https://doi.org/10.3799/dqkx.2018.430

利用 GCMC 分子模拟技术研究页岩气的吸附行为和机理

卢双舫^{1,2,4},沈博健^{1,2},许晨曦^{1,2},陈国辉^{1,2*},刘可禹²,薛庆忠³,方志雄⁵,何希鹏⁵

1.中国石油大学非常规油气与新能源研究院,山东青岛 266580

2.中国石油大学地球科学与技术学院,山东青岛 266580

3.中国石油大学重质油国家重点实验室,山东青岛 266580

4.陕西省页岩气成藏与开发重点实验室,陕西西安 710000

5.中国石化华东油气分公司,江苏南京 210000

摘要:揭示页岩气的吸附机理是阐明页岩气的吸附规律及转化条件、建立具有普适意义的定量评价模型的基础.采用 GCMC (Grand Canonical Monte Carlo)分子模拟方法,对不同温压条件下 CH4 和 CO2 在不同孔径的伊利石狭缝形孔隙中的吸附行为 进行模拟,结果表明,分子模拟与实验所得的吸附量归一化到单位表面积才具有相同的内涵和比较的意义.在此基础上进行的 对比表明,分子模拟与实验结果相近,奠定了由分子模拟考察页岩气吸附行为和机理的基础:气体吸附于矿物表面的内因(机理)是气一固分子之间的范德华力和库仑力,伊利石表面对 CO2 的吸附能力比其对 CH4 的吸附能力强是其结合能更高的反 映;CH4 和 CO2 在伊利石表面的吸附虽然并非严格的单分子层吸附,但以一个强吸附层为主;孔径减小到微孔后吸附相密度 将发生叠加,形成微孔填充,也是其结合能叠加的结果.

关键词:分子模拟;巨正则蒙特卡洛法;页岩气;吸附机理;非常规油气;油气地质.

中图分类号: P618 **文章编号:** 1000-2383(2018)05-1783-09 **收稿日期:** 2017-08-04

Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation

Lu Shuangfang^{1,2,4}, Shen Bojian^{1,2}, Xu Chenxi^{1,2}, Chen Guohui^{1,2*}, Liu Keyu², Xue Qingzhong³, Fang Zhixiong⁵, He Xipeng⁵

1. Research Institute of Unconventional Petroleum and Renewable Energy, China University of Petroleum, Qingdao 266580, China 2. School of Geosciences, China University of Petroleum, Qingdao 266580, China

3. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China

4. Shaanxi Province Key Laboratory of Lacustrine Shale Gas Accumulation and Development, Xi'an 710000, China

5. East China Oil & Gas Company, SINOPEC, Nanjing 210000, China

Abstract: The mechanism of shale gas adsorption is the theoretical foundation for elucidating the adsorption and transformation conditions, and establishing a universal quantitative evaluation model. The adsorption behavior of CH_4 and CO_2 in illite slit pores with different sizes under various temperature and pressure conditions was simulated by GCMC (Grand Canonical Monte Carlo) method. It is found that adsorption capacities obtained from both molecular simulation and experiments have the same connotations and are comparable when being normalized to the surface area, under which conditions the molecular simulation results are consistent with the experimental measurements. In this way, the basis for the study of adsorption behavior and

基金项目:国家自然科学基金项目(Nos.41330313,41672130);博士后创新人才支持计划(No.BX201700289);中国博士后科学基金面上项目 (No.2017M620296);国家油气重大专项(No.2016ZX05061-012);自主创新科研计划项目(No.15CX07004A).

作者简介:卢双舫(1962-),男,教授、博士生导师,主要从事油气地质学和地球化学的研究工作.E-mail: lushuangfang@qq.com * 通讯作者:陈国辉,E-mail: chenguohui@s.upc.edu.cn

mechanism of shale gas is established by molecular simulation: the internal cause (mechanism) of gas adsorption on the mineral surface is van der Waals force and Coulomb force in gas-solid molecules, the larger adsorption capacity of CO_2 than CH_4 on the surface of the illite is the reflection of a higher binding energy; the adsorption of CH_4 and CO_2 on the illite is not rigorous monolayer-adsorption, but a strong adsorption layer mainly; the adsorption phase density will overlap when pore size reduced to micropore, and microporous filling is thus formed, which is also a result from the superposition of their binding energy. **Key words**: molecular simulation; Grand Canonical Monte Carlo; shale gas; adsorption mechanism; unconventional oil and gas;

petroleum geology.

0 引言

勘探开发实践揭示,页岩气具有巨大的资源潜 力和发展前景(Ross and Bustin, 2009; Badics and Vetö, 2012;蒋恕等,2017;张晓明等,2017).吸附气 在页岩中含量可以高达 20%~85%(Curtis, 2002). 因此,对吸附气含量的准确评价,是客观评价不同地 质条件下页岩气总资源量的基础.

评价页岩的吸附气量,目前主要依赖于2种方 法,一是等温吸附实验(物理模拟),二是分子模拟 (数值模拟).前者仅能测得过剩吸附量,不能揭示页 岩气的吸附机理(Krooss et al., 2002; Tan et al., 2014).同时,受仪器功能的制约,实验所能达到的温 压条件无法覆盖地质温压条件(Zhang et al., 2012; Gasparik et al., 2014).因此,依据实验所建立的评 价模型的合理性、有效性、适应性受到质疑.后者(如 巨正则蒙特卡洛法, Grand Canonical Monte Carlo, GCMC)除了可以得到过剩吸附量之外,还能得到气 体密度分布曲线、吸附层数、结合能、孔径效应等反 映吸附作用内涵的参数,可以揭示页岩气的吸附机 理(Jin and Firoozabadi, 2013; 相建华等, 2014; Zhang et al., 2014; 孙仁远等, 2015; Chen et al., 2016a,2016b;Liu et al.,2016).不过,由于数值模拟 所得结果与模拟参数(如分子结构和反映气一固相 互作用的力场参数)的取值密切相关,因此,反映参 数取值合理与否的模拟结果的合理性需要接受实 验的检验.

但是,现已报道的结果显示,分子模拟所得到的 过剩吸附量(孙仁远等,2015)与实验实测过剩吸附 量(Ji et al., 2012; Fan et al., 2014)之间有着数量 级的差别!原因何在?这是本文首先需要探讨、解 决的问题.

由于页岩组成相当复杂,目前的分子模拟一般 先从相对简单的单矿物入手.虽然已有学者对页岩 气在黏土矿物中的吸附机理进行过探讨,但大多针 对蒙脱石结构(Jin and Firoozabadi, 2013, 2014; Yang et al., 2015)进行.鉴于伊利石是页岩中黏土 矿物的主要成分(Ji et al., 2012; Fan et al., 2014),如我国四川盆地焦石坝地区,页岩中伊利石含 量最高可占黏土矿物的70%左右(张晓明等,2015), 因此,本文以伊利石为例,在对前期模拟成果(Chen et al.,2016a,2016b)重新解读并补充部分工作的基础 上,对页岩气的吸附机理进行了系统地剖析.

1 方法

1.1 模型

吸附体系中吸附剂选钾伊利石,伊利石为2:1 型铝硅酸盐(Lee and Guggenheim, 1981; Refson *et al.*,2003),每个晶胞单元的硅氧四面体中有一个 硅原子被铝原子取代,由此引起的-1.0 e 负电荷由 K⁺平衡,类质同象替换后钾伊利石的化学式为 K(Si₇Al)(Al₄)O₂₀(OH)₄.

为考察吸附剂质量(由孔隙壁厚度反映)对吸附 行为的影响,笔者建立了2种类型的模拟单元:I型 模拟单元由2个半层黏土矿物片层结构组成(图 la),II型模拟单元由2个整层黏土矿物片层结构组 成(图 1b).钾离子和气体分子充填在狭缝形孔隙中. 模型采用了周期性边界,I型模拟单元由15(5×3× 1)个晶胞单元组成,II型模拟单元由30(5×3×2) 个晶胞单元组成,模拟单元的*x*-和*y*-方向分别为 2.58 nm和 2.69 nm.

将组成模拟单元的上下两层硅氧四面体内表面 氧原子之间的距离定义为孔径.为了考察孔径对吸 附行为的影响,将模拟单元的孔径分别设置为 0.6 nm、1 nm、2 nm、3 nm 和 5 nm.模拟过程中将截 断半径设为 1.25 nm,如果模拟单元在 z 轴方向上 的尺寸小于 2.5 nm,则将其在 z 轴方向上做周期性 循环,使其尺寸大于 2.5 nm.利用 CLAYFF 力场 (Cygan et al.,2004)对钾伊利石进行模拟,模拟过 程中其结构固定.

吸附质分子分别为 CH4 和 CO2,采用 TraPPE

图 1 I型(a)和 II型(b)模拟单元剖面

Fig.1 A snapshot of type I (a) and type II (b) simulation cells 孔瞭空间被气体分子和 K^+ 充填.其中,气体和钾离子为球状模型, 钾伊利石骨架为球棍模型.色标:氧,红色;氢,白色;硅,黄色;铝,粉 色;钾,紫色;碳,灰色

(Jorgensen *et al.*, 1984)力场进行模拟.为减少模拟 计算量,将 CH₄ 分子中的 C 和与之相连的 4 个 H 作为一个整体的联合原子(Wang *et al.*, 2016); CO₂ 模型中,C-O 键的键长和 O-C-O 键的键角 均固定为实验值,分别为 1.16×10⁻¹⁰ m 和 180°,C 和 O 的点电荷分别为+0.7 e 和-0.35 e.

在所研究的体系中,气一固和气一气之间的相互 作用主要由粒子之间的范德华力和库仑力造成,这种 相互作用决定了气体在伊利石表面的吸附特征(相建 华等,2014).模拟过程中利用 Lennard-Jones 12-6 势 能函数(Potoff and Siepmann, 2001)描述粒子之间的 范德华力,不同种类粒子之间的相互作用由 Lorentz-Berthelot 加和规则进行计算.库仑力的大小与带电粒 子之间的距离成反比(Cygan *et al.*, 2004).

1.2 模拟

采用 GCMC 方法对不同温压条件下 CH₄ 和 CO₂ 在钾伊利石狭缝形孔隙中的吸附行为进行模 拟,模拟过程在 MaterialStudio 8.0 软件上完成.模 拟过程中,气体化学势(μ)、体系的体积(V)和温度 (T)均固定.化学势由 $\mu = \mu^{\circ} + RT \ln(\phi P/P^{\circ})$ 关联 到压力 P,其中 μ° 为标准压力 p° 下理想气体的标 准化学势, ϕ 是经由 NIST 热力学性质获取的 逸度系数.

首先,为了研究孔隙壁厚度对孔隙内气体分子吸 附作用的影响,利用 GCMC 方法对 90 ℃时 CH4 和 CO2 分子在孔径为 3 nm 的 I 型和 II 型模拟单元中的 吸附行为进行模拟;然后,为了研究过剩吸附量,对不 同温压条件下 CH4 和 CO2 在孔径为 2 nm 的 I 型模 拟单元中的吸附行为进行模拟,同时在 *x*-,*y*-,*z*-方向 均为 3 nm 的空白模拟单元中进行相应温压条件下的 GCMC 模拟,根据加载分子数和空白模拟单元体积确 定 CH₄ 和 CO₂ 的体相密度;最后,为了研究吸附层 数、吸附相密度和结合能等参数,求取温度为 90 ℃、 压力为 30 MPa 时气体在不同孔径的 I 型模拟单元中 的密度分布曲线,此外,将单个气体分子放置到模拟 单元中能量最低处,将气体分子从模拟单元的一个表 面移向另一个表面,求取在不同位置时矿物对气体分 子的结合能.每次 GCMC 模拟的平衡步数为 5×10⁶, 生产步数为 5×10⁶.

2 结果与讨论

2.1 吸附剂质量(孔隙壁厚度)对吸附的影响

模拟单元内的内表面可以由具有一定动力学半 径的探针分子在固体表面滚动获得,当探针分子为 球形时,所得到的可到达表面即为"Connolly surface"(Connolly,1983a,1983b).得到分子可到达的 内表面后即可求得孔隙总表面积,与模拟单元的质 量相比即可得到比表面积(表 1).I型和 II 型模拟单 元在 *x*-和 *y*-方向的尺寸相同,因此,对于同一种气体 二者具有相同的表面积,但由于二者质量不同,比表 面积有异.显然,II 型模拟单元的孔隙壁厚度是 I 型模 拟单元的 2 倍,其比表面积约为 I 型的 1/2(表 1).

笔者分别在孔径为 I 型和 II 型钾伊利石模拟单 元中利用 GCMC 法模拟 CH₄ 和 CO₂ 在 90 ℃时的 吸附特征.模拟结果显示(图 2),CH₄ 和 CO₂ 的绝对 加载量基本不受孔隙壁厚度的影响.如果孔隙壁厚 度继续增大,则外层孔隙壁分子与孔隙内气体分子 之间的距离将超出截断半径,理论上更不可能对加 载量有影响.

可见,影响吸附量的关键因素是吸附剂的表面 积而不是吸附剂的质量.这与吸附是一种近距离的

Table 1 Kinetic diameters of both CH₄ and CO₂ molecules and specific surface areas of types I and II K-illite simulation cells

吸附质	动力学直径(nm)	模拟单元类型	比表面积(m ² /g)
CH_4	0.38	Ι	997.73
		II	529.60
CO_2	0.33	Ι	989.79
		II	536.22

图 2 363 K(90 ℃)时 CH4 和 CO2 气体分子在 3 nm 孔径的
钾伊利石不同类型模拟单元中加载量对比

Fig.2 Comparison of the total loading number of CH_4 and CO_2 in both type I and II simulation cells with the pore size of 3 nm at the temperature of 363 K (90 °C)

气一固表面作用的内涵一致.出于节约模拟计算时 间的考虑,本文中其余模拟均在粒子数目较少的 I 型模拟单元中进行.

这可能有效解释了前人文献报道中,分子模拟 所得单位质量的过剩吸附量较实验结果高一个数量 级的内在原因:虽然不同的文献报道中,伊利石的比 表面积差别较大,从液氮(Ji et al.,2012)测得的 2.26 m²/g到原子力显微镜(Macht et al.,2010)测 得的 64 m²/g,但总体上,其比伊利石模拟单元的比 表面积低一个量级,其原因在于模拟单元的孔隙比 厚度远小于钾伊利石自然矿物的孔隙比厚度.因此, 要由实验结果来检验分子模拟结果的合理性,应该 将吸附量对比表面积而不是质量来归一化.对此,下 文将有进一步的分析.

2.2 分子模拟结果的合理性——与实验所得过剩
吸附量的对比

分子模拟的结果与所选取的分子结构和力场参

数有关,因此,所得结果的合理性(即所选参数的合 理性)必须接受实验的检验.图 3 对比显示了不同温 压条件下分子模拟与等温吸附实验所得 CH₄(a)和 CO₂(b)过剩吸附量.可以看出,若以单位质量吸附 剂的过剩吸附量(cm³/g,吸附实验的通常表达方 式)来比较,分子模拟结果比实验结果高出一个数量 级,这与文献报道的结果(Ji et al., 2012; Fan et al., 2014;孙仁远等, 2015)一致.如果真是如此,人 们必然要怀疑分子模拟结果的可信性.但是,按照上 节的分析,影响吸附能力的主要是吸附剂的表面积 而不是其体积.若将过剩吸附量(cm³/g)除以相应吸 附剂的比表面积[(m²/g,其中,实验中伊利石的比 表面积是采用液氮法与原子力显微镜法相结合得到 的结果(Macht et al., 2011),取值为 41 m²/g)],将 其转化为单位吸附剂表面积所对应的吸附量(cm³/ m²)后进行对比(图 4)则可以看出,分子模拟与实验 结果尽管有一定差别,但处于相同数量级,可以说吻 合较好.事实上,鉴于以下几方面的原因,理论上难 以保证分子模拟与实验结果精确一致.

(1)在体积法等温吸附实验中,自由体积由 He 标定,然而 He 分子的动力学直径小于 CH₄ 分子和 CO₂ 分子,导致所测得的自由体积大于 CH₄ 或 CO₂ 自由体积的真实值,进而导致测得的过剩吸附 量小于理论值.

(2) 矿物的吸附能力随孔径变化而变化 (Brunauer et al., 1938; Dubinin, 1960, 1975)(参见 2.3.3),模拟单元通常为单一孔径, 而自然矿物孔径 分布十分复杂, 因此, 不应期待利用单一孔径模拟出 的过剩吸附量与实验测试结果精确匹配.

(3)分子模拟所研究的是纯矿物的吸附能力,模 拟单元通常为矿物的理想结构,而实验中自然矿物 样品中可能存在杂质,其结构也并非理想结构,在类

图 3 模拟与实测所得 CH₄(a)和 CO₂(b)过剩吸附量对比

Fig.3 The comparison of excess adsorption amount of CH₄(a) and CO₂(b) in illite by both molecular simulation and experiment 过剩吸附量以单位质量吸附剂的吸附能力表示

Fig.4 The comparison of excess adsorption amount of CH₄(a) and CO₂(b) in illite by both molecular simulation and experiment 过剩吸附量用单位吸附剂比表面积的吸附能力表达

质同象替换、离子充填和表面晶格缺陷方面均可能 与模拟单元之间存在差异,进而造成二者吸附能 力的差异.

因此,图 4 显示的两者的较好吻合表明,分子模 拟结果具有可信性,可以作为进一步探究吸附机理 的有效技术手段.

2.3 吸附机理

明确模拟结果可靠性之后,对吸附层数、吸附相 密度和结合能进行分析,以揭示页岩气的吸附机理. 2.3.1 密度分布 气体分子在孔隙中的分布特征 是反映页岩气吸附行为的重要参数之一,本文对 CH₄和 CO₂分子在孔径为3nm的伊利石孔隙中的 分布进行了对比分析(图 5).受到孔隙壁的吸附作用, 气体在紧邻孔隙壁的位置形成密度强峰,即为强吸附 层.在强吸附层之外,形成密度明显低于强吸附层的 弱吸附层,但略大于代表游离气的体相密度.CO₂的 吸附层密度明显高于 CH₄的吸附层密度,一方面与 气体摩尔质量、结构有关(如 CO₂ 具有较高的体相密 度),同时,也与伊利石表面对 CO₂ 的吸附作用比对 CH₄的吸附作用更强有关(参见 2.3.2 和 2.3.3).

同时可以看出,页岩气的吸附并非严格意义上 的单分子吸附,但以一个强吸附层为主.因此,基于 单分子吸附的 Langmuir 公式在描述页岩气吸附问 题时尽管并不严格成立,但可以近似应用.

2.3.2 结合能 结合能是反映吸附剂对吸附质作 用强度的重要参数,在温度为 90 ℃、压力为 30 MPa 条件下,CH₄和 CO₂在 3 nm 孔径的 I 型模拟单元 中的平均结合能进行对比研究(图 6).由于 CH₄分 子没有极性,伊利石表面对 CH₄的结合能主要由范 德华力造成; 而 CO₂分子具有一定四极矩(Harries, 1970),且伊利石表面存在一定极性,伊利石表 面对 CO₂的结合能由范德华力和库仑力共同造成.

图 5 温度为 90 ℃和压力为 30 MPa 条件下, CH₄ 和 CO₂ 在孔径为 3 nm 的钾伊利石孔隙中的密度分布曲线

Fig.5 The gas distribution of CH_4 (a) and CO_2 (b) in Killite pore with the size of 3 nm at 90 $^\circ$ C and 30 MPa

图 6 CH₄ 和 CO₂ 分别于钾伊利石表面之间平均结合 能对比图

Fig.6 The interaction energy between K-illite surface and gas molecules

因此,伊利石表面对 CO₂ 的吸附能力比对 CH₄ 的 吸附能力更强,这也是 CO₂ 吸附层密度明显高于 CH₄ 吸附层密度的根本原因(图 5).

2.3.3 孔径影响 无论是页岩还是自然界中的伊利石单矿物,均为多孔介质,且孔径分布范围很广, 微孔、介孔和宏孔均有分布.因此,对于单一孔径中

图 8 不同孔径的伊利石孔隙表面与 CH₄(a)和 CO₂(b)分子之间的结合能

Fig.8 The interaction energy between the surface of illite pores with various sizes and gas molecules, including both CH_4 (a) and CO_2 (b)

气体吸附行为的研究,无法反映矿物整体吸附特征, 对于不同孔径的孔隙中页岩气吸附行为的研究 十分必要.

对温度为 90 ℃、压力为 30 MPa 条件下,孔径 分别为 0.6 nm、1 nm、2 nm、3 nm 和 5 nm 的模拟单 元中气体的密度分布曲线进行对比分析(图 7)显 示,孔径大于 2 nm 时,强吸附层密度几乎不受孔径 影响,但孔径小于 2 nm 时,强吸附层密度随孔径减 小而增大,CH₄ 在孔径为 0.6 nm 时,强吸附层合 并为一个.

为了进一步研究孔径对页岩气吸附行为的影响 机理,将 CH4 和 CO2 分子分别从一个孔隙壁面移 动到另一面,每移动一次都计算伊利石模拟单元对 气体分子的结合能,对不同孔径的孔隙中结合能分 布曲线进行对比(图 8).孔径大于 2 nm 时,结合能 几乎不受孔径影响,孔径小于 2 nm 时,结合能随孔 径的减小而增强.原因在于当孔径减小到一定程度 时,两侧的孔隙壁对孔隙内气体分子的相互作用发 生叠加(Liu and Wilcox, 2012; Mosher *et al.*, 2013; Yang et al., 2015; Liu et al., 2016),结合能的叠加效应造成了气体吸附层密度的叠加,这也是造成微孔填充现象的根本原因.

3 结论

(1)本文的定量剖析表明,吸附剂的表面积而不 是吸附剂的质量是影响吸附量的关键因素.因此,应 该将分子模拟结果与实验结果归一化到单位面积的 吸附量才具有相同的内涵、也才具有比较的基础和 意义.在此基础上进行的对比表明,本文的分子模拟 与实验结果相近,这奠定了由分子模拟考察页岩气 吸附行为和机理的基础.

(2)气体吸附于矿物表面的内因(机理)是气一 固分子之间的范德华力和库仑力.前者普遍存在,后 者在分子体现极性(如 CO₂ 存在电四极矩)时存在. 伊利石对 CO₂ 的吸附能力比对 CH₄ 的吸附能力更 强,主要原因在于其对 CO₂ 的吸附作用由范德华力 和库仑力共同造成,明显高于仅有范德华力的对

CH4 的吸附作用.

(3)对分子模拟获得的密度分布函数的分析表明,页岩气的吸附并非严格意义上的单分子吸附,但以一个强吸附层为主.因此,基于单分子吸附的 Langmuir 公式尽管并不严格成立,但可以近似应用.

(4) 孔径变化对吸附影响的模拟揭示,当孔径大 于 2 nm 时,吸附层密度几乎不受孔径影响,小于 2 nm时,强吸附层密度随孔径减小而增大,原因在 于当孔径减小到一定程度时,两侧的孔隙壁对孔隙 内气体分子的相互作用发生叠加,结合能的叠加效 应造成了气体吸附层密度的叠加,这也是造成微孔 填充现象的根本原因.

致谢:感谢匿名审稿专家提出的宝贵修改建 议和意见!

References

- Badics, B., Vetö, I., 2012. Source Rocks and Petroleum Systems in the Hungarian Part of the Pannonian Basin: The Potential for Shale Gas and Shale Oil Plays. Marine & Petroleum Geology, 31(1):53-69.https://doi.org/10. 1016/j.marpetgeo.2011.08.015
- Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60(2): 309 - 319. https://doi.org/ 10.1021/ja01269a023
- Chen, G., Lu, S., Zhang, J., et al., 2016a. Research of CO₂ and N₂ Adsorption Behavior in K-Illite Slit Pores by GCMC Method. *Scientific Reports*, 6: 37579. https://doi.org/ 10.1038/srep37579
- Chen, G., Zhang, J., Lu, S., et al., 2016b. Adsorption Behavior of Hydrocarbon on Illite.*Energy & Fuels*, 30(11):9114-9121. https://doi.org/10.1021/acs.energyfuels.6b01777
- Connolly, M.L., 1983a. Analytical Molecular Surface Calculation. Journal of Applied Crystallography, 16(5): 548-558. https://doi.org/10.1107/s0021889883010985
- Connolly, M. L., 1983b. Solvent-Accessible Surfaces of Proteins and Nucleic Acids. *Science*, 221(4621):709-713. https://doi.org/10.1126/science.6879170
- Curtis, J.B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86 (11): 1921 — 1938. https://doi.org/10.1306/ 61EEDDBE-173E-11D7-8645000102C1865D
- Cygan, R. T., Liang, J. J., Kalinichev, A. G., 2004. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. *Journal* of Physical Chemistry B, 108 (4): 1255 - 1266. https://doi.org/10.1021/jp0363287

Dubinin, M.M., 1960. The Potential Theory of Adsorption of

Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. *Chemical Reviews*, 60(2):235-241.https://doi.org/10.1021/cr60204a006

- Dubinin, M.M., 1975. Physical Adsorption of Gases and Vapors in Micropores. Progress in Surface and Membrane Science, 9:1-70. https://doi.org/10.1016/B978-0-12-571809-7.50006-1
- Fan, E., Tang, S. H., Zhang, C. L., et al., 2014. Methane Sorption Capacity of Organics and Clays in High-over Matured Shale-Gas Systems. *Energy Exploration & Exploitation*, 32(6):927-942. https://doi.org/10.1260/ 0144-5987.32.6.927
- Gasparik, M., Rexer, T. F. T., Aplin, A. C., et al., 2014. First International Inter-Laboratory Comparison of High-Pressure CH₄, CO₂, and C₂H₆, Sorption Isotherms on Carbonaceous Shales. *International Journal of Coal Geology*, 132: 131 – 146. https://doi.org/10.1016/j. coal.2014.07.010
- Harries, J.E., 1970. The Quadrupole Moment of CO₂, Measured from the Far Infrared Spectrum. Journal of Physics B: Atomic and Molecular Physics, 3 (12): L150 – L152.https://doi.org/10.1088/0022-3700/3/12/021
- Heller, R., Zoback, M., 2014. Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples. Journal of Unconventional Oil & Gas Resources, 8:14-24.https://doi.org/10.1016/j.juogr.2014.06.001
- Ji, L., Zhang, T., Milliken, K.L., et al., 2012. Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks. *Applied Geochemistry*, 27 (12): 2533 – 2545. https://doi.org/10.1016/j.apgeochem.2012.08.027
- Jiang, S., Tang, X.L., Steve, O., et al., 2017. Enrichment Factors and Current Misunderstanding of Shale Oil and Gas: Case Study of Shales in U.S., Argentina and China, Earth Science, 42 (7): 1083 – 1091 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.087
- Jin, Z. H., Firoozabadi, A., 2013. Methane and Carbon Dioxide Adsorption in Clay-Like Slit Pores by Monte Carlo Simulations. *Fluid Phase Equilibria*, 360 (1): 456 – 465. https://doi.org/10.1016/j.fluid.2013.09.047
- Jin, Z. H., Firoozabadi, A., 2014. Effect of Water on Methane and Carbon Dioxide Sorption in Clay Minerals by Monte Carlo Simulations. *Fluid Phase Equilibria*, 382:10-20. https://doi.org/10.1016/j.fluid.2014.07.035
- Jorgensen, W. L., Madura, J. D., Swenson, C. J., 1984. Optimized Intermolecular Potential Functions for Liquid Hydrocarbons. J. Am. Chem. Soc. (United States), 106 (22): 6638 - 6646. https:// doi. org/10. 1021/ ja00334a030

- Krooss, B. M., Bergen, F. V., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. *International Journal of Coal Geology*, 51(2):69-92. https://doi.org/10.1016/S0166-5162(02)00078-2
- Lee, J. H., Guggenheim, S., 1981. Single-Crystal X-Ray Refinement of Pyrophyllite-1Tc. American Mineralogist, 66(3-4):350-357.
- Liu, Y., Wilcox, J., 2012. Molecular Simulation of CO₂ Adsorption in Micro- and Mesoporous Carbons with Surface Heterogeneity. *International Journal of Coal Geology*, 104(1):83-95. https://doi.org/10.1016/j.coal. 2012.04.007
- Liu, Y., Zhu, Y. M., Li, W., et al., 2016. Molecular Simulation of Methane Adsorption in Shale Based on Grand Canonical Monte Carlo Method and Pore Size Distribution. *Journal of Natural Gas Science & Engineering*, 30: 119-126.https://doi.org/10.1016/j.jngse.2016.01.046
- Macht, F., Eusterhues, K., Pronk, G. J., et al., 2011. Specific Surface Area of Clay Minerals: Comparison between Atomic Force Microscopy Measurements and Bulk-Gas (N₂) and -Liquid (EGME) Adsorption Methods. Applied Clay Science, 53(1):20-26. https://doi.org/10. 1016/j.clay.2011.04.006
- Macht, F., Totsche, K. U., Eusterhues, K., et al., 2010. Topography and Surface Properties of Clay Minerals Analyzed by Atomic Force Microscopy. Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, 206-209.
- Mosher, K., He, J., Liu, Y., et al., 2013. Molecular Simulation of Methane Adsorption in Micro- and Mesoporous Carbons with Applications to Coal and Gas Shale Systems. *International Journal of Coal Geology*, 109-110(2): 36-44.https://doi.org/10.1016/j.coal.2013.01.001
- Potoff, J. J., Siepmann, J. I., 2001. Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen. Aiche Journal, 47(7):1676-1682. https://doi. org/10.1002/aic.690470719
- Refson, K., Park, S.H., Sposito, G., 2003. Ab Initio Computational Crystallography of 2:1 Clay Minerals: 1. Pyrophyllite-1Tc. *The Journal of Physical Chemistry B*, 107 (48): 13376 - 13383. https://doi.org/10.1021/ jp0347670
- Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. *Marine & Petroleum Geology*, 26(6): 916-927. https://doi.org/10.1016/j. marpetgeo.2008.06.004

- Sun, R. Y., Zhang, Y. F., Fan, K. K., et al., 2015. Molecular Simulations of Adsorption Characteristics of Clay Minerals in Shale. *CIESC Journal*, 66(6): 2118-2122 (in Chinese with English abstract). https://doi.org/10. 11949/j.issn.0438-1157.20141766
- Tan, J., Weniger, P., Krooss, B., et al., 2014. Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part II: Methane Sorption Capacity. *Fuel*, 129(4): 204-218. https://doi.org/ 10.1016/j.fuel.2014.03.064
- Tian, H., Zhang, S.C., Liu, S.B., et al., 2016. The Dual Influence of Shale Composition and Pore Size on Adsorption Gas Storage Mechanism of Organic-Rich Shale. Natural Gas Geoscience, 27 (3): 494 - 502. https://doi.org/10. 11764/j.issn.1672-1926.2016.03.0494
- Wang, S., Javadpour, F., Feng, Q., 2016. Molecular Dynamics Simulations of Oil Transport through Inorganic Nanopores in Shale. *Fuel*, 171: 74 - 86. https://doi.org/10. 1016/j.fuel.2015.12.071
- Xiang, J. H., Zeng, F. G., Liang, H. Z., et al., 2014. Molecular Simulation of the CH₄/CO₂/H₂O Adsorption onto the Molecular Structure of Coal. Science China Earth Sciences, 44(7):1418-1428 (in Chinese).https://doi.org/ 10.1007/s11430-014-4849-9
- Yang, N. N., Liu, S. Y., Yang, X. N., 2015. Molecular Simulation of Preferential Adsorption of CO₂ over CH₄ in Na-Montmorillonite Clay Material. *Applied Surface Science*, 356: 1262 - 1271. https://doi.org/10.1016/j.apsusc.2015.08.101
- Zhang, J. F., Clennell, M. B., Dewhurst, D. N., et al., 2014. Combined Monte Carlo and Molecular Dynamics Simulation of Methane Adsorption on Dry and Moist Coal. *Fuel*,122(15):186-197.https://doi.org/10.1016/j.fuel.2014.01.006
- Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012. Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems. Organic Geochemistry, 47(6):120-131.https://doi.org/10.1016/j. orggeochem.2012.03.012
- Zhang, X. M., Shi, W. Z., Shu, Z. G., et al., 2017. Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7):1157-1168 (in Chinese with English abstract). https://doi.org/10.3799/ dqkx.2017.094
- Zhang, X. M., Shi, W. Z., Xu, Q. H., et al., 2015. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin. Acta Petrolei Sinica, 36 (8):926-939,953 (in Chinese with English abstract).

https://doi.org/10.7623/syxb201508004

附中文参考文献

- 蒋恕,唐相路,Steve,O.,等,2017.页岩油气富集的主控因素 及误辩:以美国、阿根廷和中国典型页岩为例.地球科 学,42(7):1083-1091.
- 孙仁远,张云飞,范坤坤,等,2015.页岩中黏土矿物吸附特性 分子模拟.化工学报,66(6):2118-2122.
- 相建华,曾凡桂,梁虎珍,等,2014.CH₄/CO₂/H₂O在煤分子 结构中吸附的分子模拟.中国科学:地球科学,44(7): 1418-1428.
- 张晓明,石万忠,舒志国,等,2017.涪陵地区页岩含气量计算 模型及应用.地球科学,42(7):1157-1168.
- 张晓明,石万忠,徐清海,等,2015.四川盆地焦石坝地区页岩 气储层特征及控制因素.石油学报,36(8): 926-939,953.

"青藏高原碰撞造山成矿系统深部结构与成矿过程" 中文专辑征稿通知

"青藏高原碰撞造山成矿系统深部结构与成矿过程"深地项目各位同仁:

项目自 2016年启动以来,已近两年,今年 10月即将迎来中评估,为集中展示项目研究成果,促进各课题 之间的了解、交流及进一步合作,经与《地球科学》(中文版)编辑部(http://www.earth-science.net/index.aspx)磋商,计划于 2019年上半年(第一或二期,视稿件评审及修改进展而定)出版一期"青藏高原碰撞造山成 矿系统深部结构与成矿过程"研究进展专辑,现向各课题征稿,请大家予以支持,要求如下:

1.征稿内容:近年来针对青藏高原碰撞造山成矿系统深部结构与成矿过程研究中取得的新资料、新认 识、新成果.

2.专辑主题:

(1)青藏高原岩石圈结构、深部过程及成岩成矿实验约束;

(2)青藏高原碰撞造山过程、岩浆作用及成矿地质背景;

(3)青藏高原壳幔过程及碰撞造山成矿作用;

(4) 青藏高原大陆碰撞 Pb-Zn、斑岩 Cu-Mo-Au 成矿系统结构与形成机制;

(5)青藏高原大陆碰撞造山型 Au 成矿系统结构与形成机制;

(6) 青藏高原典型矿集区透明化与矿体定位预测.

3.征集时间及方式:投稿截止日期为 2018 年 8 月 31 日;所有论文均通过《地球科学》编辑部投稿系统 (http://mc03.manuscriptcentral.com/es)进行,投稿过程中在"专辑"里选择"青藏高原碰撞造山成矿系统深 部结构与成矿过程专辑".

4.征集数量:由于期刊版面有限,每位第一作者限1篇.

5.论文撰写格式请严格按照最新的《地球科学》投稿要求执行,详细要求请参考投稿指南(http://www.earth-science.net/RMBase/attached/file/20180309/20180309154503_9531.pdf).

6.本专辑为正刊出版发行,所有稿件编辑部严格按程序执行,不符合送审要求的稿件将在初审时退回. 接收后的文章会优先在线出版.

7.专辑联系人:

侯增谦,研究员,国家自然科学基金委员会/中国地质科学院地质研究所.

杨志明,研究员,中国地质科学院地质研究所,zm.yang@hotmail.com