https://doi.org/10.3799/dqkx.2018.402

纳米尺度下的生物矿物和生物矿化:基于介晶的视角

李 涵^{1,2},姚奇志³,周根陶^{1,2}*

1.中国科学院壳幔物质与环境重点实验室,安徽合肥 230026
 2.中国科学技术大学地球和空间科学学院,安徽合肥 230026
 3.中国科学技术大学化学与材料科学学院,安徽合肥 230026

摘要:纳米地质学的兴起和发展,促使地质工作者从纳米尺度重新认识固体地球物质,将对地球科学的各个领域产生广泛而 深刻的影响.作为纳米地质学的重要分支,纳米矿物学也将走出传统矿物学只把矿物看成理想晶体点阵的局限,从纳米尺度深 入探究矿物包括生物矿物在内的矿物结构与性质,突破口之一是介晶.介晶是一种特殊的结晶纳米结构,近年来得到了物理学 家和化学家尤其是材料化学家越来越多的关注.介晶是非经典结晶过程产物,以纳米颗粒为基本构筑单元,具备纳米颗粒的性 质和宏观尺寸.现已发现,许多生物矿物如脊椎动物骨骼和牙齿、贝壳珍珠层、蛋壳、海胆骨针、有孔虫和珊瑚等都具有介晶结 构.因此,从纳米尺度和介晶角度重新理解生物矿化,有助于揭示生物矿物中纳米多级结构的成因机制,拓展纳米矿物学的科 学内涵.首先介绍生物矿化和生物矿物的基本概念,之后对介晶的概念和结构特征进行阐述,最后介绍生物矿物中的介晶结构 及介晶形成的典型机制,涉及有机基质辅助、物理场驱动、矿物桥或有机桥连接、空间限域、取向附集和晶面选择性分子作用 等多种物理化学过程,有望进一步推动纳米矿物学的发展.

关键词:纳米地质学;纳米矿物学;生物矿物;生物矿化;介晶.

中图分类号: P571 **文章编号:** 1000-2383(2018)05-1425-14

收稿日期:2017-09-02

Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals

Li Han^{1,2}, Yao Qizhi³, Zhou Gentao^{1,2}*

Key Laboratory of Crust-Mantle Materials and Environments, Chinese Academy of Sciences, Hefei 230026, China
 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

Abstract: The rise and development of nanogeology lead to exploration of the solid earth materials at the nanoscale, exerting extensive and profound impact on various fields of earth science. As an important branch of nanogeology, nanomineralogy also explores the structure and properties of the minerals including biominerals at the nanoscale, eliminating the limitations of traditional mineralogy which only regards the mineral as ideal crystal lattice, of which mesocrystal is one breakthrough. Mesocrystals represent a class of crystalline nanostructured materials drawing increasing attention from physicists and chemists especially material chemists in recent years. Mesocrystals are the products of non-classical crystallization process with nanoparticles as the basic subunits, sharing the properties of nanoparticles with order on the macroscopic length scale. It has been found that a number of biominerals including vertebrate bones and teeth, nacre, egg shells, sea urchin spines, foraminifera, and corals have the mesocrystals will undoubtedly help to reveal the formation mechanisms of hierarchical nanostructures in biominerals and expand the scientific connotation of nanomineralogy. Firstly, the basic concepts of biomineralization and biominerals are introduced.

基金项目:国家重点基础研究发展计划资助项目(No.2014CB846003);国家自然科学基金项目(Nos.41372053,41572026,41672034);中央高校 基本科研业务费专项资金.

作者简介:李涵(1987-),男,博士后,主要从事生物矿物学和环境矿物学研究.ORCID: 0000-0003-2114-4364. E-mail: lihan211@mail.ustc.edu.cn * 通讯作者:周根陶,E-mail: gtzhou@ustc.edu.cn

Then, the concept and structural feature of mesocrystals are expounded. Finally, the mesocrystal structure in biominerals and the mechanisms of mesocrystal formation are clarified in detail, referring to several physical and chemical processes such as alignment by the organic matrix, alignment by physical forces, connection by mineral bridges or organic bridges, alignment by spatial constraints, alignment by oriented attachment and alignment by face selective molecules. It is expected that this study may promote the further development of nanomineralogy.

Key words: nanogeology; nanomineralogy; biomineral; biomineralization; mesocrystal.

0 引言

自从太古代晚期细菌或古菌在地球上出现以 来,生物就以多种不同的方式影响和改变着地球表 层的物理和化学要素,生命过程与地球系统的物理 和化学过程紧密相关,它们一起构成了地球系统的 三大物质运动形式,自然界众多生物体都能够矿化 产生具有特定结构、形貌和生物功能的生物矿物.生 物矿物在自然界分布广泛,从趋磁细菌体内的磁小 体到珊瑚、有孔虫和钙化藻矿化产生的碳酸钙以及 硅藻的硅质细胞壁和软体动物的贝壳,再到人和动 物的骨骼、牙齿,甚至生物体内的各种结石等(Addadi and Weiner, 1992; Skinner, 2005; Weiner, 2008; Pósfai and Dunin-Borkowski, 2009; Li et al., 2015).目前,已报道的生物矿物种类多达70余 种(Gower, 2008; Zhou et al., 2010).相比于非生 物成因和传统人工合成的矿物材料,生物矿物往往 具有复杂精细的形态结构和优良的机械性能,例如 高强度、优异的减震性能和良好的抗断裂韧性等,从 而为生物体提供结构支撑并发挥特定的生物学功能 (Skinner, 2005; Zhou et al., 2010; 崔福斋, 2012; Wang et al., 2015).这些不同寻常的结构和性能, 是由于生物矿物在形成过程中受到了生物体内特定 有机质和生命活动的严格调控,使得生物矿物具有 特殊的多级结构与组装方式,这一过程称为生物矿 化(Weiner, 2008).正是生物体对矿物形成过程的 调控作用使生物矿化有别于非生物的矿化过程.深 入开展生物矿化研究,揭示和了解生物体调控矿物 生长的微观机制,不仅能够更加系统地认识生命演 化进程,丰富和发展矿物学理论,而且能为新材料的 设计研发提供新思路和理论指导(Weiner and Addadi, 1997; Ogoshi et al., 2002).同时, 生物矿化过 程不仅受到生物体的影响和控制,也与矿化过程发 生的地质环境关系密切.在生物矿物形成过程中,周 围环境的温度、盐度、溶解氧和杂质离子等都会在矿 物结构中留下记录,从而使生物矿物保留了重要的 地质环境信息,这就为古环境和古气候研究提供了

重要途径(戴永定,1994; Weiner, 2008; Dupraz et al., 2009;林巍和潘永信,2012;宋海军和童金南, 2016; Wit et al., 2017).因此,生物矿物及其矿化 作用一直受到多学科的关注.

随着纳米科学和技术的快速发展,纳米科技不 断渗透到基于物质结构和性质的各个基础或应用学 科分支当中(Banfield and Navrotsky, 2001; Hochella, 2002a, 2002b;万泉, 2012).其中,纳米科学与 地质学的结合,催生了新兴的纳米地球科学,即纳米 地质学.纳米地质学从纳米尺度重新认识固体地球 物质,将广泛而深刻地影响地球科学的各个领域,有 望将地质学研究推向一个新的层次(Hochella, 2002a; 琚宜文等, 2016; 王焰新和田熙科, 2016; Ju et al., 2017).作为纳米地质学的重要分支,纳米 矿物学将突破传统矿物学把矿物看作是内部质点呈 有序排列(点阵结构)的均匀固体的局限,从纳米尺 度了解矿物表面及近表面原子结构、矿物形貌结构、 生长机制以及结构与性能之间的关系,使矿物学具 有更为广泛的发展空间和应用前景(Banfield and Navrotsky, 2001;陈天虎和谢巧勤, 2005; Hochella et al., 2008; 琚宜文等, 2016; Schindler and Hochella, 2016; Ju et al., 2017).纳米矿物学的研 究对象,不仅包含无机成因矿物,也涵盖生物矿物. 特别是近年来,"介晶"及相关的非经典晶体生长理 论的提出和兴起,对从纳米尺度上认识生物矿物及 其形成机制提供了新的途径(Bergström et al., 2015; de Yoreo et al., 2015; Sturm and Cölfen, 2016).本文将在介绍生物矿化基本概念的基础上, 引入"介晶"这一新的概念,重点阐述生物矿物中的 介晶结构和形成机制,以纳米地质学的视角重新审 视生物矿物和生物矿化,希望能够为深入研究生物 矿化机制提供新的思路,并对纳米矿物学的发展 有所启示.

1 生物矿化的基本概念

生物矿化是指生物通过生长、代谢等生理活动

有效地改变局部环境的酸碱度(pH)、电化学势(Eh)和矿化离子浓度等物理化学条件,影响矿化离子的聚集和成团,从而诱导和控制矿物的成核和生长,最终形成具有特定组成、结构和形貌的生物矿物的过程.生物矿化过程形成的生物矿物往往是含有少量有机质的有机一无机的复合(Wang et al., 2015).根据生物对矿化过程调控的程度,生物矿化 主要分为生物控制矿化和生物诱导矿化(Weiner and Dove, 2003; Dupraz et al., 2009).

生物控制矿化是指在生物体内生物/有机大分 子和细胞的共同调控下,生物有机体通过各种物理 化学作用将摄入的金属离子和一些阴离子反应,从 而得到具有特殊组装形式和多级结构的生物矿物的 过程(Weiner and Dove, 2003).在此过程中,生物体 内的可溶性有机质和不可溶性有机质都发挥着各自 的调控作用.不可溶性有机质构成了生物矿物的刚 性构架,为晶体的成核提供位点和空间;可溶性有机 质准确地控制生物矿物的种类和形貌的选择 (Mann, 2001).生物体正是完美地利用了可溶性有 机质和不可溶性有机质的协同作用才合成了具有独 特性能的生物矿物.这种普遍存在于大自然中的生 物矿化过程在原生生物、维管植物、无脊椎动物和脊 椎动物中都可以观察到.尽管生物控制程度随着物 种的不同存在一定差异,但几乎所有的控制矿化都 发生在一个隔离的环境中,造就了矿化产物高度的 复杂性和物种特异性,并赋予生物体特殊的生物功 能.趋磁细菌胞内合成的磁小体是已发现的为数不 多的微生物控制矿化现象(Bazylinski and Frankel, 2004; Lefèvre et al., 2011). 根据矿化位置的不同, 生物控制矿化还可以分为胞外控制矿化、胞间控制 矿化和胞内控制矿化(Weiner and Dove, 2003).

生物诱导矿化则是生物体通过代谢活动引起局 部微环境的改变,创造出有利于矿物沉淀的物理化 学条件,从而引起生物矿物沉淀的过程,产物往往不 具有特定的生物学功能,大多数微生物矿化属于生 物诱导的矿化(Lian et al., 2006; Dupraz et al., 2009; Ronholm et al., 2014; 段勇等, 2017).尽管 生物对生成矿物的种类和习性缺乏调控作用,但生 物代谢作用能够调节溶液环境的 pH、pco2 和代谢 物组成等物理化学条件,进而影响特定矿物的形成 (Sánchez-Román et al., 2007; Li et al., 2017).例 如,Li et al.(2017)在细菌培养体系中考察 Shewanella oneidensis MR-1 矿化生成鸟粪石的能力时 发现,接种菌株 MR-1 的不同培养基均有鸟粪石生 成,而未接种的对照组均没有沉淀生成,溶液始终澄 清,说明菌株 MR-1 能够促进鸟粪石生成.进一步改 变培养介质的实验结果证明,菌株 MR-1 通过其代 谢作用产生铵根和磷酸根,并提高体系 pH,创造出 有利于鸟粪石沉淀的物理化学条件.另外,生物细胞 表面也可能在矿物成核诱导期发挥重要作用,因为 成核经常直接发生在细胞表面,形成的矿物也会与 细胞表面紧密结合(Sinha et al., 2014; Li et al., 2017).生物诱导作用形成的矿物具有显著的不均一 性.这种不均一性体现在多变的外部形态、含水量、 微量元素组成、晶体结构和颗粒尺寸等方面.

除了以上 2 种矿化方式,一些研究者还提出了 生物影响矿化的概念,指的是有机质的被动矿化,即 外在的环境参数发挥主导作用,为矿物沉淀创造条 件,而不是通过微生物活动,活体生物不是必须条 件,但有机基质参与矿化,影响晶体形态和组成 (Dupraz et al., 2009).生物影响的矿化在微生物矿 化例如微生物岩的形成过程中发挥着重要作用.

2 生物矿物

生物矿物通常是指生物生命活动过程中产生的 矿物.生物矿物在生物调控下形成,相比于非生物成 因的矿物,其在晶体结晶习性、尺寸、结晶度、同位素 组成和微量元素含量等方面表现出显著差异 (Mann, 2001).首先,最明显的是不同寻常的外部 形貌.图1展示了棘皮动物硬组织方解石结构和化 学合成的菱面体方解石,同样是方解石单晶,其结构 形态明显不同(Weiner and Dove, 2003).其次,大多 数生物矿物是无机矿物和少量有机质的复合物,矿 物晶粒有序分布在有机质如胶原蛋白或几丁质等大 分子形成的网格结构中.同时,生物矿物大多具有特 定的结晶学取向,如软体动物贝壳层中的方解石常

图 1 方解石单晶对比 Fig.1 Comparison of calcite single crystals 据 Weiner and Dove(2003).棘皮动物硬组织(a)和人工合成的菱面 体方解石(b)

沿着(001)方向优先生长,形成棱柱状.再次,生物矿 物通常的形成温度低于 100 ℃,具有一定的生物活 性,在生物体内实现一定的生物学功能.最后,有相 当数量的生物矿物以热力学亚稳的变体形式稳定存 在,体现了生物体对矿化的控制力.

组成生物矿物的主要元素是 C、H、O、Mg、Si、 P、S、Ca、Mn 和 Fe.其中,由于钙离子能够实现细胞 代谢的许多基本功能,常被生物选作矿物合成的阳 离子,这使得含钙矿物占据生物矿物总数的一半以 上,并且主要以构成无脊椎动物外骨骼的碳酸钙以 及构成脊椎动物内骨骼和牙齿的磷酸钙的形式存在 (Lowenstam and Weiner, 1989; Berridge et al., 1998).含钙矿物的广泛分布也导致人们曾经普遍使 用钙化代指生物矿化现象.第二大类生物矿物是无 定形的二氧化硅,主要以海洋单细胞生物硅藻的硅 质细胞壁和海绵骨针等形式存在(Mann, 2001; 史 家远等,2011; Shi et al., 2012, 2013).第三大类是 铁的氧化物和羟基氧化物,以及含量相对较少的锰 化物、硫化物和有机酸盐如草酸钙和草酸镁石等 (Weiner and Dove, 2003; Cai et al., 2013; Cheng et al., 2016).

3 介晶概述

介晶(mesocrystals),最初用于指代具有共同晶体取向的纳米晶体超结构,现在已经发展成为材料学概念.不同于以离子、原子和分子为构筑单元的经

典结晶过程,介晶是以纳米颗粒为基本构筑单元的 非经典结晶产物(Zhou et al., 2009; 卜凡兴等, 2014; de Yoreo et al., 2015; Sturm and Cölfen, 2016).介晶通常表现为一种由纳米亚单元和填隙在 这些纳米亚单元之间的非晶有机/无机层构成的杂 化材料.在最近的综述中,Bergström et al.(2015)将 介晶定义为:"在原子尺度上具有确定的长程有序的 纳米结构材料,判断依据包括出现尖锐的广角衍射 花样(具有尖锐的布拉格峰)以及明确的证据显示该 材料由单个纳米颗粒构筑单元组成".由此可知,介 晶能够表现出类单晶的电子衍射行为,并由介观(亚 微米)结晶构筑单元组成,因此至少在两个不同的长 度尺度上显示特殊的结构特征:纳米颗粒必须是结 晶的,亚微米构筑单元的排列必须具有共同的结晶 学取向(Bergström et al., 2015).因此,需要结合多 种纳米结构表征手段(例如通过电子显微镜成像和 衍射技术)来区分介晶与其他类型的结晶材料特别 是单晶,以验证原子尺度上至少一个方向的长程有 序和纳米颗粒在整个介晶中的存在.例如,Wang et al.(2015)通过仿生矿化方法成功合成了六方柱状 球霰石(图 2a),场发射扫描电镜(FESEM)分析显 示球霰石晶体由厚度约为 40~50 nm 的纳米片状 亚单元组装而成(图 2b).从球霰石柱上超声剥离出 的超薄部分的透射电镜(TEM)照片显示(图 2c),超 薄部分由纳米片状亚单元构成,整个区域的选区电 子衍射(SAED)花样是一套拉长的周期性重复的衍 射斑点(图 2d),表明构成六方柱状结构的纳米片不

图 2 六方柱状球霰石的 FESEM 照片(a,b)、TEM 照片(c,e)和 SAED 花样(d,f) Fig.2 FESEM images (a,b), TEM images (c,e) and SAED patterns (d,f) of hexagonal prismatic vaterite 据 Wang *et al.*(2015)

是随机的,而是几乎沿着相同的结晶学取向排列的. 同时,该球霰石柱内部结构的冷冻超薄切片的 TEM 分析进一步证实其内部也是由纳米片状亚单元构成 (图 2e),不同区域的 SAED 都显示出相同的类似单 晶衍射花样(图 2f),说明构成六方柱状内部结构的 纳米片的结晶学取向也是彼此一致的.因此,综合 FESEM、TEM 和 SAED 等分析结果,证明了该柱 状结构球霰石具有介晶结构.

4 生物矿物中的介晶结构及形成机制

现已发现,许多生物矿物如脊椎动物骨骼和牙齿、贝壳珍珠层、蛋壳、海胆骨针、有孔虫和珊瑚等都 具有介晶结构,这引起了研究者的广泛兴趣(Oaki et al., 2006; Song and Cölfen, 2010; Zhou et al., 2010; Yao et al., 2012; Kim et al., 2014; Bergström et al., 2015; Sturm and Cölfen, 2016). 这些生物成因的介晶通常显示具有特定功能的复杂 多级结构,并往往由碳酸钙、磷酸钙和铁氧化物等矿 物纳米晶体作为基本构筑单元.对于介晶包括生物 介晶的形成,研究者已经提出了多种不同的生长机 制和模型(图 3),并且每种机制有其独特的途径和 物理化学相互作用,主要包括:(1)有机基质辅助的 纳米颗粒组装.具体是结构有机基质导向的结晶纳 米颗粒有序地填充在预先形成的有机结构间隙或者 有机基质诱导的纳米颗粒取向排列.这种机制在生

图 3 介晶形成机制 Fig.3 Formation mechanisms of mesocrystals 据 Sturm and Cölfen(2016).a.有机基质辅助;b.物理场驱动;c.矿物桥 或有机桥连接;d.空间限域;e.取向附集;f.晶面选择性分子作用

物矿化过程中特别重要,许多复杂的多级结构生物 矿物都是在有机大分子基质充当结构模板下形成 的:(2)物理场驱动的纳米颗粒组装.最常见的有电 场和磁场,还包括偶极作用力、范德华力、水合作用 力和其他非共价相互作用;(3)矿物桥和有机桥连 接的纳米颗粒组装.根据 Oaki et al. (2006)的研究, 通过矿物桥连接而成的介晶始于纳米晶体的形成. 当聚合物吸附到纳米颗粒表面后,纳米颗粒的生长 终止.这时,矿物桥可以在纳米晶体的生长抑制层内 的缺陷位点成核,之后在矿物桥上生长新的纳米晶 体.接着,纳米颗粒的生长再次被聚合物终止,新的 矿物桥形成.这一过程依次重复,直至形成介晶:(4) 空间限域的纳米颗粒组装.具体是通过压缩它们的 溶液空间来减少熵增引起的纳米颗粒运动和旋转, 同时不妨碍集合体上附着颗粒用于取向优化的微小 运动,这可以通过缓慢蒸发溶剂的方式实现;(5)纳 米晶的取向附集(oriented attachment).具体是溶液 中初始形成的纳米颗粒在降低表面能的驱动下,通 过晶格匹配的特定晶面发生取向排列从而得到高度 有序的组装超结构,并在有机分子和静电排斥的稳 定作用下形成介晶;(6)晶面选择性分子吸附辅助的 纳米颗粒组装.这种介晶形成机制比较少见,因为通 过分子识别对添加剂分子进行晶面选择性吸附通常 是困难的.但如果可以产生与其他晶面所带电荷不 同的晶面,则可以实现对携带相反电荷的电解质分 子的选择性吸附(Zhou and O'Brien, 2008; Song and Cölfen, 2010; Sturm and Cölfen, 2016).下面 将介绍几种典型生物矿物中的介晶结构,分别是正 常生物矿化、异常生物矿化(病理矿化)和微生物矿 化的产物,并结合相关研究案例探讨生物矿物中的 介晶生长机制.

4.1 软体动物贝壳

对于生物成因的碳酸钙矿物,最具代表性、研究 最深入的是软体动物贝壳.研究发现,大多数软体动 物贝壳的主要矿物相为碳酸钙,常以文石、方解石及 非晶碳酸钙等不同变体形式存在(Addadi *et al.*, 2006).贝壳的外层由棱柱状方解石构成,称为棱柱 层.其内部是由文石层和有机质层交替有序堆积形 成一种类似于"砖墙"一样的结构,称为珍珠质层(图 4 和图 5a)(Oaki and Imai, 2005; Addadi *et al.*, 2006).对珍珠质层进一步显微结构分析表明,构成 珍珠质层中的文石,并不是呈现正交晶系文石晶体 固有的柱状或针状结晶习性,而以长度为 1~5 μm、 厚度为 250~990 nm 的假六边形片状紧密有序排

图 4 红鲍鱼 Haliotis rufescens 贝壳纵断面 Fig.4 Schematic of a vertical section of the shell of a red abalone (Haliotis rufescens) 据 Zaremba et al.(1996)

(a) fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe<math>fahlfe fahlfe<math>fahlfe fahlfe<math>fahlfe fahlfe<math>fahlfe fahlfe<math>fahlfe fahlfe<math>fahlfe fahlfe fahlfe<math>fahlfe fahlfe fahlfe

图 5 软体动物贝壳微观结构

Fig.5 Molluscs shell microstructure

文石层断裂面(a)和横截面(b);文石层晶体堆积示意图(c)(Addadi *et al.*, 2006).文石片的 FETEM 图像及 SAED 花样(d);文石片亚 单元的 FETEM 图像(e)(Oaki and Imai, 2005);珍珠质层中局部共 取向的文石柱(f)及其示意图(g)

列(图 5a).因此,在软体动物贝壳珍珠质层中存在着 有序的多级结构,并且普遍认为珍珠质层中有机质 层和文石层,沿文石结晶学 *c* 轴方向取向一致地堆 积(图 5c)(Oaki and Imai, 2005; Gilbert *et al.*, 2005; Addadi *et al.*, 2006).对于这种独特有序结构 的成因,目前已经提出了几种理论和模型,主要包 括:(1) 矿物在预生成的有机质隔室内结晶;(2) 有 机质阵发式的分泌和随后的矿物结晶,形成有机质 和结晶矿物交替的层结构:晶体层生长结束于毒化 或异质外延包封,然后进行下一个结晶层的异质外 延成核和生长;(3) 矿物桥或有机桥模型(Schäffer et al., 1997; Gilbert et al., 2005; Addadi et al., 2006).然而,高分辨透射电镜(HRTEM)、SAED、 SEM 和原子力显微镜(AFM)等研究揭示,早先认 为的假六边形文石单晶片,实际上不是单晶,而是由 纳米大小的文石晶体有序排列形成类似于马赛克一 样的结构(图 5b,5d 和 5e),并且这些文石纳米晶在 同一个文石片中有着一致的结晶学取向,因此它们 的电子衍射呈现单晶衍射特征(图 5d)(Takahashi et al., 2004; Oaki and Imai, 2005).同步辐射光谱 显微镜(Synchroton spectromicroscopy)和 X-ray 吸 收近边结构谱(X-ray near-edge structure spectroscopy)研究又揭示穿过不同珍珠质层的文石片的 c 轴取向不都是完全互相平行的,只有大约10层的局 部共取向文石层存在,即只有局部共取向的文石柱 存在(图 5f,5g).这也与 DiMasi and Sarikaya(2004) 报道的 TEM 暗场像结果一致.另外,在同一文石层 中,不同文石片之间也是结晶有序的,即每个假六边 形片有着完全一致的结晶学 a, b, c 取向(Oaki and Imai, 2005).然而,上述模型都无法解释同一文石层 内不同文石片之间以及同一文石片内部不同文石纳 米晶之间高度取向一致以及局部共取向的文石柱存 在的原因.Zhou et al.(2009)在没有任何生物/有机 分子存在的条件下,成功地合成了由纳米尺度文石 组装而成的棒状文石介晶(图 6a~6c),并通过对文 石介晶结构的详细电子显微镜(图 6d~6g)和晶体 结构分析(图 6h~6i),提出了文石晶体固有的各向 异性的电偶极一偶极作用驱动了文石纳米晶高度有 序的自组装,从而形成文石介晶.文石晶体这种内在 的各向异性的电偶极一偶极作用可能为全面了解珍 珠质层文石介晶形成机制提供一种新的途径,即珍 珠质层中同一个文石片内文石纳米晶的取向排列可 以归因于各向异性的电偶极一偶极作用驱动了这些 文石纳米晶按照文石结晶学 a、b、c 一致的排列,以 致于同一文石片的 SAED 呈现单晶衍射花样(图 5d).同样,这种各向异性的电偶极一偶极作用驱使 文石纳米片按照文石结晶学 a、b、c 一致排列形成 文石层.因为电偶极一偶极作用是长程的,而且相对 于分子作用力是惊人的强,所以电偶极一偶极作用 也可以解释为什么处于有机质下层的文石晶体直接

图 6 介晶结构文石棒的典型 FESEM 照片

Fig.6 Typical FESEM images of aragonite mesocrystal rods

a.低放大倍数;b.高放大倍数;c.具有假六方柱形表面的文石介晶.文石介晶的 TEM 照片(d,f)和 SAED 花样(e,g).文石晶体聚形结构示意图 (h)和沿着不同结晶学方向的结构投影(i,j)(Zhou *et al.*, 2009)

决定有机质另外一面上的正在生长着的文石晶体的 共取向,即珍珠质层中局部共取向的文石柱的存在. 显然,在生物矿化过程中,生物基因和晶体化学的因 素可能在多级结构的生物矿物的形成过程中协同起 作用.随后,Yao *et al*.(2012)选择文石族矿物碳钡 矿(BaCO₃)为对象,在室温下,通过将碳钡矿纳米棒 分散到去离子水中,直接观察到了由纳米棒自组装 而成的高度有序的棒状碳钡矿介晶,这一结果也为 偶极驱动自组装矿化模型提供了新的实验依据.

至于软体动物贝壳棱柱层中的棱柱状方解石 (图 4),Albeck et al.(1993)将从棱柱层中提取出的 可溶性大分子蛋白按照氨基酸组分不同分成两组, 分别进行仿生矿化研究.结果发现,富含羧基的高度 酸性的蛋白优先与方解石强极性的{00.1}面作用, 导致{00.1}面的发育;而中等酸性的组分倾向于与 倾斜的{01.1}面作用,形成拉长的方解石柱.同样他 们也发现,从海胆骨针中提取并部分纯化的类似于 方解石柱中的大分子也只与大致平行于方解石 c 轴 方向的晶面作用,产生显著发育的{01.1}面.这意味 着这些中等酸性的大分子可能导致了海胆骨针和软 体动物壳中棱柱的形成.对于从海胆骨针和软体动 物壳的棱柱中提取的有机大分子,一些研究表明在

大多数情况下所含的蛋白质都是糖基化的(Lowenstam and Weiner, 1989; Albeck et al., 1996; Aizenberg et al., 2002).这可能指示除了极性的羧 基官能团,可溶性蛋白质大分子中其他基团如 -C-O-C-(醚 或 糖 苷 键)、- OH (羟 基) 和 -NH₂(氨基),也可能对碳酸钙形态的变化有贡献. 最近, Zhou 课题组(Zhou et al., 2010; Wang et al., 2013)选择一种富含醚键(-C-O-C-)的聚 醚类三嵌段共聚物(F68或F127)作为模型矿化添 加剂来影响碳酸钙的结晶和生长过程.实验结果表 明,模型大分子的存在导致了拉长方解石柱的形成, 时间过程实验则清楚地显示其矿化序列与生物矿化 过程相似,即由非晶碳酸钙(ACC)前驱体相通过介 观尺度的相转变生成稳定的结晶相方解石柱状介 晶,显示出生物矿化过程的所有特征.这些实验结果 可能揭示在生物矿物形成过程中,与生物矿化相关 的生物大分子中非离子化官能团(如:-C-O-C一)不仅影响矿化系列,而目也贡献了生物矿物特 殊形貌和介晶结构的形成.

4.2 趋磁细菌磁小体链

趋磁细菌是一类能够主动沿着地磁场方向游戈 的革兰氏阴性菌,其典型特征是胞内含有磁小体 (Bazylinski and Frankel, 2003;林巍等,2006;曲 晓飞等,2011;Amor *et al.*,2016).磁小体是趋磁细 菌在微氧条件下从细胞周围环境中吸取铁离子而合 成的具有独特晶体形貌且由生物膜包裹的磁性颗 粒.趋磁细菌严格控制着磁小体膜内磁性矿物颗粒 的组分、晶形、尺寸和排列方式(林巍和潘永信, 2012;Uebe and Schuler,2016).根据磁小体矿物特 征的不同,趋磁细菌主要分为两类:一类是铁氧化物 型,矿化产物是磁铁矿(Fe₃O₄);一类是铁硫化物 型,矿化产物是胶黄铁矿(Fe₃S₄)(Bazylinski and Frankel,2003;林巍等,2006;曲晓飞等,2011; Amor *et al.*,2016).磁小体的矿物组成主要是磁铁 矿,少数为胶黄铁矿.

磁小体的尺寸对其物理性质和磁性有着重要影 响,成熟磁小体的尺寸变化范围很窄,为35~ 120 nm(Frankel et al., 1998).在此范围内,磁铁矿 和胶黄铁矿颗粒是稳定的单磁畴.磁小体的形态多 变,常见形貌有近似立方体、切角的立方八面体、拉 长的假棱柱状、子弹头形、箭头形或牙齿形等(Bazylinski and Frankel, 2003; Uebe and Schuler, 2016)(图7),在大多数趋磁细菌胞内,磁小体排列成 一条或者多条链.磁小体颗粒之间由于磁性相互作 用导致它们的磁偶极矩沿着链长方向平行排列,呈 现出介晶结构.在这种链状结构中,细胞总的磁偶极 矩是链上各个磁小体颗粒单偶极矩的简单加和,这 一结论已经被磁性测量、磁力显微镜和电子全息摄 影所证实(Bazylinski and Frankel, 2003).趋磁细菌 胞内的磁小体链像单磁偶极一样发挥作用,使细胞保 持行动一致.因此,细胞通过将磁小体排列成链状实 现自身磁偶极矩的最大化.利用磁小体的磁学性质和

- Fig.7 Crystal morphologies of magnetosomes from magnetotactic bacteria
 - a.立方八面体;b.子弹头形;c,d.假六方棱柱状(Bäuerlein, 2003)

组装行为,趋磁细菌将磁小体链作为自己在地磁场中运动的"指南针",感应地磁场的方向和强度,并进行定向运动(林巍和潘永信,2012; Chen et al., 2014).

对于磁小体链的形成机制,细胞生物学和分子 生物学研究揭示,某些功能蛋白质在磁小体矿化和 链组装过程中发挥了重要作用(Uebe and Schuler, 2016).Arakaki et al.(2003)发现,在与磁铁矿紧密 结合的生物膜中存在一类酸性蛋白质,这些酸性蛋 白质能够在磁小体的矿化过程中诱导磁铁矿晶体成 核,并控制磁铁矿晶体取向生长,进而改变晶体最终 的形貌.同时,Komeili et al.(2006)和 Scheffel et al. (2006)研究显示,在趋磁细菌体内,细胞丝状纤维表 面的类肌动蛋白 MamK 和酸性蛋白 MamJ 能够起 到"粘合剂"作用,可以把含有磁小体的囊泡精确地 固定在细胞丝状纤维上,从而促进磁小体链的组装. 不难看出,磁小体晶体的生长和链状组装行为与细 胞内特定蛋白质的调控作用密切相关.不过,曲晓飞 等(2011)在不使用任何蛋白质或生物分子的情况 下,以四方针铁矿和二价铁离子为铁源仿生合成磁 铁矿纳米颗粒.结果发现,在弱碱性条件下,合成的 磁铁矿颗粒为 35 nm 左右的近似立方体,而且这些 颗粒能够自发地定向排列,形成类似趋磁细菌体内 的磁小体链状结构.作者据此提出,由于磁铁矿晶体 存在着固有的磁偶极,晶体之间的磁偶极作用力驱 动着磁铁矿颗粒自发组装成定向排列的链状结构. 这就揭示了在趋磁细菌体内磁小体的矿化及组装链 形成过程中,除了生物蛋白影响外,磁小体颗粒之间 的磁偶极吸引作用也可能是一个重要因素.生物蛋 白和晶体化学因素可能在趋磁细菌体内生物矿化过 程中协同起作用.

4.3 骨的分级结构

骨是由无机矿物和有机质复合而成的有机一无 机复合物,其中无机矿物占干重的 70%,主要矿物 相为纳米尺度的羟基磷灰石晶体,有机物占干重的 30%,包括胶原蛋白、糖蛋白和唾液蛋白等(Salgado *et al.*,2004).Weiner and Wagner(1998)将骨的分 级结构区分为 7 个独立的等级.第1等级由水、羟基 磷灰石、胶原蛋白和其他蛋白质成分组成.其中羟基 磷灰石是纳米片状晶体,长 30~50 nm,宽 20~ 25 nm,厚 1.5~4.0 nm.第2 等级由矿化的胶原纤维 (collagen fibrils)组成,矿化的胶原纤维是胶原蛋白 与沉积在其上的羟基磷灰石构成的周期性结构,具 有典型的介晶结构.第3等级由矿化的胶原纤维阵 列组成.第4级由各种排列模式所形成,包括平行阵 列、交织排列、层板状结构和放射阵列(Weiner and Addadi, 1997).第5等级由圆柱结构的骨单元 (osteons)构成.骨组织的第6级可以分为多孔型(小梁骨或者松质骨)和紧密型(皮质骨)两类结构.第7 级是宏观尺度上简单的整块骨,整合了所有较低 等级层级.

羟基磷灰石不仅是骨骼的主要矿物组分,也是 构成其他生物硬组织如牙齿和软体动物外壳等的重 要矿物.然而,许多研究已经显示在生物体不同的组 织或者器官中,羟基磷灰石矿物矿化的程度、尺寸、 形貌以及组装多级结构却各不相同(Rohanizadeh and Legeros, 2007; George and Veis, 2008).普遍 的共识是生物或者有机分子如蛋白质、聚糖等调控 了生物成因羟基磷灰石矿物的尺寸、形貌和组装结 构 (Mahamid et al., 2008; Tao et al., 2009; Gómez-Morales et al., 2011).然而,在不同组织和 器官中矿物离子浓度、酸碱度和温度等物理化学条 件也各不相同(Lundgren and Linde, 1987; Larsson et al., 1988).因此,这就提出了新的问题,除了 生物或有机分子贡献之外,是否某些潜在物理化学 条件也参与调控了羟基磷灰石独特形貌和分级结构 生成.最近, Jiang et al. (2015)采用仿生矿化实验方 法,在没有任何生物或者有机分子参与的情况下,通 过改变矿化溶液中磷酸根离子浓度,获得了不同形 貌和分级结构的纳米羟基磷灰石.纳米羟基磷灰石 形貌和组装的分级结构的磷酸根离子依赖性指示, 生物特定组织和器官中羟基磷灰石的独特形貌和分 级结构的形成可能也与其局部的磷酸根等离子浓度 相关.因此,他们提出生物基因和物理化学因素可能 协同控制了复杂结构的生物矿物的形成.

4.4 鸟粪石结石

生物控制矿化创造出各种各样功能化的生物矿物.相反,病理矿化由于缺少生物控制,导致了一系列疾病,包括泌尿结石、胆结石和动脉硬化等(Coe et al., 2005; Laird et al., 2006; Portincasa et al., 2006).鸟粪石占泌尿结石组分的15%~20%,是结石病防治的重点,这是因为鸟粪石在人体内生长快速,并且常常具有破坏性的鹿角状形貌(Griffith, 1978; Romanowski et al., 2010; Chauhan and Joshi, 2013).利用奇异变形杆菌在人工合成的尿液中合成鸟粪石的体外实验也显示类似的树枝状形态鸟粪石的存在(Prywer and Torzewska, 2010; Prywer et al., 2012).这种鹿角状和树枝状鸟粪石容易在体内滞留,聚集形成更大的结石,同时损伤泌尿道

上皮细胞,造成患者疼痛,受损部位还能为鸟粪石结 晶提供成核位点,进一步促进鸟粪石的生长和聚集 (Prywer and Torzewska, 2010).因此,正是晶体形 态导致了鸟粪石结石形成和演化的恶性循环,使其 成为人体内更加疼痛的泌尿疾病.除了鹿角状和树 枝状形态,生物成因的鸟粪石还表现出其他特殊形 貌,例如"X"形和特殊板状,这与非生物成因鸟粪石 形态显著不同(Prywer and Torzewska, 2009; Prywer et al., 2012). 鸟粪石,也称磷酸铵镁 $(M_{g}NH_{4}PO_{4} \cdot 6H_{2}O), 属于正交晶系矿物. 生物鸟$ 粪石的独特形貌结构,指示其形成可能涉及一系列 复杂的以颗粒聚集为基础的非经典结晶牛长过程和 介晶的形成.Li et al.(2015)以聚天冬氨酸(PASP) 作为模型多肽开展仿生矿化实验研究.结果显示, PASP 存在下鸟粪石随时间变化呈现出不同的形 貌,包括箭头状,X形和特殊板状(图 8).其中,箭头 状鸟粪石属于典型的异极型晶体,即晶体的结晶学 c 轴的两端并不是对称相关的.结合模拟计算不难 得出,PASP 以其带负电荷的羧基优先与鸟粪石高 镁离子密度的{101}和{010}面吸附和键合,阻碍了 这些晶面的生长,使得这些晶面显著发育,并最终导 致箭头状鸟粪石的形成.Prvwer et al.(2012)指出, 鸟粪石的(001)面富集 NH₄⁺,(00-1)面富集 PO₄³⁻ 和 $Mg(H_2O)_6^{2+}$,因此,其 c 轴是偶极轴,鸟粪石晶 体存在固有电偶极.对于异极型的箭头状鸟粪石,这 样的偶极作用力更强.因此,在箭头状鸟粪石形成以 后,其固有的电偶极作用驱动其进一步组装和融合 生长,形成较稳定的四角突出的板状介晶结构;随着

矿化时间的延长,组装的板状结构继续沿着<001> 方向优先生长,形成X形鸟粪石.继而周边生长逐渐 填充了X形结构的空隙,鸟粪石演化成了上表面带 有"X"的特殊板状结构.最后,Ostwald 熟化过程模 糊了其表面的"X"结构(图 8).在这些获得的形貌 中,X形和特殊板状与生物成因鸟粪石形貌相似.这 说明生物成因的X形和特殊板状鸟粪石可能代表 两个不同的生长阶段,并且富含天冬氨酸残基的泌 尿蛋白很可能调控了生物成因鸟粪石特殊形貌的形 成.因此,该研究为了解生物成因鸟粪石的多种形貌 成因机制提供了新的认识,并且揭示其形成过程同 样遵循颗粒聚集为基础的非经典结晶生长过程.

5 结语

纳米地质学的兴起和发展,将推动包括矿物学 在内的地质学各分支学科取得新的突破.作为矿物 学研究的重要对象,生物矿物中普遍存在的多级结 构需要从纳米尺度探究其成因机制.因此,纳米矿物 学的发展尤其是基于纳米尺度的"介晶"思想及相关 的非经典结晶机制的提出,有助于加深对生物矿物 结构特征和生物矿化过程的了解.本文在阐述生物 矿化和生物矿物基本概念的基础上,介绍了新的介 晶概念和介晶结构特征,以及几种典型的生物矿物 介晶结构.同时,总结和阐述了目前已知的介晶形成 机制,包括有机基质辅助、物理场驱动、矿物桥或有 机桥连接、空间限域、取向附集和晶面选择性分子作 用等物理化学过程,这不仅有助于理解生物矿物中 介晶结构的形成机制,而且对地质环境中矿物纳米 结构的成因机制研究也有所启发.总之,以介晶为基 础的非经典晶体结晶生长理论的发展,将为了解矿 物成因机制、矿物结构和性能关系产生革命性的影 响.随着研究技术的不断进步和对介晶形成机制研 究的不断深入,具备优良性能的仿生介晶材料合成 也有望取得突破.

References

- Addadi, L., Joester, D., Nudelman, F., et al., 2006. Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes. *Chemistry*—A *European Journal*, 12(4):981-987. https://doi.org/ 10.1002/chem,200500980
- Addadi, L., Weiner, S., 1992. Control and Design Principles in Biological Mineralization. Angewandte Chemie-Inter-

national Edition in English, 31(2):153-169.https:// doi.org/10.1002/anie.199201531

- Aizenberg, J., Lambert, G., Weiner, S. et al., 2002. Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate: A Study of an Ascidian Skeleton. *Journal of the American Chemical Society*, 124(1): 32-39.https://doi.org/10.1021/ja0169901
- Albeck, S., Aizenberg, J., Addadi, L., et al., 1993. Interactions of Various Skeletal Intracrystalline Components with Calcite Crystals. Journal of the American Chemical Society, 115: 11691 - 11697. https://doi.org/10.1021/ ja00078a005
- Albeck, S., Weiner, S., Addadi, L., 1996. Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth in Vitro. Chemistry—A European Journal, 2 (3): 278 — 284. https:// doi. org/10. 1002/chem. 19960020308
- Amor, M., Busigny, V., Louvat, P., et al., 2016. Mass-Dependent and -Independent Signature of Fe Isotopes in Magnetotactic Bacteria. Science, 352 (6286): 705 - 708. https://doi.org/ 10.1126/science.aad7632
- Arakaki, A., Webb, J., Matsunaga, T., 2003. A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum Magneticum Strain AMB-1. Journal of Biological Chemistry, 278 (10): 8745 - 8750. https:// doi.org/10.1074/jbc.M211729200
- Banfield, J.F., Navrotsky, A., 2001. Nanoparticles and the Environment. Mineralogical Society of America, Washington, D.C..
- Bäuerlein, E., 2003. Biomineralization of Unicellular Organisms: An Unusual Membrane Biochemistry for the Production of Inorganic Nano- and Microstructures. Angewandte Chemie—International Edition in English, 42
 (6): 614 - 641. https:// doi. org/10. 1002/anie. 200390176
- Bazylinski, D. A., Frankel, R. B., 2003. Biologically Controlled Mineralization in Prokaryotes. *Reviews in Mineralogy* and Geochemistry, 54 (1): 217-247. https://doi.org/ 10.2113/0540217
- Bazylinski, D. A., Frankel, R. B., 2004. Magnetosome Formation in Prokaryotes. Nature Reviews Microbiology, 2 (3):217-230.https://doi.org/10.1038/nrmicro842
- Bergström, L., Sturm, E. V., Salazar-Alvarez, G., et al., 2015. Mesocrystals in Biominerals and Colloidal Arrays. Accounts of Chemical Research, 48 (5): 1391 – 1402. https://doi.org/10.1021/ar500440b
- Berridge, M. J., Bootman, M. D., Lipp, P., 1998. Calcium—A Life and Death Signal. *Nature*, 395(6703): 645-648. https://doi.org/10.1038/27094

- Bu, F.X., Du.C.J., Jiang, J.S., 2014. Synthesis, Properties and Applications of Mesocrystals. *Progress in Chemistry*, 26(1):75-86 (in Chinese with English abstract). https://doi.org/10.7536/PC130647
- Cai.L., Xiao, H.R., Huang, S. M., et al., 2013. Solubilization of Magnesium-Bearing Silicate Minerals and the Subsequent Formation of Glushinskite by Aspergillus Niger. *Geomicrobiology Journal*, 30: 302 - 312. https://doi. org/10.1080/01490451.2012.688924
- Chauhan, C. K., Joshi, M. J., 2013. In Vitro Crystallization, Characterization and Growth—Inhibition Study of Urinary Type Struvite Crystals. Journal of Crystal Growth, 362: 330 - 337. https://doi.org/10.1016/j. jcrysgro.2011.11.008
- Chen, A.P., Berounsky, V.M., Chan, M.K., et al., 2014. Magnetic Properties of Uncultivated Magnetotactic Bacteria and Their Contribution to a Stratified Estuary Iron Cycle. *Nature Communications*, 5: 4797. https://doi.org/ 10.1038/ncomms5797
- Chen, T. H., Xie, Q. Q., 2005. From Optical Microscopy to Electron Microscopy: Nanogeoscience. Journal of Hefei University of Technology, 28(9):1126-1129 (in Chinese with English abstract).
- Cheng, Z. Y., Fernández-Remolar, D. C., Izawa, M. R. M., et al., 2016. Oxalate Formation under the Hyperarid Conditions of the Atacama Desert as a Mineral Marker to Provide Clues to the Source of Organic Carbon on Mars. Journal of Geophysical Research : Biogeosciences, 121 (6): 1593 - 1604. https://doi.org/10.1002/ 2016JG003439
- Coe, F. L., Evan, A., Worcester, E., 2005. Kidney Stone Disease. Journal of Clinical Investigation, 115 (10): 2598-2608.https://doi.org/10.1172/JCI26662
- Cui, F. Z., 2012. Biomineralization (2nd Edition). Tsinghua University Press, Beijing (in Chinese).
- Dai, Y. D., 1994. Biogenic Mineralogy. Petroleum Industry Press, Beijing (in Chinese).
- de Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., et al., 2015.Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. *Science*, 349(6247): 6760.https://doi.org/10.1126/science.aaa6760
- DiMasi, E., Sarikaya, M., 2004. Synchrotron X-Ray Microbeam Diffraction from Abalone Shell. Journal of Materials Research, 19 (5): 1471 - 1476. https://doi. org/10.1557/JMR.2004.0196
- Duan, Y., Yao, Y.C., Qiu, X., et al., 2017. Dolomite Formation Facilitated by Three Halophilic Archaea. Earth Science, 42(3): 389 - 396 (in Chinese with English abstract).

https://doi.org/10.3799/dqkx.2017.029

- Dupraz, C., Reid, R.P., Braissant, O., et al., 2009. Processes of Carbonate Precipitation in Modern Microbial Mats. *Earth-Science Reviews*, 96 (3): 141-162. https://doi. org/10.1016/j.earscirev.2008.10.005
- Frankel, R. B., Zhang, J. P., Bazylinski, D. A., 1998. Single Magnetic Domains in Magnetotactic Bacteria. Journal of Geophysical Research—Solid Earth, 103 (B12): 30601-30604.https://doi.org/10.1029/97JB03512
- George, A., Veis, A., 2008. Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition. *Chemical Reviews*, 108 (11): 4670 - 4693. https://doi.org/10.1021/cr0782729
- Gilbert, P. U. P. A., Abrecht, M., Frazer, B. H., 2005. The Organic-Mineral Interface in Biominerals. *Reviews in Mineralogy & Geochemistry*, 59: 157 - 185. https:// doi.org/10.2138/rmg.2005.59.7
- Gómez-Morales, J., Delgado-Lopez, J. M., Iafisco, M., et al., 2011. Amino Acidic Control of Calcium Phosphate Precipitation by Using the Vapor Diffusion Method in Microdroplets. Crystal Growth & Design, 11(11):4802-4809. https://doi.org/10.1021/cg2004547
- Gower, L.B., 2008. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. *Chemical Reviews*, 108(11):4551 – 4627.https://doi.org/10.1021/cr800443h
- Griffith, D.P., 1978. Struvite Stones. *Kidney International*, 13 (5):372-382. https://doi.org/10.1038/ki.1978.55
- Hochella, M. F., 2002a. Nanoscience and Technology: The Next Revolution in the Earth Sciences. Earth and Planetary Science Letters, 203 (2): 593 - 605. https://doi. org/10.1016/S0012-821X(02)00818-X
- Hochella, M. F., 2002b. There's Plenty of Room at the Bottom: Nanoscience in Geochemistry. Geochimica et Cosmochimica Acta, 66(5):735-743.https://doi.org/ 10. 1016/S0016-7037(01)00868-7
- Hochella, M. F., Lower, S. K., Maurice, P. A., et al., 2008. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science, 319(5870):1631-1635.https://doi.org/ 10.1126/science.1141134
- Jiang, S. D., Yao, Q. Z., Ma, Y. F., et al., 2015. Phosphate-Dependent Morphological Evolution of Hydroxyapatite and Implication for Biomineralisation. Gondwana Research, 28(2):858-868.https://doi.org/10.1016/j.gr. 2014.04.005
- Ju, Y. W., Huang, C., Sun, Y., et al., 2017. Nanogeosciences: Research History, Current Status, and Development Trends. Journal of Nanoscience and Nanotechnology, 17:5930-

5965.https://doi.org/ 10.1166/jnn.2017.14436

- Ju, Y.W., Sun, Y., Wan, Q., et al., 2016. Nanogeology: A Revolutionary Challenge in Geosciences. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-2802.2016.01.001
- Kim, Y.Y., Schenk, A.S., Ihli, J., et al., 2014. A Critical Analysis of Calcium Carbonate Mesocrystals. *Nature Communications*, 5:4341.https://doi.org/10.1038/ncomms5341
- Komeili, A., Li, Z., Newman, D. K., et al., 2006. Magnetosomes are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK. Science, 311 (5758): 242-245.https://doi.org/10.1126/science.1123231
- Laird, D. F., Mucalo, M. R., Yokogawa, Y., 2006. Growth of Calcium Hydroxyapatite (Ca-HAp) on Cholesterol and Cholestanol Crystals from a Simulated Body Fluid: A Possible Insight into the Pathological Calcifications Associated with Atherosclerosis. Journal of Colloid and Interface Science, 295 (2): 348 – 363. https://doi.org/ 10.1016/j.jcis.2005.09.013
- Larsson, P. A., Howell, D. S., Pita, J. C., et al., 1988. Aspiration and Characterization of Predentin Fluid in Developing Rat Teeth by Means of a Micropuncture and Micropanalytical Technique. *Journal of Dental Research*, 67 (5): 870 875. https:// doi. org/10. 1177/00220345880670051501
- Lefèvre, C.T., Posfai, M., Abreu, F., et al., 2011. Morphological Features of Elongated-Anisotropic Magnetosome Crystals in Magnetotactic Bacteria of the Nitrospirae Phylum and the Delta Proteobacteria Class. *Earth and Planetary Science Letters*, 312 (1 2): 194 200. https://doi.org/10.1016/j.epsl.2011.10.003
- Li, H., Yao, Q.Z., Wang, Y.Y., et al., 2015. Biomimetic Synthesis of Struvite with Biogenic Morphology and Implication for Pathological Biomineralization. *Scientific Reports*, 5:7718. https://doi.org/10.1038/srep07718
- Li, H., Yao, Q.Z., Yu, S.H., et al., 2017. Bacterially Mediated Morphogenesis of Struvite and Its Implication for Phosphorus Recovery. American Mineralogist, 102 (2): 381-390.https://doi.org/10.2138/am-2017-5687
- Lian, B., Hu, Q.N., Chen, J., et al., 2006. Carbonate Biomineralization Induced by Soil Bacterium Bacillus Megaterium. Geochimica et Cosmochimica Acta, 70(22):5522-5535.https://doi.org/10.1016/j.gca.2006.08.044
- Lin, W., Pan, Y.X., 2012. Diversity of Magnetotactic Bacteria and Its Implications for Environment. *Quaternary Sciences*, 32 (4):567-575 (in Chinese with English abstract).https:// doi.org/10.3969/j.issn.1001-7410.2012.04.01

- Lin, W., Tian, L. X., Pan, Y. X., 2006. Formation of Magnetosomes in Magnetotactic Bacteria. *Microbiology China*, 33 (3):133-137 (in Chinese with English abstract).https:// doi.org/10.13344/j.microbiol.china.2006.03.028
- Lowenstam, H. A., Weiner, S., 1989. On Biomineralization. Oxford University Press, New York.
- Lundgren, T., Linde, A., 1987. Regulation of Free Ca²⁺ by Subcellular-Fractions of Rat Incisor Odontoblasts. Archives of Oral Biology, 32(7):463-468.https://doi. org/10.1016/S0003-9969(87)80005-5
- Mahamid, J., Sharir, A., Addadi, L., et al., 2008. Amorphous Calcium Phosphate is a Major Component of the Forming Fin Bones of Zebrafish: Indications for an Amorphous Precursor Phase. Proceedings of the National Academy of Sciences of the United States of America, 105(35):12748-12753. https://doi.org/10.1073/pnas.0803354105
- Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, New York.
- Oaki, K., Imai, H., 2005. The Hierarchical Architecture of Nacre and Its Mimetic Material. Angewandte Chemie— International Edition in English, 44(40):6571-6575. https://doi.org/10.1002/anie.200500338
- Oaki, Y., Kotachi, A., Miura, T., et al., 2006. Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical yet Modern Crystal Growth on the Nanoscale. Advanced Functional Materials, 16 (12): 1633 - 1639. https://doi.org/10.1002/adfm.200600262
- Ogoshi, T., Itoh, H., Kim, K. M., et al., 2002. Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex.*Macromolecules*, 35(2): 334-338.https://doi.org/10.1021/ma010819c
- Portincasa, P., Moschetta, A., Palasciano, G., 2006. Cholesterol Gallstone Disease. *Lancet*, 368 (9531): 230 - 239. https://doi.org/10.1016/S0140-6736(06)69044-2
- Pósfai, M., Dunin-Borkowski, R. E., 2009. Magnetic Nanocrystals in Organisms. *Elements*, 5 (4): 235 – 240. https://doi.org/10.2113/gselements.5.4.235
- Prywer, J., Torzewska, A., 2009. Bacterially Induced Struvite Growth from Synthetic Urine: Experimental and Theoretical Characterization of Crystal Morphology. Crystal Growth & Design, 9(8): 3538-3543. https://doi.org/ 10.1021/cg900281g
- Prywer, J., Torzewska, A., 2010. Biomineralization of Struvite Crystals by Proteus Mirabilis from Artificial Urine and Their Mesoscopic Structure. Crystal Research and Technology, 45 (12): 1283 – 1289. https://doi.org/10.

1002/crat.201000344

- Prywer, J., Torzewska, A., Plocinski, T., 2012. Unique Surface and Internal Structure of Struvite Crystals Formed by *Proteus Mirabilis*. Urological Research, 40 (6): 699-707.https://doi.org/10.1007/s00240-012-0501-3
- Qu, X.F., Yao, Q.Z., Zhou, G.T., 2011. Biomimetic Formation of Nanomagnetite Chain: Implication for Magnetosome Mineralization. *Geological Journal of China Universities*, 17(1): 66-75 (in Chinese with English abstract). https://doi. org/10.16108/j.issn1006-7493.2011.01.014
- Rohanizadeh, R., Legeros, R.Z., 2007. Mineral Phase in Linguloid Brachiopod Shell: Lingula Adamsi. Lethaia, 40 (1): 61 - 68. https://doi.org/10.1111/j.1502-3931. 2006.00006.x
- Romanowski, Z., Kempisty, P., Prywer, J., et al., 2010. Density Functional Theory Determination of Structural and Electronic Properties of Struvite. *Journal of Physical Chemistry A*, 114 (29): 7800 - 7808. https://doi.org/ 10.1021/jp102887a
- Ronholm, J., Schumann, D., Sapers, H. M., et al., 2014. A Mineralogical Characterization of Biogenic Calcium Carbonates Precipitated by Heterotrophic Bacteria Isolated from Cryophilic Polar Regions. *Geobiology*, 12 (6): 542-556.https://doi.org/10.1111/gbi.12102
- Salgado, A.J., Coutinho, O.P., Reis, R.L., 2004. Bone Tissue Engineering: State of the Art and Future Trends. Macromolecular Bioscience, 4 (8): 743 - 765. https://doi. org/10.1002/mabi.200400026
- Sánchez-Román, M., Rivadeneyra, M. A., Vasconcelos, C., et al.,2007.Biomineralization of Carbonate and Phosphate by Moderately Halophilic Bacteria.*FEMS Microbiology Ecology*,61(2):273-284.https://doi.org/10.1111/j. 1574-6941.2007.00336.x
- Schäffer, T. E., Ionescu Zanetti, C., Proksch, R., et al., 1997. Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges? *Chemistry* of Materials, 9(8): 1731 - 1740. https://doi.org/10. 1021/cm960429i
- Scheffel, A., Gruska, M., Faivre, D., et al., 2006. An Acidic Protein Aligns Magnetosomes along a Filamentous Structure in Magnetotactic Bacteria. *Nature*, 440 (7080): 110 - 114. https://doi.org/10.1038/nature04382
- Schindler, M., Hochella, M. F., 2016. Nanomineralogy as a New Dimension in Understanding Elusive Geochemical Processes in Soils: The Case of Low-Solubility-Index Elements.Geology, 44(7): 515 - 518. https://doi.org/ 10.1130/G37774.1
- Shi, J.Y., Yao, Q.Z., Li, X.M., et al., 2012. Controlled Mor-

phogenesis of Amorphous Silica and Its Relevance to Biosilicification. *American Mineralogist*, 97: 1381 – 1392.https://doi.org/10.2138/am.2012.4081

- Shi, J. Y., Yao, Q. Z., Li, X. M., et al., 2013. Formation of Asymmetrical Structured Silica Controlled by a Phase Separation Process and Implication for Biosilicification. *PLoS One*,8(4):e61164.https://doi.org/10.1371/journal.pone.0061164
- Shi, J. Y., Yao, Q. Z., Zhou, G. T., 2011. Organic Matrix-Mineral Interaction during Cell Wall Silicification in Diatoms. Geological Journal of China Universities, 17 (1): 76 - 85 (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2011.01.009
- Sinha, A., Singh, A., Kumar, S., et al., 2014. Microbial Mineralization of Struvite: A Promising Process to Overcome Phosphate Sequestering Crisis. Water Research, 54:33-43. https://doi.org/10.1016/j.watres.2014.01.039
- Skinner, H. C. W., 2005. Biominerals. Mineralogical Magazine, 69 (5): 621 - 641. https:// doi. org/10. 1180/ 0026461056950275
- Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian-Triassic Crisis. *Earth Science*, 41 (6): 901 - 918 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.077
- Song, R. Q., Cölfen, H., 2010. Mesocrystals-Ordered Nanoparticle Superstructures. Advanced Materials, 22 (12): 1301-1330.https://doi.org/10.1002/adma.200901365
- Sturm, E. V., Cölfen, H., 2016. Mesocrystals: Structural and Morphogenetic Aspects. Chemical Society Reviews, 45 (21):5821-5833.https://doi.org/10.1039/c6cs00208k
- Takahashi, K., Yamamoto, H., Onoda, A., et al., 2004. Highly Oriented Aragonite Nanocrystal-Biopolymer Composites in an Aragonite Brick of the Nacreous Layer of *Pinctada Fucata*. Chemical Communications, 8:996-997. https://doi.org/10.1039/b315478e
- Tao, J. H., Zhou, D. M., Zhang, Z.S., et al., 2009. Magnesium-Aspartate-Based Crystallization Switch Inspired from Shell Molt of Crustacean. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 22096 - 22101. https://doi.org/10.1073/ pnas.0909040106
- Uebe,R.,Schuler,D.,2016.Magnetosome Biogenesis in Magnetotactic Bacteria. Nature Reviews Microbiology, 14(10): 621-637.https://doi.org/ 10.1038/nrmicro.2016.99
- Wan, Q., 2012. Some Thoughts on Nanogeoscience. Acta Mineralogica Sinica, (Suppl.):50-51 (in Chinese).https://doi. org/10.16461/j.cnki.1000-4734.2012.s1.041
- Wang, Y. X., Tian, X. K., 2016. New Opportunities for the

Study of Geology: Nanogeology. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 79 – 86 (in Chinese with English abstract).

- Wang, Y.Y., Yao, Q.Z., Li, H., et al., 2015. Formation of Vaterite Mesocrystals in Biomineral-Like Structures and Implication for Biomineralization. Crystal Growth & Design, 15 (4): 1714-1725. https://doi.org/10.1021/cg501707f
- Wang, Y.Y., Yao, Q.Z., Zhou, G.T., et al., 2013. Formation of Elongated Calcite Mesocrystals and Implicationfor Biomineralization. *Chemical Geology*, 360 - 361: 126 -133.https://doi.org/10.1016/j.chemgeo.2013.10.013
- Weiner,S.,2008.Biomineralization: A Structural Perspective. Journal of Structural Biology, 163(3): 229 - 234. https://doi.org/10.1016/j.jsb.2008.02.001
- Weiner, S., Addadi, L., 1997. Design Strategies in Mineralized Biological Materials. Journal of Materials Chemistry, 7 (5):689-702. https://doi.org/10.1039/a604512j
- Weiner, S., Dove, P.M., 2003. An Overview of Biomineralization Processes and the Problem of the Vital Effect. *Re*views in Mineralogy and Geochemistry, 54(1):1-29. https://doi.org/org/10.2113/0540001
- Weiner, S., Wagner, H.D., 1998. The Material Bone: Structure Mechanical Function Relations. Annual Review of Materials Science, 28:271-298. https://doi.org/10.1146/ annurev.matsci.28.1.271
- Wit, J.C., de Nooijer, L.J., Haig, J., et al., 2017. Towards Reconstructing Ancient Seawater Mg/Ca by Combining Porcelaneous and Hyaline Foraminiferal Mg/Ca-Temperature Calibrations. *Geochimica et Cosmochimica Acta*, 211: 341 – 354. https://doi.org/10.1016/j.gca.2017.05.036
- Yao, Q. Z., Guan, Y. B., Zhou, G. T., et al., 2012. Witherite Nanorods Form Mesocrystals: A Direct Experimental Examination of a Dipole-Driven Self-Assembly Model. *European Journal of Mineralogy*, 24(3): 519 - 526. https://doi.org/10.1127/0935-1221/2012/0024-2186
- Zaremba, C.M., Belcher, A.M., Fritz, M., et al., 1996. Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls. *Chemistry of Materials*, 8(3): 679-690.

https://doi.org/10.1021/cm9503285

- Zhou, G.T., Guan, Y.B., Yao, Q.Z., et al., 2010. Biomimetic Mineralization of Prismatic Calcite Mesocrystals: Relevance to Biomineralization. *Chemical Geology*, 279(3-4):63-72. https://doi.org/10.1016/j.chemgeo.2010.08.020
- Zhou, G. T., Yao, Q.Z., Ni, J., et al., 2009. Formation of Aragonite Mesocrystals and Implication for Biomineralization. American Mineralogist, 94 (2 - 3): 293 - 302. https://doi.org/10.2138/am.2009.2957
- Zhou, L., O'Brien, P., 2008. Mesocrystals: A New Class of Solid Materials. *Small*, 4(10):1566-1574. https://doi. org/10.1002/smll.200800520

附中文参考文献

- 卜凡兴,都晨杰,姜继森,2014.介晶的制备、性能与应用研究. 化学进展,26(1):75-86.
- 陈天虎,谢巧勤,2005.电子显微镜时代与纳米地球科学.合肥 工业大学学报(自然科学版),28(9):1126-1129.
- 崔福斋,2012.生物矿化(第2版).北京:清华大学出版社.
- 戴永定,1994.生物成因矿物学.北京:石油工业出版社.
- 段勇,药彦辰,邱轩,等,2017.三株嗜盐古菌诱导形成白云石. 地球科学,42(3):389-396.
- 琚宜文,孙岩,万泉,等,2016.纳米地质学:地学领域革命性 挑战.矿物岩石地球化学通报,35(1):1-20.
- 林巍,潘永信,2012.趋磁细菌多样性及其环境意义.第四纪研 究,32(4):567-575.
- 林巍,田兰香,潘永信,2006.趋磁细菌磁小体研究进展.微生 物学通报,33(3):133-137.
- 曲晓飞,姚奇志,周根陶,2011.纳米磁铁矿链的仿生合成及 其生物矿化意义.高校地质学报,17(1):66-75.
- 史家远,姚奇志,周根陶,2011.硅藻细胞壁硅化过程中有机 质一矿物的相互作用.高校地质学报,17(1):76-85.
- 宋海军,童金南,2016.二叠纪一三叠纪之交生物大灭绝与残 存.地球科学,41(6):901-918.
- 万泉,2012.关于纳米地球科学的一些思考.矿物学报,(增 刊):50-51.
- 王焰新,田熙科,2016.地学研究的新机遇——纳米地质学.矿 物岩石地球化学通报,35(1):79-86.