Qiangtang, Tibet: Implications for a ca. 290 Ma Large Igneous Province Related to the Early Permian Rifting of Gondwana. *Gondwana Reseach*, 36: 410 - 422. https://doi.org/10. 1016/j.gr.2015.07.016
- Xu, X. S., Qiu, J. S., 2010. Igneous Petrology. Science Press, Beijing, 91-92 (in Chinese).
- Xu, Y.G., Chung, S.L., Jahn, B.M., et al., 2001. Petrologic and

Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China.*Lithos*,58(3-4):145-168.https://doi.org/10. 1016/s0024-4937(01)00055-x

- Ye, Q., Jiang, H. S., 2016. Conodont Biostratigraphy and a Negative Excursion in Carbonate Carbon Isotopes across the Wuchiapingian-Changhsingian Boundary at the Dawoling Section, Hunan Province. *Earth Science*, 41(11): 1883 - 1892 (in Chinese with English abstract).https://doi.org/ 10.3799/dqkx.2016.130
- Zhai, Q.G., Jahn, B. M., Su, L., et al., 2013. SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications. *Lithos*, 174:28-43. https://doi.org/10.1016/j. lithos.2012.10.018
- Zhai, Q.G., Li, C., Wang, J., et al., 2009. SHRIMP U-Pb Dating and Hf Isotopic Analyses of Zircons from the Mafic Dyke Swarms in Central Qiangtang Area, Northern Tibet. *Geological Bulletin of China*, 54(21): 3331-3337 (in Chinese with English abstract).
- Zhang, H.R., Hou, Z.Q., Yang, T.N., et al., 2010. Subduction-Related Quartz Syenite Porphyries in the Eastern Qiangtang Terrane, Qinghai-Xizang Plateau: Constraints from Geochemical Analyses. *Geological Review*, 56(3): 403-412 (in Chinese with English abstract).
- Zhang, K.X., Pan, G.T., He, W. H., et al., 2015. New Division of Tectonic-Strata Superregion in China. Earth Science, 40(2):206-233 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2015.016
- Zhang, Y.C., Shi, G.R., Shen, S.Z., 2013. A Review of Permian Stratigraphy, Palaeobiogeography and Palaeogeography of the Qinghai-Tibet Plateau. Gondwana Research, 24 (1): 55-76.https://doi.org/10.1016/j.gr.2012.06.010
- Zhang, Y.X., Zhang, K.J., 2017. Early Permian Qiangtang Flood Basalts, Northern Tibet, China: A Mantle Plume that Disintegrated Northern Gondwana? *Gondwana Research*, 44: 96-108.https://doi.org/10.1016/j.gr.2016.10.019
- Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010. Presence of Permian Extension- and Arc-Type Magmatism in Southern Tibet: Paleogeographic Implications. *Geological Society* of America Bulletin, 122 (7 - 8): 979 - 993. https:// doi.org/10.1130/b30062.1
- Zhu, T.X., Pan, G. T., Feng, X.T., et al., 2002. Discovery and Tectonic Significance of Permian Basic Volcanic Rocks in the Selong Area on the Northern Slope of the Himalayas, Southern Tibet. *Geological Bulletin of China*, 21 (11):717-722(in Chinese with English abstract).

附中文参考文献

- 白云山,李莉,牛志军,等,2004.长江源雀莫错一带上二叠统 那益雄组火山岩特征及其构造环境.华南地质与矿产, (1):7-10.
- 陈汉林,杨树锋,董传万,等,1997.塔里木盆地二叠纪基性岩带的确定及大地构造意义.地球化学,26(6):77-87.
- 代友旭,张新勇,阎琨,等,2017.新疆柯坪地区早二叠世玄武 岩年代学、地球化学特征及其地质意义.地质科技情 报,36(1):1-13.
- 邓万明,尹集祥,呙中平,1996.羌塘茶布-双湖地区基性超 基性岩和火山岩研究.中国科学:地球科学,26(4): 296-301.
- 段其发,杨振强,王建雄,等,2006.青藏高原北羌塘盆地东部 二叠纪高 Ti 玄武岩的地球化学特征.地质通报,25(1): 156-162.
- 段其发,王建雄,白云山,等,2010.唐古拉山东段莫云地区二 叠纪玄武岩地球化学特征及源区性质.岩石矿物学杂 志,29(2):125-138.
- 李才,程立人,胡克,等,1995.西藏龙木错一双湖古特提斯缝 合带研究.北京:地质出版社.
- 李才,和钟铧,李惠民,2004.青藏高原南羌塘基性岩墙群 U-Pb和Sm-Nd同位素定年及构造意义.中国地质,31 (4):384-389.
- 李莉,白云山,马丽艳,等,2009.羌塘东部治多县直根尕卡一带二叠纪栖霞期火山岩地球化学特征及其构造意义. 中国地质,36(6):1289-1301.
- 李善平,马海州,沈存祥,等,2008.青藏高原北羌塘盆地结扎 乡一带二叠系尕笛考组火山岩的特征及构造环境.西 北地质,41(2):31-40.
- 李勇,李亚林,王谋,等,2006.唐古拉山中段地质特征与资源 环境.北京:地质出版社,22-44.
- 刘函, 王保弟, 陈莉,等, 2015.龙木错一双湖古特提斯洋俯 冲记录——羌塘中部日湾茶卡早石炭世岛弧火山岩. 地质通报, 34(2-3): 274-282.
- 路远发,2004.Gekit——一个用 VBA 构建的地球化学工具 软件包.地球化学,33(5):459-464.
- 马丽艳, 牛志军, 白云山, 等, 2007.青海南部二叠纪火山岩 Sr,Nd,Pb 同位素特征及地质意义.地球科学, 32(1): 22-28.
- 牛志军,吴俊,段其发,等,2011.青海南部二叠纪大地构造 背景及其构造演化研究.地质论评,57(5):609-622.
- 潘术娟,2011.昌都地块西段二叠纪开心岭群沉积特征及其 构造意义(硕士学位论文).北京:中国地质大学.

青海省地质矿产局,1991.青海省区域地质志.北京:地质出版

社,115-137.

- 沈上越,冯庆来,刘本培,等,2002.昌宁一孟连带洋脊、洋岛 型火山岩研究.地质科技情报,21(3):13-17.
- 宋海军,童金南,2016.二叠纪一三叠纪之交生物大灭绝与残 存.地球科学,41(6):901-918.https://doi.org/10. 3799/dqkx.2016.077
- 谭富文,张润合,王剑,等,2016.羌塘晚三叠世-早白垩世裂 陷盆地基底构造.成都理工大学学报(自然科学版),43 (5):513-521.
- 王成善,胡承祖,吴瑞忠,等,1987.西藏北部查桑-茶布裂谷的发现及其地质意义.成都地质学院学报,14(2): 36-49.
- 王剑,丁俊,王成善,等,2009.青藏高原油气资源战略选区调 查与评价.北京:地质出版社.
- 王剑,谭富文,李亚林,等,2004.青藏高原重点沉积盆地油气 资源潜力分析.北京:地质出版社.
- 王立全,潘桂棠,李才,等,2008.藏北羌塘中部果干加年山早 古生代堆晶辉长岩的锆石 SHRIMP U-Pb 年龄——兼 论原一古特提斯洋的演化.地质通报,27(12):2045-2056.
- 王权,续世朝,魏荣珠,等,2006.青藏高原羌塘北部托和平错 一带二叠系展金组火山岩的特征及构造环境.地质通 报,25(1-2):146-155.
- 夏林圻,夏祖春,徐学义,等,2007.利用地球化学方法判别大 陆玄武岩和岛弧玄武岩.岩石矿物学杂志,26(1): 77-89.
- 徐夕生,邱检生,2010.火成岩岩石学.北京:科学出版社, 91-92.
- 叶茜,江海水,2016.湖南嘉禾大窝岭剖面吴家坪阶-长兴阶 界线牙形石生物地层及一次碳同位素负偏.地球科学, 41(11):1883-1892.https://doi.org/ 10.3799/dqkx. 2016.130
- 翟庆国,李才,王军,等,2009.藏北羌塘地区基性岩墙群锆 石 SHRIMP 定年及 Hf 同位素特征.科学通报,54 (21):3331-3337.
- 张洪瑞,侯增谦,杨天南,等,2010.青藏高原北羌塘南缘俯 冲型石英正长斑岩的发现:来自地球化学分析证据.地 质论评,56(3):403-412.
- 张克信,潘桂棠,何卫红,等,2015.中国构造一地层大区划分 新方案.地球科学,40(2):206-233.https://doi.org/ 10.3799/dqkx.2015.016
- 朱同兴,潘桂棠,冯心涛,等,2002.藏南喜马拉雅北坡色龙 地区二叠系基性火山岩的发现及其构造意义.地质通 报,21(11):717-722.