https://doi.org/10.3799/dqkx.2018.112

柴北缘从大洋俯冲到陆陆碰撞:来自 开屏沟造山带 M 型橄榄岩的证据

蔡鹏捷1,许荣科1*,郑有业1.2,陈 鑫2,刘 嘉1.3,俞军真2

1.中国地质大学地质调查研究院,湖北武汉 430074
2.中国地质大学资源学院,湖北武汉 430074
3.湖北省地质调查研究院,湖北武汉 430074

摘要:造山带幔源(M型)橄榄岩虽然在高压/超高压变质带分布不多,但由于其来自俯冲板块上覆的岩石圈地幔,因此是研究 俯冲隧道内俯冲板片与地幔楔之间相互作用的重要对象,对于还原超高压变质带的演化有重要意义.柴北缘鱼卡榴辉岩一片 麻岩区边部附近的开屏沟存在一套橄榄岩,其岩石类型、成因、时代等都缺乏研究.对开屏沟橄榄岩全岩的主量和微量元素及 铂族元素、橄榄石主量元素、锆石 U-Pb 年龄和 Hf 同位素进行了研究.结果显示,其全岩具有高的 Mg[#]、Mg/Si 和 Ni 值,同时 表现出亏损难溶的 HFSE 和 HREE,轻微富集 LILE 和 LREE 中与流体活动性相关的元素;橄榄石具有较高的 Fo 值(90.11~ 92.77)与 NiO 含量(0.32%~0.45%)、低的 CaO 含量(<0.02%);PGEs 的球粒陨石标准化配分模式与交代橄榄岩和残留橄榄 岩近似;两组变质锆石年龄为 459.5±3.6 Ma 和 417.5±2.7 Ma,对应的 ε_{Hf}(t)值为-0.71~9.45 和-11.96~-1.20,分别反映 了洋壳流体(或早期大陆俯冲板片流体)和陆壳流体交代的性质和时限.开屏沟橄榄岩来源于俯冲带上覆地幔楔,遭受了不同 来源流体不同程度的交代作用而获得地壳特征,同时为柴北缘大洋俯冲到陆陆碰撞的构造演化提供了新证据. 关键词:柴北缘;开屏沟;造山带;M型橄榄岩;锆石 U-Pb-Hf 同位素;地球化学;地质年代学. 中图分类号; P597 文章编号; 1000-2383(2018)08-2875-018 收稿日期; 2018-04-27

From Oceanic Subduction to Continental Collision in North Qaidam: Evidence from Kaipinggou Orogenic M-Type Peridotite

Cai Pengjie¹, Xu Rongke^{1*}, Zheng Youye^{1,2}, Chen Xin², Liu Jia^{1,3}, Yu Junzhen²

Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
The Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
Institute of Geological Survey of Hubei Province, Wuhan 430074, China

Abstract: Orogenic peridotites (M-type) are uncommon in high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic belts. However, they are not only a key to study the metamorphic and metasomatic information from subducting slabs and mantle wedges in subduction channel, but also of great significance to the evolution of orogenic belt. There is a set of peridotite in Kaipinggou near the edge of the Iqe eclogite-gneiss region, of which rock types, genesis, and age are short of research. Whole-rock major and trace and platinum-group elements, olive mineral elements, and zircon U-Pb dating and Hf isotopes for peridotite at Kaipinggou are studied in this paper. Kaipinggou peridotites are characterized by high contents of Mg[#], Mg/Si and Ni, showing similar distribution patterns of REE and trace elements, depletion in HFSE and HREE, and slightly enrichment in LILE and LREE. Olivines have high Fo(90.11 - 92.77) and NiO(0.32% - 0.45%) contents, but low contents of CaO

基金项目:教育部长江学者和创新团队发展计划(No.IRT14R54);中国地质调查局项目(No.12120113032800).

作者简介:蔡鹏捷(1988-),男,博士研究生,主要从事造山带橄榄岩地球化学研究.ORCID:0000-0002-4082-4499.E-mail: caipengjie@cug.edu.cn * 通讯作者:许荣科, ORCID:0000-0001-9188-4902.E-mail: xurongke1968@126.com

(0.02%). Whole-rock platinum group elements(PGEs) are similar to those of metamorphic and residual peridotites. There are two groups of metamorphic zircons in the Kaipinggou peridotites, with ages of 459.5 ± 3.6 Ma and 417.5 ± 2.7 Ma, corresponding to $\epsilon_{Hf}(t)$ of -0.71 to 9.45 and -11.96 to -1.20, respectively, indicating the nature and timing of the fluid derived from oceanic crust(or early continental crust subduction) and continental crust. In conclusion, the Kaipinggou peridotites are derived from the mantle wedge of the lithosphere and record the crustal features due to the metasomatism of the oceanic and continental crust fluids. The novel findings provide new evidence for the evolution of oceanic lithosphere subduction to continental collision/ subduction in the North Qaidam.

Key words: North Qaidam; Kaipinggou; orogenic belt; M-type peridotite; zircon U-Pb-Hf isotopes; geochemistry; geochronology.

柴北缘超高压变质带位于青藏高原东北部(图 1a),是南祁连地体和柴达木地块的结合部位,东起 青海省都兰县的野马滩,西至阿尔金断裂带附近的 小赛什腾山,北西向绵延超过 400 km,其南北边界 分别为柴北缘深断裂及拉脊山-中祁连南缘断裂, 东西则以哇洪山一温泉断裂和阿尔金走滑断裂为界 (Yang et al., 2001; Shi et al., 2006; 张建新等, 2015; 张延军等, 2016). 带内泥质片麻岩锆石含柯 石英(Yang et al., 2001)、石榴橄榄岩中的锆石含金 刚石包体(Song et al., 2005)和榴辉岩含柯石英 (Zhang et al., 2009)等,证实了超高压变质事件存 在,发生于 420~448 Ma 之间(Song et al., 2009; Zhang et al., 2009; 张建新等, 2015). 该超高压变质 带记录了新元古代裂解、古生代祁连洋从早期的大 洋俯冲到大陆碰撞、最终复合造山的过程(Song et al., 2009; Yu et al., 2015; 张建新等, 2015; Chen et al., 2017; Zhang et al., 2017). 但由于榴辉岩原岩 性质与年龄的复杂性,尤其是大洋俯冲榴辉岩与大 陆俯冲形成榴辉岩的空间配位关系不清,对该俯冲 带模型还存在进一步刻画的空间.

俯冲带作为地幔和地壳之间能量与物质转换的 重要场所,一直以来是研究地幔不均一和地球化学 特征的重要对象(Zheng, 2012; Li et al., 2016).造 山带橄榄岩在高压(HP)和超高压(UHP)造山带内 出露很少,它们不仅能提供俯冲带之上地幔楔组成 和演化的重要信息,且由于其大多受到了地壳交代 作用(Li et al., 2016),通常保存了汇聚边界内与地 壳交代作用相关的丰富的地球动力学信息,是了解 大陆俯冲带内地幔楔组成和演化、壳幔相互作用、熔 体一岩石、熔体一流体、流体一岩石等反应的重要窗 口(Li et al., 2010; Zheng, 2012).造山带中的橄榄岩 如果受到熔/流体的交代作用不明显,一般能够保留 原始的地球化学特征(Li et al., 2010).但是在复杂 的造山过程中,岩石经历了俯冲一折返作用,往往受 到多期的熔/流体的交代作用,因而造山带橄榄岩的 稀土微量元素可以指示交代作用.原始地幔矿物经 历交代反应后具有交代组分印记,被地壳来源流体 改造的矿物会具有不同的微量元素特征 (Scambelluri et al.,2014).通过研究造山带橄榄岩 中原始矿物(橄榄石、尖晶石等)能够有效地对橄榄 岩的来源和交代进行制约.此外,原始地幔橄榄岩由 于低的 Zr 含量和 Si 活动而通常无法结晶锆石 (Zheng,2012; Li et al.,2016),一旦出现,多被认为 是岩浆侵位过程中发生壳幔相互作用,或在深熔作 用前存在源区的壳幔混合(Zheng,2012).所以出现 在橄榄岩中的锆石,不仅能作为受到地壳交代的矿 物学证据(Zheng,2012),而且可以反映交代的时限. 因此,根据橄榄岩主量、微量元素和原始矿物原位化 学分析及锆石同位素分析,能够揭示大陆碰撞过程 中造山带橄榄岩的成因,确定地壳交代作用发生的 时间和机制,解析地壳的组成、性质和来源.

根据造山带橄榄岩侵位前的构造位置,一般将 其分为地幔型(M-mantle型)和壳型(C-crust型) (Li et al., 2016).其中 M 型橄榄岩原本位于俯冲带 上覆岩石圈地幔楔底部,后在大陆深俯冲/折返过程 中被刮削而最终出露到地壳,是直接记录了俯冲带 上覆地幔楔特征的岩石(Zheng, 2012). C 型橄榄岩 则是原本属于俯冲陆壳中的堆晶橄榄岩,在大陆碰 撞过程中随大陆俯冲到地幔深处经受超高压变质后 又折返回地壳.目前对于柴北缘造山带橄榄岩的发 现与研究主要集中在都兰(Song et al., 2009)、绿梁 Щ (Song et al., 2005; Xiong et al., 2012; Chen et al., 2017)等地区,且前人一致认为其受到来自地 壳深俯冲的熔/流体交代.柴北缘鱼卡榴辉岩一片麻 岩区边部附近的开屏沟存在一套橄榄岩,其岩石类 型、成因、时代等都缺乏研究.因此,本文对开屏沟橄 榄岩开展全岩主量和微量元素、铂族元素、主矿物原 位化学分析和锆石 U-Pb 年代学及 Hf 同位素研究, 以揭示其成因、重建大陆碰撞过程中造山带橄榄岩 遭受熔/流体交代演化历史,进而探讨大陆俯冲隧道 内的壳幔相互作用过程,为柴北缘俯冲碰撞模 型提供约束.

Fig.1 Geological sketch of the North Qaidam orogen and adjacent areas in northern Tibet (a) and geological sketch of the Kaipinggou area (b)

据朱小辉等(2014)和张建新等(2015)修改

1 地质背景及样品

整个柴北缘超高压变质带从东向西依次出露4 个超高压地体(图 1a),即都兰榴辉岩一片麻岩、锡 铁山榴辉岩一片麻岩、绿梁山石榴石橄榄岩一片麻 岩和鱼卡榴辉岩一片麻岩地体(Chen *et al.*,2017; Zhang *et al.*,2017).研究区位于柴达木北缘超高压 变质带西段鱼卡榴辉岩一片麻岩单元南部(图 1a). 研究区内出露地层主要为元古代达肯大坂岩群斜长 角闪岩和片岩,中元古代鱼卡河岩群石英片岩、云母 片岩、变粒岩、浅粒岩及榴辉岩,古生代滩间山群浅 变质中基性火山岩及碎屑岩、赛什腾组砂砾岩及火 山碎屑岩、城墙沟组生物碎屑灰岩(Song et al., 2005; Xiong et al., 2012; 朱小辉等, 2014; Yu et al., 2015; Chen et al., 2017; Zhang et al., 2017).研究区构造以南北向断裂为主,侵入岩包括辉长岩、花岗岩和花岗闪长岩等(图 1b).

本文研究对象是开屏沟超基性岩(图 1b),累计 长约 2 km,宽为 300~400 m,可见后期辉长岩体大 面积侵入(图 2a).岩体西部可见鱼卡河岩群和滩间 山群,但接触界面被第四系覆盖,岩体与地层接触关 系不明,岩体北东部也被第四系覆盖.超基性岩主要 为蛇纹石化纯橄岩(图 2b),其主要由蛇纹石 (70%)、残留橄榄石(10%~25%)、单斜辉石(5%~

图 2 柴北缘造山带开屏沟橄榄岩的野外(a,b)和显微镜下照片(c~f)

Fig.2 Photographs showing field occurrence (a,b) and microscope (c-f) for peridotites at Kaipinggou in the Qaidam orogen a.野外辉长岩侵入超基性岩; b.蛇纹石化橄榄岩; c.斑状蛇纹石内残留橄榄石(单偏光); d.孤岛状残留的橄榄石(正交偏光); e.蛇纹石化单斜辉石(正交偏光); f.蛇纹石内金红石包体(单偏光). Ol.橄榄岩,Cpx,单斜辉石,Srp.蛇纹石,Rut.金红石,Spl.尖晶石.据 Whitney and Evans(2010)

10%)组成,并伴有锆石、尖晶石和磷灰石等副矿物. 蛇纹石颗粒通常为深绿色,主要为纤蛇纹石,呈放射状(图 2c)或纤维状(图 2e).橄榄石大部分发生蛇纹 石化,少数呈孤岛状残留在蛇纹石中(图 2c),最高 干涉色可达 III级(图 2d).单斜辉石也发生蛇纹石 化,可见两组完全解理(2e),同时在蛇纹石内可见金 红石包体(图 2f).

本文选取了开屏沟超基性岩不同位置的7件橄 榄岩样品开展全岩主量和微量及稀土元素分析,5 件橄榄岩样品进行全岩铂族元素分析;选取了1个 粒度较大且蛇纹石化较弱的橄榄岩样品(KP001,坐 标95°58′49″E、37°53′27″N)进行锆石 U-Pb 年龄和 Hf 同位素分析.

2 测试方法

主量元素测试由湖北省地质实验测试中心承 担,除 H₂O采用重量法、CO₂采用非水滴定法分析 外,其余氧化物都由 X-荧光光谱α系数法测定,分 析精度(相对误差)除 H₂O 外其他都为1%.微量、稀 土元素含量在中国地质大学(武汉)地质过程与矿产 资源国家重点实验室采用 ICP-MS 法测定,经国际 标准(AGV-安山岩标样和 G-2 花岗岩标样)和国家 标准(GSR-1、GSR-2、GSR-3)监控,误差小于5%.铂 族元素测试由国家地质实验测试中心完成.橄榄石 主量元素分析使用武汉理工大学材料研究与分析中 心的 JEOL jxa-8230 电子探针(EPMA)完成.加速 电压和束流分别被固定在 15 kV 和 10 nA.光束半 径一般设置为 2 μm.

锆石样品选自开屏沟橄榄岩,重量约为20kg. 笔者在河北省廊坊市区域地质调查研究院将样品洗 净,使用颚式破碎机将其粉碎成细粉.锆石晶体由传 统的重液和磁选技术分离,然后在双目显微镜下挑 选.挑选的锆石委托武汉上谱分析科技有限责任公 司制靶,并使用该公司 JEOL 扫描电子显微镜加装 阴极发光探头获得阴极发光图像(CL),锆石 U-Pb 同位素定年和微量元素含量也在该公司利用 LA-ICP-MS分析完成.详细的仪器参数和分析流程见 Zong et al.(2008),与单矿物原位微区微量元素测 试相同.本次分析的激光束斑直径为24 μm,激光剥 蚀样品深度为20~40 μm.U-Pb 同位素定年和微量 元素含量处理中采用锆石标准91500 和玻璃标准物 质 NIST610 作外标分别进行同位素和微量元素分 馏校正.每个时间分辨分析数据包括 20~30 s 空白 信号和 50 s 样品信号.对分析数据的离线处理(包括 对样品和空白信号的选择、仪器灵敏度漂移校正、元 素含量及 U-Pb 同位素比值和年龄计算)采用 ICPMSDataCal软件(Liu *et al.*,2008)完成.锆石样 品的 U-Pb 年龄谐和图绘制和年龄加权平均计算采 用 Isoplot 软件(Ludwig,2003)完成.

锆石 Lu-Hf 同位素分析在中国地质大学(武汉)地 质过程与矿产资源国家重点实验室完成,选择较大锆 石测年点或相邻位置测定,激光束斑直径为40 μm,方 法详见 Hu *et al.*(2015).ε_{Hf}(*t*)的计算采用¹⁷⁶Lu 的衰变 常数 1.867 × 10⁻¹¹ a⁻¹ (Söderlund *et al.*,2004).初始 ¹⁷⁶ Hf/¹⁷⁷ Hf值计算采用(¹⁷⁶ Hf/¹⁷⁷ Hf)_{CHUR}=0.282 785 和 (¹⁷⁶ Lu/¹⁷⁷ Hf)_{CHUR}=0.033 6(Bouvier *et al.*,2008).Hf 模 式年龄(t_{DM1} 和 t_{DM2})采用(¹⁷⁶ Hf/¹⁷⁷ Hf)_{DM}=0.283 25、 (¹⁷⁶ Lu/¹⁷⁷ Hf)_{DM}=0.038 4 和(¹⁷⁶ Lu/¹⁷⁷ Hf)_{CC}=0.015 (Griffin *et al.*,2002).

锆石中矿物包裹体的识别在武汉地质调查中心 同位素地球化学实验室 RENISHAW 激光拉曼光谱 仪上完成,激光波长为 514.5 nm,束斑直径为 1 μm.

3 分析结果

3.1 全岩主、微量特征

开屏沟橄榄岩主量和微量元素测试结果见表 1,主量元素含量均对LOI进行了校正.SiO₂ = $42.34\% \sim 44.95\%(平均 43.75\%), TiO_2 = 0.02\% \sim$ $0.05\%(平均 0.04\%), Al_2O_3 = 1.19\% \sim 4.67\%(平$ $均 2.03\%), Fe_2O_3 = 5.53\% \sim 9.15\%(平均 7.32\%),$ FeO = 2.81% ~ 4.21%(平均 3.54%), MgO = $37.64\% \sim 42.41\%(平均 40.55\%), CaO = 0.23\% \sim$ 3.83%(平均 2.38%).

如表 1 所示,橄榄岩表现出低的 Σ REE 含量 (0.64×10⁻⁶~9.96×10⁻⁶),(La/Yb)_N=1.08~2.49, (La/Sm)_N=1.55~3.26,(Gd/Yb)_N=0.45~0.90,总 体上具有轻微的右倾配分特征,LREE 相对于 HREE 轻微富集(图 3a).其微量元素含量总体也较低,具有 明显的 Ba、U、K、Pb、Sr 正异常和 Nb、Ta、Ti 负异常 (图 3b).其中一些样品表现出 Lu 相对于 Ho、Er、Tm 和 Tb 富集.这种配分模式与受过壳源流体交代有关, 虽然壳源流体的交代作用比较弱,但由于全岩 Σ REE 含量很低,所以即使微弱的交代也能有所反映.此外, 2 个样品具有明显的 δ Eu 正异常,反映其后期受到流 体/熔体交代.同时,Pb 正异常指示了有地壳物质的 加入(受过地壳流体的交代作用).

表 1 开屏沟造山带橄榄岩主量元素(%)和微量元素(10⁻⁶)分析结果

Table 1 Major elements (%) and trace elements (10^{-6}) results for peridotite at Kaipinggou in the Qaidam orogen

样品	P73Bb0-1	P73Bb1-1	P73Bb2-1	P73Bb3-1	P73Bb6-1	P73Bb8-1	P73Bb9-1
SiO ₂	37.28	39.11	36.95	37.80	38.20	38.88	38.22
${\rm TiO}_2$	0.04	0.02	0.03	0.02	0.04	0.03	0.04
$\mathrm{Al}_2\mathrm{O}_3$	1.04	1.04	1.08	1.11	4.21	1.98	2.01
Fe_2O_3	6.52	7.22	7.19	7.97	6.13	4.78	4.78
FeO	2.95	2.45	3.20	2.75	3.80	3.20	3.20
MnO	0.13	0.11	0.11	0.10	0.15	0.10	0.11
MgO	34.83	37.04	35.40	36.30	33.96	35.07	34.30
CaO	2.81	0.20	1.79	0.88	3.46	2.27	3.10
Na_2O	0.10	0.13	0.49	0.10	0.25	0.13	0.10
K_2O	0.02	0.01	0.03	0.02	0.02	0.03	0.05
P_2O_5	0.02	0.01	0.01	0.01	0.01	0.02	0.02
LOI	13.30	11.74	12.79	12.07	9.09	12.49	13.06
$\mathrm{H}_{2}\mathrm{O}^{+}$	10.06	11.20	10.31	11.07	8.90	11.31	11.02
$\rm H_2O^-$	0.73	0.58	0.61	0.61	0.78	0.79	0.74
S	199.28	276.48	782.55	473.76	425.15	636.73	675.33
La	0.25	0.10	0.18	0.15	0.14	0.29	0.47
Ce	0.58	0.23	0.40	0.28	0.28	0.59	0.96
Pr	0.068	0.026	0.045	0.028	0.038	0.068	0.110
Nd	0.28	0.099	0.16	0.12	0.18	0.31	0.47
Sm	0.071	0.023	0.046	0.029	0.055	0.072	0.11
Eu	0.018	0.007 9	0.051	0.052	0.033	0.036	0.048
Gd	0.076	0.026	0.059	0.036	0.092	0.110	0.120
Tb	0.014	0.004 1	0.009 1	0.006 3	0.017	0.020	0.023
Dy	0.095	0.038	0.047	0.035	0.120	0.120	0.160
Ho	0.018	0.006	0.013	0.008	0.027	0.030	0.036
Er	0.055	0.026	0.043	0.033	0.079	0.10	0.10
Tm	0.010	0.006	0.007	0.005	0.013	0.020	0.019
Yb	0.069	0.047	0.056	0.037	0.085	0.140	0.130
Lu	0.012	0.008	0.011	0.009	0.016	0.021	0.021
ΣREE	1.62	0.64	1.14	0.83	1.17	1.94	2.79
LREE	1.27	0.48	0.89	0.67	0.73	1.38	2.18
HREE	0.35	0.16	0.24	0.17	0.44	0.56	0.61
LREE/HREE	3.63	2.97	3.65	3.93	1.64	2.44	3.55
$(La/Yb)_{N}$	2.49	1.42	2.23	2.73	1.08	1.45	2.40
$(La/Sm)_N$	2.24	2.70	2.50	3.26	1.55	2.54	2.61
$(Gd/Yb)_N$	0.90	0.45	0.85	0.79	0.87	0.66	0.76
δEu	0.72	0.97	2.96	4.91	1.41	1.22	1.23
Li	1.98	1.90	0.98	1.04	1.07	1.00	1.18
Be	0.024	0.009	0.150	0.150	0.015	0.038	0.026
Sc	6.22	6.71	6.90	7.24	10.60	7.20	7.32
V	34.3	31.6	29.2	29.5	42.0	36.7	37.0
Cr	0 800 194	0.020	4 / 8/	4 ///	4 396	5 948	2 874
C0 Ni	124	124	2 1 4 7	2 109	109	2 110	2.070
INI Cu	1 901	1 930 6 40	5.07	2 108	1 042	2 110	2 070
Zn	52.0	40.6	5.97	2.00	1.20	27.70	39.40 20.6
Zii Ca	1.74	49.0	40.4	1 20	2 40	2 20	2 20
Ba Dh	0.79	0.15	1.33	0.27	0.19	2.20	2.20
Sr	60.7	5.5	0.50	66.4	11.8	32.2	55 2
V	0.53	0.22	0.39	0.24	0.72	0.84	0.94
$\frac{1}{7r}$	0.03	0.66	0.48	0.38	0.56	1 49	3 25
Nh	0.140	0.052	0.096	0.088	0.055	0 130	0.170
Sn	0.100	0.100	0.130	0.096	0.057	0.094	0.110
Cs	0.094	0.022	0.054	0.037	0.044	0.240	0.330
Ba	71 1	28 5	23.3	24 1	4 1	13.0	39.6
Hf	0.031	0.027	0.018	0.014	0.022	0.057	0.10
Ta	0.008 9	0.003 6	0.003 6	0.003 6	0.005 4	0.007 9	0.012 0
Tl	0.033	0.034	0.043	0.038	0.020	0.049	0.059
Ph	0.93	0.54	1.73	1.95	0.69	1.39	2,39
Th	0.096	0.025	0.050	0.029	0.021	0.090	0.150
U	0.19	0.06	0.14	0.12	0.04	0.79	0.95

图 3 柴北缘造山带开屏沟橄榄岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)

Fig.3 Chondrite normalized REE pattern (a) and PM-normalized trace element spider diagram (b) for peridotite at Kaipinggou in the Qaidam orogen

原始地幔及球粒陨石标准化值据 McDonough and Sun(1995)

	%
--	---

Table 2 Contents of major elements (%) of olivine for peridotite at Kaipinggou in the Qaidam orogen

样品	Olv-1	Olv-2	Olv-3	Olv-4	Olv-5	Olv-6	Olv-7	Olv-8	Olv-9	Olv-10	Olv-11	Olv-12	Olv-13	Olv-14	Olv-15	Olv-16	Olv-17
N O	0.02	0.00	0.01	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.02
Na ₂ O	0.03	0.00	0.01	0.00	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.03	0.02
S_1O_2	38.67	38.64	38.54	37.79	38.1Z	38.56	37.43	38.34	38.21	38.19	38.21	38.41	38.30	38.50	39.00	39.41	38.92
Γ_1O_2	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.00	0.02	0.01	0.02	0.00	0.02
CaO	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.02	0.01	0.00	0.00
ZrO_2	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	9.37	9.82	9.75	9.83	9.46	9.34	9.74	9.67	9.81	9.36	9.38	9.45	9.43	7.35	7.42	7.45	8.14
CoO	0.03	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.05	0.05	0.00	0.00	0.04	0.04	0.00	0.00
$\mathrm{Al}_2\mathrm{O}_3$	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.04	0.02	0.03	0.00	0.00	0.07	0.03
MgO	50.99	50.19	51.10	50.89	51.02	50.89	51.90	51.00	51.00	51.14	51.09	51.14	51.19	52.89	52.18	51.93	51.50
K_2O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr_2O_3	0.00	0.03	0.01	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.16	0.20	0.17	0.15	0.16	0.15	0.17	0.16	0.15	0.14	0.15	0.16	0.14	0.16	0.16	0.18	0.16
NiO	0.32	0.39	0.39	0.43	0.36	0.38	0.40	0.41	0.45	0.38	0.36	0.39	0.40	0.38	0.40	0.35	0.36
ZnO	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.61	99.30	99.98	99.11	99.15	99.39	99.67	99.61	99.66	99.32	99.32	99.59	99.53	99.37	99.24	99.43	99.14
Si	0.96	0.96	0.95	0.94	0.95	0.96	0.93	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.96	0.97	0.96
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{2+}	0.19	0.20	0.20	0.21	0.20	0.19	0.20	0.20	0.20	0.19	0.19	0.20	0.20	0.15	0.15	0.15	0.17
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	1.88	1.86	1.88	1.89	1.89	1.88	1.92	1.89	1.89	1.89	1.89	1.89	1.89	1.94	1.91	1.90	1.90
Ni	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.04	3.04	3.05	3.06	3.05	3.04	3.07	3.05	3.05	3.05	3.05	3.05	3.05	3.05	3.04	3.03	3.04
Fo	90.66	90.11	90.34	90.22	90.58	90.66	90.47	90.39	90.26	90.69	90.67	90.61	90.63	92.77	92.61	92.55	91.85
Fa	9.33	9.87	9.65	9.76	9.41	9.32	9.51	9.60	9.73	9.30	9.32	9.38	9.35	7.22	7.37	7.44	8.13
Тр	0.16	0.2	0.17	0.15	0.16	0.15	0.16	0.16	0.15	0.14	0.15	0.16	0.14	0.16	0.16	0.18	0.16

3.2 橄榄石主量元素特征

开屏沟橄榄岩中残留的橄榄石具有较为均一的 组成(表 2),为镁橄榄石(Fo=90.11~92.77),MgO= $50.19\% \sim 52.89\%$, FeO = $7.35\% \sim 9.83\%$, SiO₂ = $37.43\% \sim 39.00\%$, NiO = $0.32\% \sim 0.45\%$, Cao 含量 <0.02%, TiO₂ 含量<0.02%, Al₂O₃ 含量<0.07%.

3.3 铂族元素特征

开屏沟橄榄岩的铂族元素分析结果见表3, 橄

表 3 开屏沟造山带橄榄岩铂族元素含量(10⁻⁶)

Table 3 Concentrations of PGE (10^{-6}) for peridotite at Kaipinggou in the Qaidam orogen

样品	Os	Ir	Ru	Rh	Pt	Pd	Pd/Ir	Pt/Pt *
KP01	0.66	0.82	5.61	1.65	7.04	12.6	15.4	0.26
KP02	1.75	0.60	5.55	0.76	2.33	2.17	3.6	0.31
KP03	0.96	0.89	2.03	3.91	54.4	50.6	56.9	0.66
KP04	0.57	1.59	3.70	2.40	2.08	0.94	0.6	0.24
KP05	0.38	0.40	2.83	0.92	10.0	8.36	20.9	0.62

注:Pt/Pt*=(Pt/8.3)× $\sqrt{(Rh/1.6)\times(Pd/4.4)}$.

图 4 开屏沟橄榄岩铂族元素球粒陨石标准化配分模式

Fig. 4 Chondrite-normalized PGE pattern for peridotite at Kaipinggou

底图据 Su et al.(2016);标准化值据 McDonough and Sun(1995)

榄岩的铂族元素球粒陨石标准化配分模式如图 4, 与交代橄榄岩和残留橄榄岩相似(Su et al., 2016).

3.4 锆石 U-Pb、微量元素特征及 Hf 同位素

开屏沟橄榄岩样品中选定的锆石晶体(KP001) 如图5所示,锆石U-Pb同位素和微量元素分析结 果分别见表4和表5.锆石U、Pb含量分别为310× $10^{-6} \sim 6253 \times 10^{-6} (64 \times 10^{-6} \sim 917 \times 10^{-6}, Th/U)$ 比值为 $0.02 \sim 1.36(表 4),$ 锆石基本都具有高陡的 REE 配分模式(图 6a).锆石²⁰⁶ Pb/²³⁸ U 年龄分布在 412 ~ 1 604 Ma,主要分为3个时段:412~ 422 Ma、450~469 Ma和830~873 Ma,加权平均年龄

图 5 柴北缘造山带开屏沟橄榄岩锆石 CL 图像 Fig.5 Zircon CL images for peridotite at Kaipinggou in the Qaidam orogen 括号外数值表示年龄,括号内数值表示锆石 Hf 同位素组成

图 6 柴北缘造山带开屏沟橄榄岩锆石 U-Pb 年龄谐和图

Fig.6 Zircon U-Pb concordia diagrams for peridotite at Kaipinggou in the Qaidam orogen

同位素测试结果
缆岩锆石 U-Pb
屏沟造山带橄桃
表4 开

Table 4 Zircon LA-ICPMS U-Pb isotope data for peridotite at Kaipinggou in the Qaidam orogen

		元素含量					同位素	比值				年龄(Ma)	
点 中	Pb	Th	n	Ih/U	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁷ Pb/ ²³⁵ U	lσ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	10
	267.5	1 494.9	1 797.0	0.83	0.055 68	0.001 20	0.523 73	0.011 50	0.067 74	0.000 67	427.6	7.7	422.6	4.1
2	64.2	264.1	436.5	0.61	0.053 25	0.001 68	0.49326	0.015 48	0.067 17	0.000 92	407.1	10.5	419.1	5.6
ŝ	73.9	305.4	455.9	0.67	0.060 85	0.002 03	0.570 08	0.019 05	0.067 78	0.000 86	458.1	12.3	422.7	5.2
4	294.7	$1 \ 381.2$	1 849.3	0.75	0.053 60	0.001 25	0.49018	0.01139	0.06601	0.000 68	405.0	7.8	412.1	4.1
2	127.3	286.1	1 382.4	0.21	0.055 33	0.001 40	0.505 88	0.012 89	0.06610	0.000 82	415.7	8.7	412.6	5.0
9	268.1	1 225.4	1 495.9	0.82	0.061 79	0.001 39	0.579 51	0.01244	0.067 76	0.000 71	464.1	8.0	422.7	4.3
7	226.7	596.9	2 370.6	0.25	0.057 73	0.001 17	0.528 75	0.010 66	0.066 15	0.000 70	431.0	7.1	412.9	4.2
~	426.1	1 640.7	3 073.1	0.53	0.055 91	0.001 17	0.51696	0.010 60	0.066 67	0.000 63	423.1	7.1	416.1	3.8
6	267.4	1 012.0	2 104.0	0.48	0.053 60	0.001 03	0.497 15	0.00946	0.067 02	0.000 74	409.8	6.4	418.2	4.5
10	179.7	638.0	815.2	0.78	0.057 75	0.003 47	0.538 53	0.030 55	0.067 01	0.001 08	437.5	20.2	418.1	6.5
11	69.7	166.2	339.1	0.49	0.063 33	0.009 37	0.554 70	0.06391	0.067 29	0.002 77	448.1	41.8	419.8	16.7
12	122.6	419.2	638.5	0.66	0.052 61	0.004 85	0.49386	0.045 09	0.067 12	0.001 31	407.5	30.7	418.8	7.9
13	729.2	2 494.5	4 573.5	0.55	0.052 86	0.002 23	0.49429	0.020 06	0.06675	0.000 88	407.8	13.6	416.5	5.3
14	121.1	434.6	898.1	0.48	0.056 38	0.001 49	0.574 82	0.01447	0.073 96	0.000 80	461.1	9.3	460.0	4.8
15	458.4	2 393.4	1 753.9	1.36	0.057 53	0.001 43	0.591 91	0.01451	0.074 32	0.000 61	472.1	9.3	462.1	3.7
16	203.3	$1 \ 018.4$	910.4	1.12	0.056 17	0.001 67	0.559 13	0.016 56	0.072 31	0.000 76	451.0	10.8	450.1	4.6
17	179.8	446.7	$1 \ 386.7$	0.32	0.053 77	0.002 73	0.544 93	0.026 55	0.073 53	0.001 15	441.7	17.5	457.4	6.9
18	144.7	47.3	2 236.1	0.02	0.060 44	0.003 03	0.63326	0.03034	0.075 60	0.001 05	498.1	18.9	469.8	6.3
19	139.1	326.9	$1 \ 325.4$	0.25	0.060 29	0.005 31	0.622 27	0.04912	0.07472	0.001 12	491.3	30.8	464.5	6.7
20	168.1	481.9	1 011.9	0.48	0.055 51	0.00294	0.567 35	0.02964	0.073 33	0.001 05	456.3	19.2	456.2	6.3
21	294.5	101.3	4 961.5	0.02	0.055 57	0.002 08	0.573 11	0.02104	0.073 87	0.000 88	460.0	13.6	459.4	5.3
22	770.7	1 177.9	4 372.4	0.27	0.071 70	0.001 17	1.188 83	0.027 38	0.119 99	0.002 52	795.4	12.7	730.5	14.5
23	702.9	992.2	901.1	1.10	0.091 14	0.001 68	3.256 07	0.063 50	0.25641	0.002 75	1470.6	15.1	1471.4	14.1
24	794.9	753.3	1 852.6	0.41	0.095 43	0.001 59	3.067 78	0.06224	0.23074	0.003 01	1424.7	15.5	1338.4	15.8
25	243.4	406.8	680.8	0.60	0.072 60	0.001 56	1.692 73	0.037 63	0.16829	0.001 98	1005.8	14.2	1002.7	10.9
26	446.7	138.5	1 309.9	0.11	0.098 00	0.001 55	3.84926	0.06881	0.28253	0.003 15	1603.1	14.4	1604.1	15.8
27	179.5	348.4	1 368.6	0.25	0.059 15	0.001 26	0.69692	0.015 35	0.085 05	0.000 98	536.9	9.2	526.2	5.8
28	159.1	154.7	723.6	0.21	0.071 65	0.001 70	1.69692	0.060 48	0.168 75	0.004 02	1007.4	22.8	1005.2	22.2
29	220.1	1 058.1	2 274.8	0.47	0.063 23	0.001 22	0.772 79	0.01474	0.088 47	0.000 85	581.4	8.4	546.5	5.0
30	279.7	721.4	1 076.7	0.67	0.067 76	0.001 45	1.09946	0.029 63	0.11604	0.001 66	753.1	14.3	707.7	9.6
31	352.1	398.9	563.0	0.71	0.094 95	0.001 75	3.61224	0.069 60	0.27442	0.002 53	1552.2	15.3	1563.2	12.8
32	239.5	333.3	1 060.0	0.31	0.067 53	0.001 59	1.33534	0.035 40	0.14217	0.001 80	861.2	15.4	856.9	10.2
33	351.4	601.4	1 256.6	0.48	0.072 35	0.001 33	1.537 93	0.032 24	0.15280	0.001 53	945.7	12.9	916.6	8.6
34	229.0	305.3	1 129.5	0.27	0.067 77	0.001 44	1.295 19	0.030 26	0.137 53	0.001 35	843.6	13.4	830.7	7.7
35	76.7	94.8	363.5	0.26	0.073 03	0.002 10	1.39596	0.040 91	0.137 95	0.001 28	887.2	17.3	833.0	7.3
36	240.5	413.2	795.7	0.52	0.069 95	0.001 42	1.49031	0.032 39	0.153 65	0.00144	926.4	13.2	921.4	8.1
37	462.5	766.1	1 682.1	0.46	0.069 24	0.001 19	1.43496	0.026 67	0.149 59	0.00140	903.6	11.1	898.7	7.8
38	205.0	386.2	691.3	0.56	0.067 28	0.00142	1.34986	0.029 07	0.145 19	0.001 36	867.5	12.6	873.9	7.6
39	253.7	407.4	884.2	0.46	0.061 18	0.002 79	1.196 34	0.056 49	0.140 63	0.001 98	798.9	26.1	848.2	11.2
40	225.9	362.0	538.8	0.67	0.068 54	0.003 41	1.345 88	0.062 15	0.141 70	0.002 20	865.8	26.9	854.3	12.4
41	155.8	282.0	309.9	0.91	0.069 73	0.004 14	1.388 78	0.080 95	0.14253	0.002 67	884.2	34.4	859.0	15.1
42	147.4	191.2	515.0	0.37	0.069 93	0.003 58	1.527 38	0.07872	0.15646	0.002 55	941.4	31.6	937.1	14.2
43	917.2	438.4	6253.1	0.07	0.070 75	0.002 37	1.41964	0.048 46	0.143 57	0.002 15	897.2	20.3	864.8	12.1

表 5 开屏沟造山带橄榄岩锆石微量元素(10⁻⁶)分析结果

Table 5 Trace elements (10⁻⁶) results of zircon for peridotite at Kaipinggou in the Qaidam orogen

点号	Ti	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tm	Yb	Lu	Y	Hf	Ta
1	37.2	15.5	6.67	185	6.28	43.6	38.7	17.9	113	114	1 074	185	3 497	27 807	6.64
2	11.7	8.02	0.000	25.2	0.070	1.15	2.83	0.414	13.9	40.2	413	76.7	976	30 047	4.46
3	3.31	9.55	0.047	30.3	0.045	1.18	3.24	0.595	18.0	44.7	461	82.6	1 139	28 714	5.03
4	15.3	20.8	0.804	88.3	0.540	6.91	10.8	3.22	59.3	114	1 176	214	2 899	27 990	7.78
5	9.25	9.10	0.021	6.61	0.103	2.87	10.5	0.164	91.7	375	3 613	554	9 028	34 188	6.12
6	14.5	11.5	0.890	116	0.767	7.27	9.86	4.00	45.5	108	1 157	226	2 522	30 331	4.86
7	21.8	11.9	0.065	16.8	0.181	3.05	11.7	0.27	104	332	3 081	506	8 567	36 877	8.88
8	37.9	12.5	26.1	114	9.92	66.2	54.1	6.85	205	166	1 515	244	5 571	28 837	6.88
9	15.2	12.8	7.041	114	1.79	10.1	8.17	3.29	39.8	91.3	994	187	2 164	29 657	6.96
10	17.9	6.60	0.000	85.5	0.040	3.76	6.91	1.43	36.2	76.2	820	162	2 178	38 260	3.59
11	38.4	5.40	0.000	6.49	0.073	1.73	7.79	0.000	58.6	129	1 283	228	3 988	37 964	2.00
12	28.1	8.48	0.000	29.2	0.000	1.89	11.6	0.241	58.3	114	1 088	191	3 438	38 765	4.58
13	14.5	15.4	4.50	154	4.15	30.5	25.4	3.50	101	115	1 211	220	3 855	39 790	10.4
14	38.3	7.50	0.217	22.21	0.253	4.22	11.5	0.509	77.5	187	1 728	278	4 805	31 496	5.64
15	50.6	10.4	2.63	110	2.46	30.9	34.0	8.98	138	183	1 821	363	5 807	22 036	4.52
16	28.5	4.91	0.100	97.0	0.800	13.1	21.7	6.12	93.9	109	1 069	206	3 600	26 019	2.34
17	20.8	6.48	2.29	20.3	1.70	11.8	18.0	0.722	102	227	2 214	386	6 733	39 941	4.95
18	8.17	2.12	6.44	15.5	1.49	9.95	4.55	0.157	18.3	46.9	497	96.1	1 444	42 946	5.65
19	27.3	5.00	0.836	14.4	0.797	2.62	12.5	0.671	79.5	246	2 315	411	6 820	42 691	4.20
20	19.5	5.37	0.000	15.7	0.064	2.16	9.92	0.324	90.0	190	1 826	315	5 884	35 773	3.57
21	32.5	29.6	0.048	4.98	0.036	0.32	3.27	3.73	40.7	106	1 200	255	3 116	59 278	13.2
22	9.61	3.49	0.047	43.9	0.025	1.02	3.50	0.800	16.8	68.0	812	166	1 526	33 226	2.72
23	30.6	6.24	2.14	35.9	4.62	33.0	26.7	7.16	78.7	64.0	598	105	$2 \ 491$	35 286	5.79
24	579	26.9	3.64	40.3	2.75	25.9	32.8	2.91	163	183	1 669	284	6 185	26 186	6.10
25	28.7	4.14	0.000	40.4	0.263	5.16	12.0	1.83	78.7	137	1 334	245	4 236	29 600	2.66
26	13.5	4.81	1.15	18.7	0.868	9.57	17.4	1.46	102	111	1 077	206	3 626	29 962	2.47
27	33.3	16.7	97.7	340	46.6	207	53.2	1.85	93.5	117	1 106	194	3 670	34 119	8.72
28	13.2	3.32	2.21	12.1	2.53	24.7	49.3	1.33	268	242	2 060	344	9 667	34 169	1.36
29	23.8	7.89	0.166	17.8	0.220	2.68	4.20	0.314	23.6	40.1	428	90.5	1 113	28 132	3.51
30	20.8	15.5	0.413	32.1	0.349	5.20	12.7	0.913	73.4	111	1 019	177	3 568	31 476	6.56
31	15.8	24.8	3.25	58.0	1.38	9.41	11.2	0.487	70.5	133	1 248	218	4 075	35 142	11.7
32	33.4	12.7	0.000	29.3	0.211	4.02	9.57	0.787	68.5	106	988	172	3 392	30 365	5.26
33	16.7	3.14	0.000	41.4	0.095	2.17	4.15	0.844	24.5	46.9	507	104	1 247	35 629	2.64
34	9.10	3.59	0.044	20.0	0.853	10.7	20.9	4.50	104	133	1 366	256	4 241	21 363	1.34
35	47.1	3.70	0.000	56.3	0.285	8.97	10.5	4.26	53.3	96.7	999	198	2 800	$24 \ 456$	1.49
36	22.6	2.59	0.146	5.31	0.217	4.92	11.3	0.205	63.5	123	1 154	209	3 761	40 087	1.10
37	15.9	12.8	4.11	32.0	3.89	24.0	22.8	1.39	94.0	318	3 133	526	8 647	49 219	13.2
38	592	16.6	191	505	147	786	465	122	698	307	2 657	420	11 363	29 867	8.34
39	45.4	10.2	0.171	124	0.349	9.80	18.3	3.89	79.9	137	1 293	217	3 731	25 610	5.17
40	19.0	16.9	0.621	57.0	0.810	9.00	16.9	5.73	67.0	119	1 180	207	3 023	32 132	11.4
41	26.0	13.4	1.43	37.7	0.761	6.09	9.87	0.691	52.0	93.5	843	138	2 540	27 743	6.33
42	14.8	7.50	0.052	13.2	0.161	2.31	3.99	1.00	26.6	55.2	596	121	1 285	31 214	2.77
43	60.2	5.08	0.049	40.9	0.455	6.44	12.7	1.89	62.4	74.0	678	107	$2\ 163$	32 866	3.10

分别为 417.5±2.7 Ma、459.5±3.6 Ma 和 844.0±13.0 Ma(图 6a).

锆石 Hf 同位素分析主要针对年龄为 412~

422 Ma和 450~469 Ma 的锆石,结果列于表 6.其中 412~422 Ma 锆石的¹⁷⁶ Hf/¹⁷⁷ Hf 为 0.282 188~ 0.282 495,计算的 ε_{Hf}(t₁)为-11.96~-1.20,模式

表 6 开屏沟造山带橄榄岩锆石 Lu-Hf 同位素

Table 6 Zircon Lu-Hf isotope data for peridotite at Kaipinggou in the Qaidam orogen

点号	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	t (Ma)	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	$\epsilon_{\rm Hf}(0)$	2σ	$\varepsilon_{\mathrm{Hf}}(t)$	2σ	$t_{\rm DM1}$	t _{DM2}	f
1	0.032 292	0.000 315	0.001 205	0.000 007	0.282 331	0.000 024	422	0.282 322	-16.06	0.84	-7.13	0.84	1 307	1 833	-0.96
2	0.022 785	0.000 139	0.000 901	0.000 005	0.282 318	0.000 028	416	0.282 311	-16.52	0.98	-7.51	0.98	$1 \ 315$	1 857	-0.97
3	0.009 307	0.000 101	0.000 441	0.000 007	0.282 223	0.000 016	422	0.282 219	-19.89	0.56	-10.76	0.56	$1 \ 430$	$2\ 062$	-0.99
4	0.008 041	0.000 045	0.000 346	0.000 002	0.282 188	0.000 017	419	0.282 185	-21.11	0.60	-11.96	0.61	$1 \ 474$	$2\ 137$	-0.99
5	0.015 044	0.000 076	0.000 695	0.000 003	0.282 495	0.000 020	418	0.282 489	-10.27	0.72	-1.20	0.72	1 062	1 458	-0.98
6	0.019 912	0.000 146	0.000 873	0.000 006	0.282 333	0.000 020	412	0.282 326	-16.00	0.69	-6.98	0.69	$1 \ 294$	1 824	-0.97
7	0.045 159	0.000 132	0.001 756	0.000 005	0.282 311	0.000 014	412	0.282 297	-16.76	0.48	-7.99	0.48	1 355	1 887	-0.95
8	0.044 966	0.000 687	0.001 764	0.000 028	0.282 247	0.000 028	412	0.282 233	-19.03	1.00	-10.26	1.01	1 447	$2 \ 030$	-0.95
9	0.013 726	0.000 199	0.000 642	0.000 008	0.282 380	0.000 018	422	0.282 375	-14.33	0.64	-5.24	0.64	$1 \ 220$	$1 \ 714$	-0.98
10	0.033 319	0.000 156	0.001 265	0.000 006	0.282 344	0.000 022	418	0.282 334	-15.59	0.79	-6.64	0.79	$1 \ 291$	1 804	-0.96
11	0.023 167	0.000 135	0.000 991	0.000 005	0.282 238	0.000 021	419	0.282 230	-19.36	0.75	-10.31	0.75	$1 \ 430$	2 036	-0.97
12	0.003 463	0.000 171	0.000 198	0.000 007	0.282 243	0.000 014	418	0.282 241	-19.18	0.51	-9.94	0.51	1 394	$2 \ 012$	-0.99
13	0.008 054	0.000 033	0.000 442	0.000 002	0.282 261	0.000 017	416	0.282 258	-18.53	0.58	-9.40	0.58	$1 \ 378$	$1 \ 976$	-0.99
14	0.008 488	0.000 078	0.000 388	0.000 004	0.282 725	0.000 022	457	0.282 721	-2.14	0.77	7.93	0.77	735	909	-0.99
15	0.061 912	0.000 202	0.002 827	0.000 011	0.282 715	0.000 022	464	0.282 690	-2.49	0.78	6.98	0.78	800	975	-0.92
16	0.022 528	0.000 252	0.000 902	0.000 006	0.282 485	0.000 015	456	0.282 478	-10.59	0.53	-0.71	0.53	1 081	1 458	-0.97
17	0.016 885	0.000 263	0.000 813	0.000 011	0.282 558	0.000 026	462	0.282 551	-8.02	0.92	2.02	0.92	977	$1 \ 289$	-0.98
18	0.021 069	0.000 185	0.001 228	0.000 008	0.282 773	0.000 036	459	0.282 763	-0.41	1.27	9.45	1.27	683	814	-0.96
19	0.008 278	0.000 177	0.000 386	0.000 008	0.282 706	0.000 023	459	0.282 703	-2.80	0.82	7.32	0.82	761	950	-0.99
20	0.041 891	0.000 649	0.002 571	0.000 044	0.282 768	0.000 045	458	0.282 745	-0.62	1.61	8.81	1.61	716	854	-0.92
21	0.005 837	0.000 034	0.000 283	0.000 002	0.282 589	0.000 010	462	0.282 587	-6.92	0.37	3.29	0.37	920	$1 \ 209$	-0.99

图 7 柴北缘造山带开屏沟橄榄岩锆石中矿物包裹体的代表照片和拉曼光谱

Fig.7 Representative photographs and raman spectra of mineral inclusions in zircon for peridotite at Kaipinggou in the Qaidam orogen

Zrn.锆石; Ol.橄榄石; Cpx.单斜辉石; Cal.方解石.据 Whitney and Evans (2010)

年龄 t_{DM1} 为 1 062~1 474 Ma.而 450~469 Ma 锆石的¹⁷⁶ Hf/¹⁷⁷ Hf 为 0.282 458~0.282 656,计算的 $\epsilon_{Hf}(t_2)$ 为-0.71~9.45,模式年龄 t_{DM1} 为 682~1 081 Ma.

3.5 锆石包裹体分析

锆石内包裹体保存了其形成时重要的地质信

息.拉曼分析结果显示,410~420 Ma 锆石的包裹体 为橄榄石、单斜辉石(图 7a,7b),而 450~469 Ma 锆 石的包裹体除了橄榄石(图 7c),还有方解石(图 7d) 等不属于橄榄岩的成岩矿物.

4 讨论

4.1 开屏沟橄榄岩成因

高压-超高压变质带中的橄榄岩主要有3种原 岩:俯冲带的地幔橄榄岩、俯冲带的基性-超基性岩 堆晶杂岩体和来自洋壳地幔的俯冲变质橄榄岩(Li et al.,2010).前两者即 M 型橄榄岩与 C 型橄榄岩, 而后者橄榄岩先期经历洋底变质作用、随后在洋壳 俯冲过程中经历高压变质、最后在折返过程中又经 历了退变质作用与热液变质作用(Li et al., 2010). 这些橄榄岩位于不同构造位置,经历了不同变质作 用从而记录了不同的动力学演化过程.

开屏沟橄榄岩蛇纹石化较强, Deschamps et al. (2013)认为蛇纹石化会导致全岩主量和微量元素发 生迁移.开屏沟橄榄岩的烧失量(LOI)与 Mg^{*}、Mg/ Si值均没有明显的相关性(图8),说明蛇纹岩化过 程对Mg^{*}和Mg/Si比值影响较小,可以用来示踪 橄榄岩原岩和交代过程.开屏沟橄榄岩具有高的 Mg^{*}、Mg/Si和Ni值,显示出M型地幔橄榄岩的特 征(图 9).开屏沟橄榄岩内橄榄石具有较高的Fo值 (90.11~92.77)与NiO含量(0.32%~0.45%)、低 CaO含量(<0.02%),表明橄榄石具有地幔残留和 交代的特征(图 10).

铂族元素(PGE)对母岩浆有明显的继承性,能够很好地反映初始岩浆的性质,因此对于判别幔源和壳源造山带橄榄岩具有重要意义.PGE 根据不同溶解度可以分为相容元素组 IPGE(Os、Ir、Ru)和不相容组 PPGE(Rh、Pt、Pd).前者主要保存在残留橄榄岩内,后者则在金属硫化物内.随着地幔发生部分

熔融,PPGE 将逐渐进入到熔体中,从而导致残留橄 榄岩相对亏损 PPGE(Su et al., 2016).前文结果显 示 PGE 的球粒陨石标准化配分模式与交代橄榄岩 和残留橄榄岩相似,也说明开屏沟橄榄岩原岩为地 幔楔橄榄岩.

Manning(2004)研究认为,地幔楔底部具有变 化的地温梯度,靠近俯冲板块的地幔楔温度一般低 于地幔固相线的温度,因此如果板片来源熔/流体没 有对其交代,就不会发生富化和富集长英质,也就不 能成为岛弧岩浆的地幔源区.高温地幔楔位于低温 地幔楔之上,俯冲板片析出的流体在到达高温地幔 楔之前必须穿过低温地幔楔,并与之发生强烈的交 代作用(陈意等,2013).开屏沟橄榄岩全岩表现出亏 损难溶的 HFSE 和 HREE,轻微富集 LILE 中与流 体活动性相关的元素和 LREE 中与熔体活动性相 关的元素(图 3),这与岛弧岩浆岩的微量元素特征 十分相似.当俯冲大洋板块析出的熔/流体进入并交 代上覆地幔楔,使受到交代的地幔楔发生部分熔融, 产生岛弧岩浆岩(Churikova et al., 2001).结合开屏 沟橄榄岩主量元素、微量元素、橄榄石地球化学及铂 族元素特征,综合分析其应该是俯冲带的上覆地幔 楔橄榄岩.同时如果是富水流体交代地幔楔橄榄岩, 则形成蛇纹岩和蛇纹石化橄榄岩; 而含水熔体交代 地幔楔橄榄岩,则形成辉石岩和角闪石岩(Zheng, 2012).因此笔者推测早期开屏沟橄榄岩可能形成于 浅部的低温地幔楔(位于弧前之下)且受到了俯冲大 洋板块析出的富水熔/流体强烈的交代/蚀变作用, 后期陆陆碰撞后在深俯冲板片折返过程中地幔楔被 刮削而带到地壳层位中.

Fig.8 Plots of Mg/Si-LOI (a) and Mg[#]-LOI (b) for peridotite at Kaipinggou in the Qaidam orogen

图 9 柴北缘造山带开屏沟橄榄岩全岩 Mg/Si-Mg[#](a)和 Ni-Mg[#](b)图解 Fig.9 Plots of Mg/Si- Mg[#](a) and Ni-Mg[#](b) for peridotite at Kaipinggou in the Qaidam orogen 据 Chen *et al.*(2015)

4.2 锆石的指示意义

事实上,在造山过程中变质具有多阶段性,因此 微量元素的表现特征只能指示其发生了交代作用, 但无法判定其是早期熔/流体的反应还是晚期地壳 物质的交代.这就需要能够在时间尺度有所响应的 证据,锆石就是一个很好的研究对象.造山带 M 型 橄榄岩中含有新生锆石和残余的锆石(Zheng, 2012).对于新生锆石的成因仍然存在争议,一种观 点是其来自地幔来源的交代流体的结晶(Zheng et al.,2006),另一种观点是其从深俯冲地壳脱水产 生的交代流体中结晶(Chen et al.,2017).但是无论 哪种观点都表明,原始地幔是显著亏损 Zr 的,其无 法直接结晶锆石,只有通过交代作用才能在超基性 岩中形成锆石.而造山带橄榄岩中的残余锆石则可 能是在交代过程中从俯冲陆壳中机械搬运形成的 (Zheng,2012). 开屏沟橄榄岩中锆石的²⁰⁶ Pb/²³⁸ U年龄分布在 412 ~1 604 Ma,主要集中在 412~422 Ma、450~469 Ma 和 830~873 Ma,加权平均年龄分别为417.5± 2.7 Ma、459.7±3.3 Ma 和 844±13 Ma.前两组锆石 均具有模糊的振荡环带或者无环带(图 5),同时它 们具有变化的 Th/U 比值(图 11a),稀土元素配分 模式中重稀土曲线陡峭,正的 Ce 异常和亏损的 Eu 异常(图 11b), $\epsilon_{\rm HI}(t_1)$ 为-11.96~-1.20、 $\epsilon_{\rm HI}(t_2)$ 为-0.71~9.45(表 6,图 12),这些特征指示它们是 地壳来源流体在交代橄榄岩过程中新形成的锆石. 460~400 Ma 对应的是柴北缘俯冲造山的时间(查 显锋等,2016).

对于时代更老的锆石,环带较为明显,时间上也 远远早于超高压变质的时代,因此认为其是在俯冲 隧道中板块与地幔界面局部发生变质脱水作用或进 一步发生熔融作用的过程中、橄榄岩中卷入的深度

图 11 柴北缘造山带开屏沟橄榄岩锆石 Th-U 图解(a)和稀土元素球粒陨石标准化配分图(b) Fig.11 Zircon Th-U plot (a) and chondrite-normalized REE pattern (b) for peridotite at Kaipinggou in the Qaidam orogen

图 12 柴北缘造山带开屏沟橄榄岩锆石¹⁷⁶ Hf/¹⁷⁷ Hf-¹⁷⁶ Lu/¹⁷⁷ Hf 图解(a)和 $\epsilon_{\rm Hf}(t) - t$ 图解(b) Fig.12 Plots of ¹⁷⁶ Hf/¹⁷⁷ Hf-¹⁷⁶ Lu/¹⁷⁷ Hf (a) and $\epsilon_{\rm Hf}(t) - t$ (b) of zircon from peridotite at Kaipinggou in the Qaidam orogen

俯冲地壳内的锆石;与苏鲁大别一带造山带橄榄岩 内的残留锆石一样(Li et al.,2016).其他锆石年代 分布在526~1604 Ma,其中830~873 Ma的锆石较 为集中,与区域榴辉岩原岩年龄接近(750~ 800 Ma),很可能来自当时基底地壳的残留.

实验岩石学已证明,难溶的 HFSE 其实能够随 超高压流体迁移,主要通过硅、卤素和碱金属等络合 反应进行(Louvel et al.,2013).超高压变质岩内形 成金红石脉和锆石的事实,就说明了在俯冲带内地 幔深度 HFSE 可以发生迁移(Chen et al.,2012).在 俯冲过程中,上覆地幔楔与流体发生作用,会沉淀富 含 HFSE 的副矿物——锆石和金红石等.因此,这些 锆石的 U-Pb 年龄和 Lu-Hf 同位素与橄榄岩形成时 代无关,反映的是壳幔物质作用的变质交代年龄,同 时提供了交代流体中地壳组分的地球化学信息 (Zheng,2012; Li *et al.*,2016).郑永飞等(2007)认 为在壳幔混合作用时,锆石具有低的 $\epsilon_{\rm Hf}(t)$ 和相对 老的 $t_{\rm DM}$,指示了岩浆源区主要受到壳源物质的影 响,反之锆石具有高的 $\epsilon_{\rm Hf}(t)$ 和相对年轻的 $t_{\rm DM}$ 则 表明岩浆源区受到幔源物质的贡献较大.对于大洋 地壳的生长来说,虽然其既有来自亏损地幔的部分 熔融,也有来自不亏损地幔的部分熔融,但其锆石的 $\epsilon_{\rm Hf}(t)$ 总体上仍为正值(郑永飞等,2007).因此对于 大洋地壳流体交代作用形成的锆石,应该也继承此 Hf 同位素特征.

年 龄 为 412 ~ 422 Ma 的 锆 石, ε_{Hf}(t) 为 -11.96~-1.20(平均-8.10), t_{DMI} 为 1 062~ 1 474 Ma(平均 1 338 Ma), 锆石包裹体为橄榄石、 单斜辉石,说明其应该是具有地壳特征的熔/流体在 交代地幔楔橄榄岩过程中结晶形成的.而450~ 469 Ma锆石的 $\epsilon_{\rm Hf}(t)$ 为一0.71~9.45(平均6.19), $t_{\rm DMI}$ 为682~1081 Ma(平均811 Ma),锆石包裹体除 了橄榄石、还有方解石等不属于橄榄岩的成岩矿物, 指示这些锆石不是在原始橄榄岩形成阶段结晶,而 是在交代过程中形成.以上表明这2组变质锆石受 到不同变质流体作用的影响.这与洋壳榴辉岩和陆 壳榴辉岩的 Hf 同位素组成一致(Chen et al., 2017).不可否认的是柴北缘造山带大陆板片也存在 部分具有正 $\epsilon_{\rm Hf}$ 值的超高压变质岩(Xiong et al., 2012),450~460 Ma 也可能对应于大陆板片的俯冲 进变质年龄,指示的是早期大陆板片俯冲流体作用.

Chen et al.(2017)总结了整个柴北缘地区榴辉岩 原岩类型及时代,认为在新元古代中期产生的大陆玄 武岩是 Rodinia 大陆裂解形成的,在发生大陆俯冲之 前有一个早于 460 Ma 的洋盆将柴达木地块与祁连地 块分开,柴达木地块被大洋板片拖曳俯冲到祁连块体 之下.当洋壳俯冲消耗后,柴达木与祁连地块开始碰 撞.在大陆板块和大洋板块之间的过渡地带,附着的 小的洋壳残片(包括大洋型的榴辉岩)被夹带到大陆 地壳中一同经历了超高压变质.因此在过渡带形成的 洋壳榴辉岩与陆壳榴辉岩具有相似的变质演化历史. 所以,从构造背景上看,开屏沟橄榄岩中 412~ 422 Ma的锆石与 450~469 Ma 的锆石分别反映其受 到了大陆地壳和大洋地壳或早期大陆板片俯冲流体 交代,这也论证了前文关于橄榄岩成因的推论.

4.3 构造指示意义

关于柴北缘超高压变质带构造演化的研究已长达 20 多年,但对其俯冲带模型一直存在争议(Yang et al.,2001; Song et al.,2009; Yu et al.,2015; 张 建新等,2015; Chen et al.,2017; Zhang et al., 2017).解释出不同模型的原因就在于榴辉岩原岩性质与年龄的复杂性.前文已经提到,随着不同类型榴辉岩的发现与分析,现在大多数学者认为柴北缘超高压变质带是一个由洋壳俯冲到陆壳碰撞的构造演化产物(Chen et al.,2017).

其实,在柴北缘地区已有少量早古生代洋壳残 片及其上覆岩系的报道,如锡铁山地区的洋岛玄武 岩(~521 Ma;朱小辉等,2014).沙柳河地区蛇绿岩 剖面也表明在柴达木和祁连地体之间存在过早古生 代的大洋——南祁连洋,该剖面内具有岩浆震荡生 长环带特征的变质辉长岩锆石年龄范围为480~ 544 Ma,加权平均年龄为516±8 Ma,为此洋壳的持

图 13 壳幔相互作用流体与上覆地幔交代的柴北 缘造山模式

续时间提供了时间限定(Zhang et al., 2009).而此 蛇绿岩组合的变质年龄约为450 Ma,表明450 Ma 之前存在过持续的洋壳俯冲.都兰东北部的旺尕岛 弧型辉长岩时代为468~522 Ma,也为早古生代洋 盆的存在提供了限定(朱小辉等,2014).绿粱山地区 弧后盆地型蛇绿岩中变辉长岩的形成时代为 535 Ma,侵入其内的斜长花岗岩的形成时代为 493 Ma,表明该蛇绿岩发育的时代至少在493~ 535 Ma之间(朱小辉等,2014);说明晋宁运动后柴 北缘地区已进入大洋地壳的发育及演化阶段,沿柴 达木盆地北缘连续分布的岩石记录表明该洋盆可能 在早古生代已具有一定的规模.与此同时,在柴北缘 地区广泛分布的滩间山群火山岩的主体为形成在俯 冲带环境下的岛弧火山岩,其时代介于450~

Fig.13 Crust-mantle interaction through metasomatic reaction of the overlying mantle wedge peridotite with fluids in North Qaidam 据 Chen *et al.*(2017)修改

514 Ma(Shi et al., 2006).柴北缘超高压变质作用发 生的时代介于 420~460 Ma(Zhang et al., 2009; Yu et al., 2013; Song et al., 2015).同时关于柴北缘 地区古生代花岗岩的研究也表明本地区存在多期次 的岩浆活动: 475~460 Ma、435~410 Ma、410~ 400 Ma 和 375~370 Ma(Wang et al., 2014; Song et al., 2015).

结合本次开屏沟橄榄岩变质锆石记录的流体性 质及全岩地球化学特征,不难推测出柴北缘确实经历 了一个从大洋到大陆的深俯冲过程(Chen et al., 2017;图 13).开屏沟橄榄岩来源于俯冲带上覆的岩石 圈地幔,先经历了深俯冲的大洋板片或早期大陆板片 析出的熔/流体的强烈交代/蚀变作用而获得岛弧岩 浆特征(450~469 Ma).随着进一步俯冲,大陆开始碰 撞,橄榄岩在俯冲隧道经历另一阶段的大陆地壳流体 交代作用(412~422 Ma),最后在俯冲板片折返过程 中被刮削而返回地壳层位(400~412 Ma).

5 结论

(1) 开屏沟橄榄岩全岩主量元素、微量元素、 PGE 和橄榄石地球化学特征显示其具有 M 型地幔 橄榄岩的特征,受到多期壳源流体交代作用.

(2)两组变质锆石(412~422 Ma 与 450~469 Ma)的 Hf 同位素显示开屏沟橄榄岩先后受到了洋壳(或早期陆壳)和陆壳俯冲流体交代作用.

(3)该造山带橄榄岩记录了俯冲隧道中的壳幔 相互作用,同时佐证了柴北缘经历了从大洋到大陆 的深俯冲过程.

致谢:感谢两位匿名审稿人和编辑部老师提出 的宝贵意见和建议,同时感谢武汉地质调查中心同 位素地球化学实验室李芳老师对拉曼测试 的悉心指导.

References

- Chen, R.X., Zheng, Y.F., Hu, Z.C., 2012. Episodic Fluid Action during Exhumation of Deeply Subducted Continental Crust: Geochemical Constraints from Zoisite-Quartz Vein and Host Metabasite in the Dabie Orogen. *Lithos*, 155(2): 146 - 166. https://doi.org/10.1016/j.lithos. 2012.08.023
- Chen, R.X., Li, H. Y., Zheng, Y.F., et al., 2017. Crust-Mantle Interaction in a Continental Subduction Channel: Evidence from Orogenic Peridotites in North Qaidam,

Northern Tibet. Journal of Petrology, 58(2): 191-226.https://doi.org/10.1093/petrology/egx011

- Chen, Y., Su, B., Guo, S., 2015. The Dabie-Sulu Orogenic Peridotites: Progress and Key Issues. Science China Earth Sciences, 58 (10): 1679 - 1699. https:// doi. org/10. 1007/s11430-015-5148-9
- Chen, Y., Ye, K., Su, B., et al., 2013. Metamorphism and Metasomatism of Orogenic Peridotites from Dabie-Sulu UHP Terrane. Chinese Science Bulletin, 58(23):2294-2299 (in Chinese).
- Churikova, T., Dorendorf, F., Wörner, G., 2001. Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from across-Arc Geochemical Variation. Journal of Petrology, 42(8):1567-1593. https://doi.org/10.1093/ petrology/42.8.1567
- Deschamps, F., Godard, M., Guillot, S., et al., 2013. Geochemistry of Subduction Zone Serpentinites: A Review. *Lithos*, 178(18): 96 - 127. https://doi.org/10.1016/j. lithos.2013.05.019
- Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. *Lithos*, 61(3-4):237-269. https://doi.org 10. 1016/s 024-4937(02)00082-8
- Hu,Z.C., Zhang, W., Liu, Y.S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157.https://doi.org/10. 1021/ac503749k
- Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2016. The Crust-Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research Solid Earth, 121 (2): 687 - 712. https:// doi. org/10. 1002/ 2015jb012231
- Li, X.P., Zhang, L.F., Wilde, S. A., et al., 2010. Zircons from Rodingite in the Western Tianshan Serpentinite Complex: Mineral Chemistry and U-Pb Ages Define Nature and Timing of Rodingitization. *Lithos*, 118(1-2):17-34.https://doi.org/10.1016/j.lithos.2010.03.009
- Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. *Chemical Geology*, 247(1-2):133-153.https://doi.org/10.1016/j.chemgeo.2007.10.016

- Louvel, M., Sanchez-Valle, C., Malfait, W. J., et al., 2013. Zr Complexation in High Pressure Fluids and Silicate Melts and Implications for the Mobilization of HFSE in Subduction Zones. *Geochimica et Cosmochimica Acta*, 104:281-299.https://doi.org/10.1016/j.gca.2012.11.001
- Ludwig, K.R., 2003. User's Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
- Manning, C.E., 2004. The Chemistry of Subduction-Zone Fluids. *Earth and Planetary Science Letters*, 223(1-2): 1-16.https://doi.org/10.1016/j.epsl.2004.04.030
- McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. *Chemical Geology*, 120 (3 - 4): 223 - 253. https://doi.org/10.1016/0009-2541(94)00140-4
- Scambelluri, M., Pettke, T., Rampone, E., et al., 2014. Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle(Cima Di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55 (3): 459 - 498. https://doi.org/10.1093/petrology/egt068
- Shi, R.D., Yang, J.S., Wu, C.L., et al., 2006. Island Arc Volcanic Rocks in the North Qaidam UHP Belt, Northern Tibet Plateau: Evidence for Ocean-continent Subduction Preceding Continent-Continent Subduction. Journal of Asian Earth Sciences, 28(2-3):151-159. https://doi. org/10.1016/j.jseaes.2005.09.019
- Söderlund, U., Patchett, P.J., Vervoort, J. D., et al., 2004. The¹⁷⁶ Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. *Earth and Planetary Science Letters*, 219(3-4):311-324.https:// doi.org/10.1016/s0012-821x(04)00012-3
- Song, S.G., Su, L., Niu, Y.L., et al., 2009. Two Types of Peridotite in North Qaidam UHPM Belt and Their Tectonic Implications for Oceanic and Continental Subduction: A Review. Journal of Asian Earth Sciences, 35(3-4):285-297. https://doi.org/10.1016/j.jseaes.2008.11.009
- Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8):1284-1304.https://doi.org/10. 1007/s11430-015-5102-x
- Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234 (1-2): 99-118.

https://doi.org/10.1016/j.epsl.2005.02.036

- Su, B., Chen, Y., Guo, S., et al., 2016. Origins of Orogenic Dunites: Petrology, Geochemistry, and Implications. Gondwana Research, 29(1):41-59. https://doi.org/ 10.1016/j.gr.2015.08.001
- Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210 - 211:181 - 198. https:// doi.org 10.1016/j.lithos.2014.10.006
- Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95 (1):185-187.https://doi.org/10.2138/am.2010.3371
- Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2012. Decoupling of U-Pb and Lu-Hf Isotopes and Trace Elements in Zircon from the UHP North Qaidam Orogen, NE Tibet (China): Tracing the Deep Subduction of Continental Blocks. *Lithos*, 155(15): 125 – 145. https://doi.org/10. 1016/j.lithos.2012.08.022
- Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(11):719-724. https://doi.org/10.1016/s1251-8050(01)01718-9
- Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3):901-919.https://doi.org/10.1016/j.gr. 2012.07.018
- Yu, S.Y., Zhang, J.X., Sun, D.Y., et al., 2015. Anatexis of Ultrahigh-Pressure Eclogite during Exhumation in the North Qaidam Ultrahigh-Pressure Terrane: Constraints from Petrology, Zircon U-Pb Dating, and Geochemistry. *Geological Society of America Bulletin*, 127(9-10): 1290-1312.https://doi.org/10.1130/b31162.1
- Zha, X.F., Gu, P.Y., Dong, Z.C., et al., 2016. Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam. Earth Science, 41(4):586-604 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.048
- Zhang, G.B., Zhang, L.F., Song, S.G., et al., 2009. UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4):310-322. https://doi.org/10.1016/j.jseaes.

2892

2008.11.013

- Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015. Subduction, Accretion and Closure of Proto-Tethyan Ocean: Early Paleozoic Accretion/ Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System. Acta Petrologica Sinica, 31 (12): 3531-3554 (in Chinese with English abstract).
- Zhang, J.X., Yu, S.Y., Mattinson, C.G., 2017. Early Paleozoic Polyphase Metamorphism in Northern Tibet, China. Gondwana Research, 41:267-289. https://doi.org/10. 1016/j.gr.2015.11.009
- Zhang, Y.J., Sun, F.Y., Xu, C. H., et al., 2016. Geochronology, Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin, NW China. Earth Science, 41(11):1830-1844 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.127
- Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006. A Refractory Mantle Protolith in Younger Continental Crust, East-Central China: Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite. *Geology*, 34(9):705-708.https://doi.org/10.1130/g22569.1
- Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. *Chemical Geology*, 328: 5-48.https://doi.org/10.1016/j.chemgeo.2012.02.005
- Zheng, Y.F., Chen, R.X., Zhang, S.B., et al., 2007. Zircon Lu-Hf Isotope Study of Ultrahigh-Pressure Eclogite and Granitic Gneiss in the Dabie Orogen. Acta Petrologica Sinica, 23 (2):317-330 (in Chinese with English abstract).
- Zhu, X. H., Chen, D. L., Liu, L., et al., 2014. Geochronology, Geochemistry and Significance of the Early Paleozoic

Back-Arc-Type Ophiolite in Lvliangshan Area, North Qaidam. *Acta Petrologica Sinica*, 30(3):822-834 (in Chinese with English abstract).

Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic(ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt(CAOB). Precambrian Research, 290: 32 - 48. https://doi.org/10.1016/j.precamres.2016.12.010

附中文参考文献

- 陈意,叶凯,苏斌,等,2013.大别-苏鲁造山带橄榄岩的变质 和交代过程.科学通报,58(23):2294-2299.
- 查显锋,辜平阳,董增产,等,2016.柴北缘西段早古生代构 造一热事件及其构造环境.地球科学,41(4):586-604. https://doi.org/10.3799/dqkx.2016.048
- 张建新,于胜尧,李云帅,等,2015.原特提斯洋的俯冲、增生 及闭合:阿尔金一祁连一柴北缘造山系早古生代增生/ 碰撞造山作用.岩石学报,31(12):3531-3554.
- 张延军,孙丰月,许成瀚,等,2016.柴北缘大柴旦滩间山花岗 斑岩体锆石 U-Pb 年代学、地球化学及 Hf 同位素.地球 科学,41(11):1830-1844.https://doi.org/10.3799/ dqkx.2016.127
- 郑永飞,陈仁旭,张少兵,等,2007.大别山超高压榴辉岩和花 岗片麻岩中锆石 Lu-Hf 同位素研究.岩石学报,23(2): 317-330.
- 朱小辉,陈丹玲,刘良,等,2014.柴北缘绿梁山地区早古生代 弧后盆地型蛇绿岩的年代学、地球化学及大地构造意 义.岩石学报,30(3):822-834.