https://doi.org/10.3799/dqkx.2019.021

中国东南部晚中生代基性岩脉地幔源区的岩性演化历史

雷祝梁,曾 罡*,王小均,陈立辉

南京大学地球科学与工程学院,内生金属矿床成矿机制研究国家重点实验室,江苏南京 210023

摘要:中国东南部晚中生代的岩浆活动被认为与古太平洋板块的俯冲作用密切相关,而板块的俯冲作用又势必会对地幔的性质产生重要影响.晚中生代基性岩脉在中国东南部尤其是沿海地区广泛分布,为揭示中国东南部地幔演化历史及其与古太平洋板块俯冲之间的潜在成因联系提供了理想的研究对象.因此,对湘、赣、浙、闽、粤五省基性岩脉的年代学和地球化学数据进行了总结,通过恢复它们的原始岩浆组成,厘定其地幔源区岩性,揭示了研究区地幔的岩性演化历史.研究发现,中国东南部晚中生代基性岩脉的源区岩性在地域上没有显著差异,在时间尺度上表现出明显变化.在150~110 Ma 期间,中国东南部地幔源区的岩性包含富硅辉石岩和贫硅辉石岩两类;而在110~64 Ma 期间,地幔源区的主体岩性转变为贫硅辉石岩,伴随部分橄榄岩.基于上述地幔岩性的演化规律,并结合前人对研究区基性玄武岩的研究工作,认为研究区晚中生代地幔的岩性转变主要受控于古太平洋板块的俯冲过程,是板块俯冲角度改变的结果.

关键词:基性岩脉;原始岩浆;源区岩性;古太平洋板块;中国东南部;岩石学.

中图分类号: P581 文章编号: 1000-2383(2019)04-1159-10 收稿日期: 2018-12-19

Mantle Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China

Lei Zhuliang, Zeng Gang*, Wang Xiaojun, Chen Lihui

State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

Abstract: Late Mesozoic magmatism in southeastern China was controlled by the subduction of paleo-Pacific plate, and the mantle beneath the area should also have been affected by such process. Late Mesozoic mafic dikes are widely distributed in southeastern China, especially in the coastal areas, which provide an ideal setting for studying the mantle evolution and subduction process of paleo-Pacific plate. Here it summarizes the chronological and geochemical data of mafic dikes in Hunan, Jiangxi, Zhejiang, Fujian and Guangdong provinces. Source lithologies of these rocks are identified by the compositions of fractionationcorrected primary magmas. The study indicates that the mantle lithologies of these mafic dikes in southeastern China do not show obvious differences in space, but significant changes with time. The source lithologies of mafic dikes during the period of 150-110 Ma are composed of SiO₂-rich pyroxenite and SiO₂-poor pyroxenite, whereas the source lithologies during 110-64 Ma are primarily composed of SiO₂-poor pyroxenite, with minor peridotite. Therefore, it is suggested that the lithological variation of Late Mesozoic mantle beneath southeastern China is controlled by the subduction of paleo-Pacific plate via the variation of the subduction angle.

Key words: mafic dike; primary magma; source lithology; paleo-Pacific plate; southeastern China; petrology.

中国东南部在中生代爆发了大规模的岩浆活动,这些岩浆活动受到古太平洋板块俯冲作用的强

烈影响,这一观点已基本成为学界共识,但目前有关 古太平洋板块俯冲作用的具体方式仍存在争议.目

作者简介:雷祝梁(1995-),男,硕士研究生,矿物学、岩石学、矿床学专业.ORCID:0000-0002-8739-8060.E-mail:mg1729017@smail.nju.edu.cn * 通讯作者:曾罡,E-mail:zgang@nju.edu.cn

引用格式:雷祝梁,曾罡,王小均,等,2019.中国东南部晚中生代基性岩脉地幔源区的岩性演化历史.地球科学,44(4):1159-1168.

基金项目:国家自然科学基金项目(No.41672048).

前已提出的模式包括正常俯冲模式(John et al., 1990)、俯冲角度转变模式(Zhou and Li,2000)以及 平板俯冲模式(Li and Li,2007).其中 Zhou and Li (2000)强调用板块俯冲角度增大的机制来解释中国 东南部晚中生代岩浆岩向洋年轻化的趋势,该模式 得到许多后续工作的支持(He and Xu,2012; Liu et al.,2014; Zeng et al.,2016).上述俯冲模式的建 立多基于对研究区酸性岩浆的研究,对基性岩浆的 研究程度则相对较低.

近年来,幔源基性岩浆源区岩性的厘定为约束 其形成过程、理解地幔性质提供了全新的视角,并在 大洋玄武岩(Sobolev et al., 2007; Pilet et al., 2008;Dasgupta et al., 2010; Herzberg, 2011)和大 陆玄武岩(如中国东部新生代玄武岩;Zeng et al., 2010;Xu et al., 2012a, 2012b; Yang et al., 2016)的 研究中得到了广泛应用.由于上地幔的主要岩性是 橄榄岩,因而以往研究普遍认为幔源基性岩浆起源 于地幔橄榄岩的部分熔融(Walter, 1998).但近年研 究表明,地幔中还存在许多非橄榄岩的组分,如辉石 岩、角闪石岩、碳酸盐组分等,它们同样可以作为幔 源岩浆的源区母岩,且这些岩性的形成往往与地壳 或岩石圈地幔的再循环过程密切相关(Sobolev *et al.*,2007; Pilet *et al.*,2008; Herzberg,2011).因 此,对幔源基性岩浆的研究,尤其对这些岩浆源区岩 性的甄别,能够帮助我们恢复地幔的演化历史,为约 束地壳再循环过程(如古太平洋板块的俯冲作用)提 供重要信息.

目前,针对中国东南部晚中生代基性岩浆的地 幔源区岩性研究较为薄弱,而中国东南部广泛分布 的基性岩脉作为该区基性岩浆作用的重要产物,有 望为我们提供丰富的地幔源区信息.因此,本文选择 湘、赣、浙、闽、粤五省的基性岩脉为主要研究对象, 通过对其源区岩性的厘定,揭示了研究区晚中生代 的地幔演化历史,并为理解古太平洋板块的俯冲模 式提供了新的依据.

1 地质背景

中国东南部包括湘、赣、桂、浙、闽、粤六省在内 的大部分区域,位于欧亚大陆板块的边缘,是研究中

图 1 中国东南部晚中生代基性岩脉分布 Fig.1 Distribution of the Late Mesozoic mafic dikes in southeastern China 据 Zeng *et al.*(2016)修改

才等,2019).

生代古太平洋板块与欧亚板块相互作用的关键区 域.该区域主要由位于西北的扬子板块和位于东南 的华夏地块碰撞拼合而成,两者以浙江省境内江 山一绍兴断裂和江西省境内萍乡一玉山断裂为界相 互分隔(图1).中国东南部中生代岩浆活动强烈,火 成岩分布广泛,主要分布在浙江、福建、江西、广东、 湖南五省,出露面积可达 220 000 km²;岩性上, 90%以上为中酸性花岗岩及其相应火山岩,而基性、 超基性岩石仅有少量出露.中生代的岩浆活动大致 可以分为3个时期:印支期(251~205 Ma)、燕山早 期(180~142 Ma)和燕山晚期(140~66 Ma),其中 燕山晚期是中国东南部岩浆作用集中爆发的关键时 期,学界普遍认同燕山晚期的岩浆活动受到太平洋 动力体系的控制(John et al., 1990; Zhou and Li, 2000; Li and Li, 2007; He and Xu, 2012; Liu et al., 2014; Zeng et al., 2016; 孙洋等, 2017; 唐增

中国东南部广泛发育晚中生代基性岩脉(图 1),年龄主要集中在150~64 Ma,岩性主要为辉绿 岩,含少量煌斑岩(李献华等,1997;赵军红,2004;曹 建劲等,2009).辉绿岩多呈灰黑色,具典型辉绿结 构,主要由基性斜长石和普通辉石组成:煌斑岩具煌 斑结构,灰绿色或灰黑色,多数为闪斜煌斑岩,矿物 成分以角闪石和斜长石为主.基性岩脉来源于地幔, 形成于拉张的构造背景,具有丰富的幔源地球化学 特征.本文对湘、赣、浙、闽、粤五省基性岩脉的年代 学和全岩地球化学数据进行了系统的收集.湖南省 晚中生代基性岩脉主要分布在湘东北以及湘南地 区,大多数基性脉均侵入到早期的花岗岩体中(贾大 成等,2002; Wang et al., 2003); 江西省基性岩脉基 本上呈3条北北东向带状分布(谢桂青,2003;Qi et al.,2012);广东省基性岩脉的研究则主要集中在粤 北(李献华等,1997)以及沿海地区(曹建劲等, 2009);浙闽地区晚中生代基性岩脉普遍发育,沿海 地区分布尤为广泛,镁铁质岩墙成群产出,主要侵入 到晚中生代花岗岩及相应火山岩中(赵军红,2004; 张贵山,2006; Chen et al.,2008; 杨永峰,2008; 董 传万等,2010;秦社彩等,2010;李福林等,2011;Qi et al.,2012).

2 结果与讨论

中国东南部晚中生代基性岩脉主要为辉绿岩和 煌斑岩,依据 TAS 分类方案,研究区基性岩脉的岩 石类型主要为玄武岩、玄武安山岩及粗面玄武岩,有 少数样品落在玄武粗安岩范围内(图略).总体而言, 除湖南桂阳地区样品外,各省基性岩脉的主量元素 地球化学特征无显著差异,元素含量变化范围较大, 且在范围内连续变化.相较其他地区基性岩脉,湖南 桂阳地区的基性岩脉样品表现出高 MgO(图 2)、 K₂O、Cr、Ni 以及低 TiO₂、Al₂O₃值.He and Xu (2012)提出古太平洋板块向中国东南部的俯冲在约 110 Ma 发育为高角度俯冲,Zeng *et al*.(2016)发现 中国东南部晚中生代玄武岩的源区岩性也在 110 Ma前后发生了显著变化,因此本文也以110 Ma 为界,将研究区晚中生代的基性岩脉分为 150~ 110 Ma和 110~64 Ma 两期进行对比分析.

2.1 表生蚀变、分离结晶和地壳混染

基性岩脉作为岩浆活动的产物,其地球化学组 成受地幔源区性质、部分熔融程度、分离结晶过程、 地壳混染过程和岩浆期后蚀变作用等诸多因素的控 制.因此,在对中国东南部晚中生代基性岩脉的地幔 源区性质进行讨论之前,首先要排除掉表生蚀变作 用、分离结晶作用以及地壳混染作用对这些基性岩 脉成分的影响.

烧失量(LOI)是判断岩石是否经历强烈表生蚀 变作用的一个重要指标,蚀变作用的影响越大,LOI 值通常越高.为避免表生蚀变作用对岩石样品地球 化学组成的显著影响,本文仅选择LOI<5%的样品 进行分析与讨论.

玄武质岩浆在上升过程中可能会经历橄榄石、 单斜辉石及斜长石等矿物的分离结晶.中国东南部 基性岩脉普遍没有表现出显著的 Eu 负异常(Eu/ Eu* 多数在 0.9~1.1 之间)特征,排除了经历斜长石 分离结晶的可能性.由于 Mg 在橄榄石中相容 $(D^{Mg}=1.96 \sim 4.44)$ 而 Ca、Al 不相容 (Beattie, 1994),若橄榄石发生分离结晶,熔体的 MgO 含量 会显著降低,而CaO/Al₂O₃比值基本保持不变;相 较而言, Ca在单斜辉石中属于相容元素(D^{Ca}= 1.33~5.31), 而 Al 在单斜辉石中不相容(D^{Al} = 0.26~0.60)(Hill et al., 2011),因此当单斜辉石发 生分离结晶时,玄武质熔体的 MgO 含量和 CaO/ Al₂O₃比值会协同降低.在 MgO 与 CaO/Al₂O₃的 协变图解(图 2)中,当 MgO>7.5%时,CaO/Al₂O₃ 比值随 MgO 的降低并没有发生显著改变,表明这 些样品仅经历橄榄石的分离结晶作用;而 MgO< 7.5%时,基性岩脉的 CaO/Al₂O₃ 比值随 MgO 的降 低而发生显著降低,表明这些样品在形成过程中还

图 2 中国东南部晚中生代基性岩脉全岩 MgO 与 CaO/Al₂O₃ 协变图

Fig.2 Variations of CaO/Al₂O₃ versus MgO for Late Mesozoic mafic dikes in southeastern China 基性岩脉数据来源已在文中列出,黑色十字表示用"Petrolog 3"软件(Danyushevsky and Plechov,2011)模拟的分离结晶过程,初始熔体 1、2 分别为 Xyk4 和 ZHC-13 的原始岩浆成分,潜在结晶矿物相为橄榄石(Ol)和单斜辉石(Cpx),"L-Ol"表示橄榄石分离结晶,"L-Ol-Cpx"表示 橄榄石和单斜辉石分离结晶,"L+Ol"表示橄榄石堆晶

经历过单斜辉石的分离结晶作用.上述推测也得到 了分离结晶计算模拟结果的支持(图 2)(基于 "Petrolog 3"软件; Danyushevsky and Plechov, 2011).

此外,大陆板内的岩浆在上升过程中需要通过 较厚的大陆地壳,因而易受到地壳混染作用的影响. 本文采用 SiO₂ 与 K_2O/TiO_2 的协变图解(图 3)对 中国东南部晚中生代基性岩脉可能存在的地壳混染 作用进行甄别.地壳 K₂O 含量较高、TiO₂ 含量相对 较低,一般而言,地壳混染作用会使岩浆的 K₂O/ TiO2 比值随 SiO2 含量的增加而增加.研究区基性 岩脉在 SiO₂ 含量小于 51% 时,其 K₂O/TiO₂ 比值 基本不随 SiO₂ 含量的变化而改变(图 3); 而 SiO₂ 含量大于 51%时, K_2O/TiO_2 比值随 SiO₂ 含量的 增加发生协同变化,且逐渐向中国东部大陆地壳的 范围(Gao et al., 1998)靠近(图 3).湖南桂阳地区基 性岩脉样品表现出极高的 K₂O/TiO₂ 比值,结合其 高 MgO、Cr、Ni 的特征, 推测其中含一定比例橄榄 石堆晶.因此,我们认为 SiO₂ 含量小于 51%的基性 岩脉样品未受到显著的地壳混染作用影响.

综上所述,为排除表生蚀变作用、地壳混染作用 及单斜辉石分离结晶作用对岩浆地球化学组成的潜 在影响,本文在讨论研究区基性岩脉的地幔源区岩 性时,仅选择 LOI < 5%、MgO > 7.5% 且 SiO₂ < 51% 的样品进行分析和探讨.

2.2 地幔源区岩性

为甄别中国东南部晚中生代基性岩脉的地幔源 区岩性,首先需要计算其原始岩浆的组成(附表 1). 本文筛选出仅经历橄榄石分离结晶并且未受表生蚀 变和地壳混染作用显著影响的 27 件基性岩脉样品, 通过添加或减少橄榄石直至该熔体与 Fo=90 的橄 榄石相平衡的方法(Huang and Frey,2003),来恢复 这些样品的原始岩浆组成.该计算方法简述如下: (1)Fe-Mg 在橄榄石和熔体之间的交换反应系数 $K_p(Fe^{2+}/Mg)^{\mtext{mtau}}=0.3(Roeder and Emslie,$ 1970),熔体中 Fe³⁺ 占全 Fe 含量的 10%(Fe²⁺/ (Fe²⁺+Fe³⁺)=0.90);(2)通过每一步添加或减少 0.1%的平衡橄榄石计算原始岩浆组成;(3)重复步 骤(1)和(2),直到计算出的平衡橄榄石 Fo 值达到 90.随后,再基于基性岩脉的原始岩浆成分进行源区 岩性的判别(图 4).

对于 150~110 Ma 的基性岩脉,其原始岩浆成 分多数落在热障碍边界线(Thermal Divide)富硅一 侧的"L+Cpx+Grt±Opx"相区内(图 4a),指示其 地幔源区存在富硅辉石岩.但这些样品的原始岩浆 成分并没有落在富硅辉石岩实验熔体的区域范围

Fig.3 Variations of K₂O/TiO₂ versus SiO₂ for the Late Mesozoic mafic dikes in southeastern China 其中经历过单斜辉石分离结晶的样品(MgO<7.5%,图中半透明符号所示)已被排除;中国东部大陆地壳数据引自 Gao *et al.*(1998)

内,而是处在富硅辉石岩和贫硅辉石岩实验熔体的 过渡区域(图 4a,4c),又似乎暗示这些样品的地幔 源区岩性并不均一,可能还存在其他岩性.与其他地 区样品不同,浙江地区 150~110 Ma 基性岩脉样品 的原始岩浆落在热障碍边界线贫硅一侧"L+Cpx+ Grt±Ol"相区内(图 4a),反映其源区岩性可能为贫 硅辉石岩或橄榄岩.再结合其原始岩浆偏低的 CaO 含量(图 4b),暗示其源区岩性更可能是贫硅辉石岩 而非橄榄岩.同样,江西及湖南地区也有个别样品的 源区岩性呈现贫硅辉石岩的特征,表明该时期中国 东南部之下的地幔中同样还存在贫硅辉石岩的组 分.因此,笔者认为在 150~110 Ma 期间,中国东南 部基性岩脉源区岩性包括富硅辉石岩和贫硅辉石岩 两类.

除福建地区样品外,110~64 Ma 基性岩脉的原 始岩浆成分均落在热障碍边界线贫硅一侧"L+ Cpx+Grt±Ol"相区内(图 4a),结合这些样品较低 的 CaO 含量(图 4b),推断其源区岩性为贫硅辉石 岩.福建地区 110~64 Ma 基性岩脉的原始岩浆位于 热障碍边界线附近靠富硅一侧,但考虑到其具有高 的 CaO(图 4b)以及低的 SiO₂(图 4c)含量,这些特 征与富硅辉石岩来源熔体高硅低钙的特征并不相符 (Pertermann and Hirschmann, 2003; Spandler *et al.*,2008).据 MgO-CaO 以及 MgO-SiO₂ 的协变 图解,这些样品的原始岩浆均落在橄榄岩实验熔体 范围内(图 4b,4c),因此福建地区 110~64 Ma 基性 岩脉的源区岩性更可能为橄榄岩而非辉石岩.因此, 笔者认为在 110~64 Ma 期间,中国东南部基性岩 脉地幔源区的主体岩性为贫硅辉石岩,并伴随部分 橄榄岩组分.

为了进一步验证前文的认识,对筛选出样品的 Fe/Mn 比值以及 FC3MS 值(FeO^T/CaO-3MgO/ SiO₂)进行分析(图 5).如图中实验熔体的数据所 示,熔体 Fe/Mn 比值对识别源区是橄榄岩还是辉石 岩似乎并不敏感,高 Fe/Mn 的玄武质岩浆既可能是 橄榄岩源区成分变化引起的,也可能是辉石岩源区 熔体的特征;另一种可能的原因是,由于实验熔体及 基性岩脉样品的 Mn 含量偏低,导致测试时存在较 大的分析误差,因而影响到 Fe/Mn 比值的数据质 量,最终造成用 Fe/Mn 比值来判别源区岩性时存在 较大的不确定性.对比橄榄岩实验熔体和辉石岩实 验熔体数据发现(Yang et al., 2016),尽管当 FC3MS值小于 0.65 时,熔体也可能来自橄榄岩或 辉石岩;但当 FC3MS 值大于 0.65 时,源区岩性应当 为辉石岩.中国东南部晚中生代基性岩脉部分样品 的 FC3MS 值大于 0.65, 进一步验证了研究区地幔 源区中存在辉石岩组分.

综上所述,中国东南部基性岩脉的地幔源区岩 性在空间分布上并未表现出显著的差异性,但在时 间尺度上表现出明显变化.在150~110 Ma期间,中

图 4 中国东南部晚中生代基性岩脉原始岩浆成分相图(a); MgO 与 CaO 协变图(b); MgO 与 SiO₂ 协变图(c)

Fig.4 Phase diagram of primary magmas for Late Mesozoic mafic dikes in southeastern China (a), variations of CaO versus MgO (b), variations of SiO₂ versus MgO (c)

图 a 为以摩尔比例从 Diopside 向 CATS-Olivine-Quartz 平面投影的假三元相图(Herzberg, 2011),箭头表示温度降低方向;图 b 中黑色分离结 晶趋势线以及橄榄岩实验熔体(2~7 GPa)区域据 Herzberg (2011);图 c 中贫硅辉石岩、富硅辉石岩及橄榄岩实验熔体区域,华南晚中生代玄 武岩原始岩浆数据均据 Zeng *et al.*(2016),缩写;Ol.橄榄石;Cpx.单斜辉石;Opx.斜方辉石、Qz.石英;Grt.石榴子石;Plag.斜长石

图 5 中国东南部晚中生代基性岩脉 Fe/Mn 与 FeO^T/CaO-3MgO/SiO₂ 协变图

Fig.5 Variations of FeO^T/CaO-3MgO/SiO₂ versus Fe/Mn for the Late Mesozoic mafic dikes in southeastern China 橄榄岩熔体推荐 FC3MS 值上限(0.65)、橄榄岩和辉石岩实验熔体数据引自 Yang et al.(2016)

Fig.6 The tectono-magmatic evolution of southeastern China during Late Mesozoic

国东南部地幔源区的岩性包含富硅辉石岩和贫硅辉 石岩两类;而在110~64 Ma期间,地幔源区的主体 岩性转变为贫硅辉石岩,伴随部分橄榄岩组分.这一 特征与 Zeng et al.(2016)对中国东南部晚中生代玄 武岩地幔源区岩性的研究结果基本吻合(图4).值得 注意的是,Zeng et al.(2016)对湖南道县地区玄武 岩的研究还识别出碳酸盐化富硅辉石岩的源区岩性 组成,其可能代表了俯冲的古太平洋板块直接熔融 的产物,年龄恰好在150 Ma,这也暗示了中国东南 部 150~110 Ma 基性岩浆源区富硅辉石岩的来源.

2.3 地幔岩性演化与古太平洋板块俯冲

上述讨论表明,中国东南部晚中生代基性岩浆 的地幔源区主体岩性为辉石岩,尤其150~110 Ma 期间源区存在富硅辉石岩,前人对研究区基性玄武 岩的研究发现,湖南道县地区 150 Ma 的玄武岩起 源自碳酸盐化的富硅辉石岩,这种岩性的存在很可 能与俯冲的古太平洋板块密切相关 (Zeng et al., 2016),因为再循环的含碳酸盐沉积物或蚀变洋壳进 入到地幔后就可能转变为碳酸盐化富硅辉石岩 (Gerbode and Dasgupta, 2010),其中蚀变洋壳中的 碳酸盐组分以碳酸盐脉体的形式存在(Alt and Teagle,1999).而在 150~110 Ma 期间,中国东南部 基性岩脉的地幔源区中富硅辉石岩的存在表明,该 区域在这段时间内受到了俯冲的古太平洋板块的持 续影响.同时,富硅辉石岩部分熔融形成的熔体在上 升过程中与橄榄岩还会发生反应,并在软流圈地幔 中形成贫硅辉石岩(Sobolev et al., 2007; Herzberg, 2011).随后,在110~64 Ma期间,中国东南部基性 岩浆地幔源区的岩性转变为贫硅的辉石岩或橄榄 岩,表明研究区地幔不再受俯冲的古太平洋板块的 直接影响.前人对该区花岗质岩浆及火山岩的研究 已经发现,随着古太平洋板块俯冲作用的进行,由于 板块重力导致的拖曳效果逐渐增强,俯冲角度也发 生显著改变,由低角度俯冲向高角度俯冲逐步转变 (Zhou and Li,2000; Liu et al.,2014).在150~ 110 Ma期间,古太平洋板块还处在低角度俯冲的阶 段,因而中国东南部地幔仍然受到俯冲作用的强烈 影响,地幔中存在大量随板块俯冲作用带入的再循 环地壳物质,这也解释了为何此时期的基性岩浆作 用的源区岩性存在许多富硅辉石岩(图 6a);而 110 Ma之后,俯冲作用转变为高角度俯冲,中国东 南部整体处于弧后伸展的构造背景,古太平洋板块 不再直接改变地幔的岩性,地幔橄榄岩以及残留的 贫硅辉石岩随软流圈上涌继续发生熔融,形成该时 期的幔源岩浆(图 6b).上述结果表明,中国东南部 晚中生代基性岩浆作用的地幔源区岩性组成与古太 平洋板块俯冲作用之间存在成因联系,其地幔岩性 的转变主要受控于板块俯冲角度的转变.

3 结论

(1)辉石岩是中国东南部晚中生代基性岩脉地 幔源区的重要岩性组成.150~110 Ma 期间地幔源 区岩性包含富硅辉石岩和贫硅辉石岩两类;110~ 64 Ma期间地幔源区岩性为贫硅辉石岩和橄榄岩.

(2)中国东南部晚中生代地幔源区岩性的演化 过程与古太平洋板块俯冲作用存在成因联系,主要 受控于板块俯冲角度由低角度向高角度的转变.

致谢:感谢审稿专家提出宝贵的审稿意见.

附表 1 见本刊官网 (http://www.earth-science.net).

References

Alt, J.C., Teagle, D.A.H., 1999. The Uptake of Carbon during Alteration of Ocean Crust. *Geochimica et Cosmochimica Acta*, 63 (10): 1527 - 1535. https://doi.org/10.1016/ s0016-7037(99)00123-4

- Beattie, P., 1994. Systematics and Energetics of Trace-Element Partitioning between Olivine and Silicate Melts:Implications for the Nature of Mineral/Melt Partitioning. *Chemical Geology*, 117 (1 - 4): 57 - 71. https://doi.org/10.1016/0009-2541(94)90121-x
- Cao, J. J., Hu, R.Z., Xie, G.Q., et al., 2009. Geochemistry and Genesis of Mafic Dikes from the Coastal Areas of Guangdong Province, China. Acta Petrologica Sinica, 25 (4):984-1000(in Chinese with English abstract).
- Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was There Jurassic Paleo-Pacific Subduction in South China?: Constraints from ⁴⁰ Ar/³⁹ Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. *Lithos*, 106(1-2):83-92.https://doi.org/10.1016/j.lithos.2008.06.009
- Danyushevsky, L. V., Plechov, P., 2011. Petrolog3: Integrated Software for Modeling Crystallization Processes. Geochemistry, Geophysics, Geosystems, 12 (7): Q07021. https://doi.org/10.1029/2011gc003516
- Dasgupta, R., Jackson, M. G., Lee, C. T. A., 2010. Major Element Chemistry of Ocean Island Basalts: Conditions of Mantle Melting and Heterogeneity of Mantle Source. *Earth and Planetary Science Letters*, 289(3-4):377-392.https://doi.org/10.1016/j.epsl.2009.11.027
- Dong, C.W., Yan, Q., Zhang, D.R., et al., 2010. Late Mesozoic Extension in the Coastal Area of Zhejiang and Fujian Provinces: A Petrologic Indicator from the Dongji Island Mafic Dike Swarms. Acta Petrologica Sinica, 26 (4): 1195-1203(in Chinese with English abstract).
- Gao, S., Luo, T.C., Zhang, B.R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. *Geochimica et Cosmochimica Acta*, 62 (11):1959-1975.https://doi.org/10.1016/s0016-7037 (98)00121-5
- Gerbode, C., Dasgupta, R., 2010. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2 - 9 GPa and Genesis of HIMU Ocean Island Basalts. *Journal of Petrology*, 51 (10):2067-2088. https://doi.org/10.1093/petrology/ egq049
- He, Z. Y., Xu, X. S., 2012. Petrogenesis of the Late Yanshanian Mantle-Derived Intrusions in Southeastern China: Response to the Geodynamics of Paleo-Pacific Plate Subduction. *Chemical Geology*, 328: 208 - 221. https://doi.org/10.1016/j.chemgeo.2011.09.014
- Herzberg, C., 2011. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology, 52 (1): 113 - 146. https://doi. org/10.1093/petrology/egq075

- Hill, E., Blundy, J. D., Wood, B. J., 2011. Clinopyroxene-Melt Trace Element Partitioning and the Development of a Predictive Model for HFSE and Sc. Contributions to Mineralogy and Petrology, 161(3):423-438.https:// doi.org/10.1007/s00410-010-0540-0
- Huang, S., Frey, F. A., 2003. Trace Element Abundances of Mauna Kea Basalt from Phase 2 of the Hawaii Scientific Drilling Project: Petrogenetic Implications of Correlations with Major Element Content and Isotopic Ratios. *Geochemistry*, *Geophysics*, *Geosystems*, 4 (6): 8711. https://doi.org/10.1029/2002gc000322
- Jia, D.C., Hu, R.Z., Xie, G.Q., 2002. Trace Element Geochemical Characteristics and Genesis of Mesozoic Mafic Dikes in Northeast Hunan Province. *Geology-Geochemistry*, 30(3): 33-39(in Chinese with English abstract).
- John, B. M., Zhou, X. H., Li, J. L., 1990. Formation and Tectonic Evolution of Southeastern China and Taiwan: Isotopic and Geochemical Constraints. *Tectono physics*, 183 (1-4):145-160.https://doi.org/10.1016/0040-1951 (90)90413-3
- Li,F.L.,Zhou, H.W., Tang, Z.C., et al., 2011. U-Pb Ages, Geochemistry and Tectonic Implications of Mafic Dyke Swarms in Mugua, Chun'an County, Zhejiang Province. *Geochimica*, 40(1):22-34(in Chinese with English abstract).
- Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. *Geochimica*, 26(2): 14-31 (in Chinese with English abstract).
- Li,Z.X.,Li,X.H.,2007.Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model.*Geology*,35(2):179-182.https://doi.org/ 10.1130/g23193a.1
- Liu, L., Xu, X. S., Xia, Y., 2014. Cretaceous Pacific Plate Movement beneath SE China: Evidence from Episodic Volcanism and Related Intrusions. *Tectonophysics*, 614: 170-184.https://doi.org/10.1016/j.tecto.2013.12.007
- Pertermann, M., Hirschmann, M.M., 2003. Anhydrous Partial Melting Experiments on MORB-Like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa. Journal of Petrology, 44(12): 2173-2201. https://doi.org/10.1093/ petrology/egg074
- Pilet, S., Baker, M. B., Stolper, E. M., 2008. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science, 320(5878):916-919.https://doi.org/10.1126/science. 1156563
- Qi, Y.Q., Hu, R.Z., Liu, S., et al., 2012. Geochemical and Sr-

1167

Nd-Pb Isotopic Compositions of Mesozoic Mafic Dikes from the Gan-Hang Tectonic Belt, South China; Petrogenesis and Geodynamic Significance. *International Geology Review*, 54 (8): 920 - 939. https://doi.org/10. 1080/00206814.2011.588820

- Qin, S. C., Fan, W. M., Guo, F., et al., 2010. Petrogenesis of Late Mesozoic Diabase Dikes in Zhejiang-Fujian Provinces: Constraints from Ar-Ar Dating and Geochemistry. Acta Petrologica Sinica, 26(11): 3295 - 3306 (in Chinese with English abstract).
- Roeder, P.L., Emslie, R.F., 1970. Olivine-Liquid Equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289.https://doi.org/10.1007/bf00371276
- Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V. et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. *Science*, 316 (5823): 412 - 417. https:// doi.org/10.1126/science.1138113
- Spandler, C., Yaxley, G., Green, D. H., et al., 2008. Phase Relations and Melting of Anhydrous K-Bearing Eclogite from 1 200 to 1 600 °C and 3 to 5 GPa. *Journal of Petrology*, 49(4):771-795. https://doi.org/10.1093/petrology/egm039
- Sun, Y., Ma, C. Q., Liu, B., 2017. Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt.*Earth Science*, 42(6):891-908 (in Chinese with English abstract).
- Tang, Z.C., Zhou, H.W., Hu, K.M., et al., 2019. Petrogenesis of Late Mesozoic Granites in Northwestern Zhejiang. *Earth Science*, 44 (4): 1278 - 1294 (in Chinese with English abstract).
- Walter, M.J., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39(1):29-60. https://doi.org/10.1093/petrology/39.1.29
- Wang, Y.J., Fan, W.M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. *International Geology Review*, 45 (3): 263 – 286. https://doi.org/10.2747/0020-6814.45.3.263
- Xie, G. Q., 2003. Late Mesozoic Mafic Dikes (Body) from Southeastern China; Geological and Geochemical Characteristics and Its Geodynamics—A Case of Jiangxi Province (Dissertation).Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
- Xu, Y. G., Zhang, H. H., Qiu, H. N., et al., 2012a. Oceanic Crust Components in Continental Basalts from

Shuangliao, Northeast China: Derived from the Mantle Transition Zone? *Chemical Geology*, 328:168-184.https://doi.org/10.1016/j.chemgeo.2012.01.027

- Xu,Z.,Zhao,Z.F.,Zheng,Y.F.,2012b.Slab-Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China:Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong,Lithos,146-147: 202-217.https://doi.org/10.1016/j.lithos.2012.05.019
- Yang, Y.F., 2008. Chronology and Geochemistry of Late Mesozoic Basic-Intermediate Dike Swarms from the Coastland of Fujian Province (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
- Yang, Z.F., Li, J., Liang, W.F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China; Implications for Source Lithology and the Origin of Basalts. *Earth-Science Reviews*, 157:18-31.https://doi.org/10.1016/j.earscirev.2016. 04.001
- Zeng, G., Chen, L. H., Xu, X. S., et al., 2010. Carbonated Mantle Sources for Cenozoic Intra-Plate Alkaline Basalts in Shandong, North China. *Chemical Geology*, 273 (1 - 2): 35-45.https://doi.org/10.1016/j.chemgeo.2010.02.009
- Zeng,G.,He,Z.Y.,Li,Z.,et al.,2016.Geodynamics of Paleo-Pacific Plate Subduction Constrained by the Source Lithologies of Late Mesozoic Basalts in Southeastern China.Geophysical Research Letters, 43(19):10189-10197.https://doi.org/10.1002/2016gl070346
- Zhang, G. S., 2006. Chronology, Geochemistry, and Geodynamic Significance of the Mafic-Ultramafic Rocks in Fujian Province since Late Mesozoic (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
- Zhao, J. H., 2004. Chronology and Geochemistry of Mafic Rocks from Fujian Province: Implications for the Mantle Evolution of SE China since Late Mesozoic (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
- Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. *Tectonophysics*, 326(3-4):269-287.https://doi.org/ 10.1016/s0040-1951(00)00120-7

附中文参考文献

- 曹建劲,胡瑞忠,谢桂青,等,2009.广东沿海地区基性岩脉地 球化学及成因.岩石学报,25(4):984-1000.
- 董传万,闫强,张登荣,等,2010.浙闽沿海晚中生代伸展构造 的岩石学标志:东极岛镁铁质岩墙群.岩石学报,26(4):

1195-1203.

- 贾大成,胡瑞忠,谢桂青,2002.湘东北中生代基性岩脉微量 元素地球化学特征及岩石成因.地质地球化学,30(3): 33-39.
- 李福林,周汉文,唐增才,等,2011.浙江淳安木瓜基性岩墙群 U-Pb年龄、地球化学特征及意义.地球化学,40(1): 22-34.
- 李献华,胡瑞忠,饶冰,1997.粤北白垩纪基性岩脉的年代学 和地球化学.地球化学,26(2):14-31.
- 秦社彩,范蔚茗,郭锋,等,2010.浙闽晚中生代辉绿岩脉的岩 石成因:年代学与地球化学制约.岩石学报,26(11): 3295-3306.
- 孙洋,马昌前,刘彬,2017.长江中下游地区燕山晚期基性岩 浆活动的记录.地球科学,42(6):891-908.

- 唐增才,周汉文,胡开明,等,2019.浙西北地区晚中生代花岗 岩的岩石成因.地球科学,44(4):1278-1294.
- 谢桂青,2003.中国东南部晚中生代以来的基性岩脉(体)的 地质地球化学特征及其地球动力学意义初探——以江 西省为例(博士学位论文).贵阳:中国科学院地球化学 研究所.
- 杨永峰,2008.福建沿海地区晚中生代中一基性岩墙群的年 代学和岩石地球化学(硕士学位论文).杭州:浙江大学.
- 张贵山,2006.福建晚中生代以来基性一超基性岩的年代学、 地球化学及其地球动力学意义(博士学位论文).贵阳: 中国科学院地球化学研究所.
- 赵军红,2004.福建省基性岩的年代学和地球化学:晚中生代 以来中国东南部地幔演化(博士学位论文).贵阳:中国 科学院地球化学研究所.

		6												
样品编号	样品位置	年龄	SiO_2	TiO ₂	Al_2O_3	Fe_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	参考文献
		(Ma)												
XP-3	福建西陂	83	47.83	1.32	12.53	1.23	9.99	0.14	15.48	9.97	1.12	0.26	0.13	张贵山, 2006
XP-9	福建西陂	83	47.86	1.43	12.71	1.21	9.77	0.14	14.92	10.33	1.22	0.29	0.13	张贵山, 2006
XP-10	福建西陂	83	49.02	1.18	13.06	1.09	8.86	0.16	13.74	10.78	1.42	0.59	0.10	张贵山, 2006
842-7	浙江淳安	135	46.13	1.86	13.48	1.27	10.31	0.14	16.19	6.55	2.26	1.38	0.43	李福林等,2011
842-13	浙江淳安	135	47.12	1.16	14.73	1.07	8.67	0.13	13.15	10.24	2.47	0.96	0.30	李福林等,2011
842-17	浙江淳安	135	45.26	2.13	12.00	1.42	11.50	0.15	17.47	5.44	2.31	1.97	0.34	李福林等,2011
841-2	浙江淳安	135	47.34	1.27	14.51	1.08	8.74	0.15	13.35	8.72	2.55	1.96	0.32	李福林等,2011
BD-25	广东诸广山	140	48.12	1.47	14.54	1.17	9.49	0.16	14.57	6.95	1.81	1.24	0.47	李献华等, 1997
BD-29	广东诸广山	139	47.97	1.22	16.04	0.97	7.88	0.18	12.10	8.42	1.66	3.02	0.55	李献华等,1997
GD10(1)	广东仙庵镇	107	46.56	0.85	11.15	1.46	11.82	0.27	18.24	4.95	1.41	3.07	0.23	曹建劲等,2009
DDX8	江西大吉山	141	45.15	0.70	10.47	1.58	12.81	0.23	19.72	6.19	1.09	1.96	0.09	谢桂青,2003
CF4	江西铅山	110	49.75	0.80	11.88	0.98	7.94	0.17	12.15	11.86	1.45	2.43	0.58	谢桂青,2003
CF1	江西铅山	110	50.54	0.47	13.65	0.96	7.78	0.19	11.96	10.51	1.78	1.69	0.47	谢桂青, 2003
CF3	江西铅山	110	48.02	1.90	16.10	0.89	7.18	0.26	11.19	9.71	2.23	1.96	0.56	谢桂青,2003
CF6	江西铅山	110	50.50	2.12	14.21	0.84	6.83	0.13	10.40	9.88	2.72	1.63	0.75	谢桂青,2003
Xyk1	江西隘口	123	47.65	1.04	17.78	1.05	8.46	0.14	12.83	8.14	2.51	0.21	0.18	谢桂青, 2003
Xyk2	江西隘口	123	46.05	1.03	18.78	1.05	8.52	0.13	13.24	8.23	2.47	0.20	0.29	谢桂青, 2003
Xyk3	江西隘口	123	47.89	1.10	17.01	1.05	8.50	0.13	13.10	8.19	2.41	0.36	0.27	谢桂青,2003

附表1 中国东南部晚中生代基性岩脉原始岩浆成分

Appendix table 1 Primary magma compositions of late Mesozoic mafic dikes in southeastern China

Xyk4江西隘口12346.700.9618.021.048.400.1312.908.982.480.190.21谢桂青, 2003Xyk5江西隘口12347.881.0317.111.038.360.1412.978.492.530.180.29谢桂青, 2003SX4江西萍乡12549.360.6319.480.937.520.1511.487.821.940.520.16谢桂青, 2003SX7江西萍乡12548.750.8019.070.977.840.1812.287.731.700.490.19谢桂青, 200320LY-51湖南蕉溪岭8545.542.6810.471.3611.040.1317.076.293.481.100.82Wang et al., 20020LY-52湖南蕉溪岭8545.882.6710.761.3410.820.1216.646.013.011.920.83Wang et al., 200ZHC-2湖南蕉福14652.080.7011.610.887.160.1911.018.261.655.080.69Wang et al., 200ZHC-9湖南桂阳14652.740.7411.550.897.200.1911.018.261.655.080.69Wang et al., 200ZHC-13湖南桂阳14650.640.619.921.169.430.1614.587.261.094.550.58Wang et al., 200															
Xyk5江西隘口12347.881.0317.111.038.360.1412.978.492.530.180.29谢桂青, 2003SX4江西萍乡12549.360.6319.480.937.520.1511.487.821.940.520.16谢桂青, 2003SX7江西萍乡12548.750.8019.070.977.840.1812.287.731.700.490.19谢桂青, 200320LY-51湖南蕉溪岭8545.542.6810.471.3611.040.1317.076.293.481.100.82Wang et al., 20020LY-52湖南蕉溪岭8545.882.6710.761.3410.820.1216.646.013.011.920.83Wang et al., 200ZHC-2湖南桂阳14652.080.7011.610.887.160.1911.098.581.655.080.69Wang et al., 200ZHC-9湖南桂阳14652.740.7411.550.897.200.1911.018.261.655.080.69Wang et al., 200ZHC-13湖南桂阳14650.640.619.921.169.430.1614.587.261.094.550.58Wang et al., 200	Xyk4	江西隘口	123	46.70	0.96	18.02	1.04	8.40	0.13	12.90	8.98	2.48	0.19	0.21	谢桂青,2003
SX4江西萍乡12549.360.6319.480.937.520.1511.487.821.940.520.16谢桂青, 2003SX7江西萍乡12548.750.8019.070.977.840.1812.287.731.700.490.19谢桂青, 200320LY-51湖南蕉溪岭8545.542.6810.471.3611.040.1317.076.293.481.100.82Wang et al., 20020LY-52湖南蕉溪岭8545.882.6710.761.3410.820.1216.646.013.011.920.83Wang et al., 200ZHC-2湖南桂阳14652.080.7011.610.887.160.1911.098.581.685.350.68Wang et al., 200ZHC-9湖南桂阳14652.740.7411.550.897.200.1911.018.261.655.080.69Wang et al., 200ZHC-13湖南桂阳14650.640.619.921.169.430.1614.587.261.094.550.58Wang et al., 200	Xyk5	江西隘口	123	47.88	1.03	17.11	1.03	8.36	0.14	12.97	8.49	2.53	0.18	0.29	谢桂青,2003
SX7江西萍乡12548.750.8019.070.977.840.1812.287.731.700.490.19谢桂青, 200320LY-51湖南蕉溪岭8545.542.6810.471.3611.040.1317.076.293.481.100.82Wang et al., 20020LY-52湖南蕉溪岭8545.882.6710.761.3410.820.1216.646.013.011.920.83Wang et al., 200ZHC-2湖南桂阳14652.080.7011.610.887.160.1911.098.581.685.350.68Wang et al., 200ZHC-9湖南桂阳14652.740.7411.550.897.200.1911.018.261.655.080.69Wang et al., 200ZHC-13湖南桂阳14650.640.619.921.169.430.1614.587.261.094.550.58Wang et al., 200	SX4	江西萍乡	125	49.36	0.63	19.48	0.93	7.52	0.15	11.48	7.82	1.94	0.52	0.16	谢桂青,2003
20LY-51湖南蕉溪岭8545.542.6810.471.3611.040.1317.076.293.481.100.82Wang et al., 20020LY-52湖南蕉溪岭8545.882.6710.761.3410.820.1216.646.013.011.920.83Wang et al., 200ZHC-2湖南桂阳14652.080.7011.610.887.160.1911.098.581.685.350.68Wang et al., 200ZHC-9湖南桂阳14652.740.7411.550.897.200.1911.018.261.655.080.69Wang et al., 200ZHC-13湖南桂阳14650.640.619.921.169.430.1614.587.261.094.550.58Wang et al., 200	SX7	江西萍乡	125	48.75	0.80	19.07	0.97	7.84	0.18	12.28	7.73	1.70	0.49	0.19	谢桂青,2003
20LY-52 湖南蕉溪岭 85 45.88 2.67 10.76 1.34 10.82 0.12 16.64 6.01 3.01 1.92 0.83 Wang et al., 200 ZHC-2 湖南桂阳 146 52.08 0.70 11.61 0.88 7.16 0.19 11.09 8.58 1.68 5.35 0.68 Wang et al., 200 ZHC-9 湖南桂阳 146 52.74 0.74 11.55 0.89 7.20 0.19 11.01 8.26 1.65 5.08 0.69 Wang et al., 200 ZHC-13 湖南桂阳 146 50.64 0.61 9.92 1.16 9.43 0.16 14.58 7.26 1.09 4.55 0.58 Wang et al., 200	20LY-51	湖南蕉溪岭	85	45.54	2.68	10.47	1.36	11.04	0.13	17.07	6.29	3.48	1.10	0.82	Wang et al., 2003
ZHC-2 湖南桂阳 146 52.08 0.70 11.61 0.88 7.16 0.19 11.09 8.58 1.68 5.35 0.68 Wang et al., 200 ZHC-9 湖南桂阳 146 52.74 0.74 11.55 0.89 7.20 0.19 11.01 8.26 1.65 5.08 0.69 Wang et al., 200 ZHC-13 湖南桂阳 146 50.64 0.61 9.92 1.16 9.43 0.16 14.58 7.26 1.09 4.55 0.58 Wang et al., 200	20LY-52	湖南蕉溪岭	85	45.88	2.67	10.76	1.34	10.82	0.12	16.64	6.01	3.01	1.92	0.83	Wang et al., 2003
ZHC-9 湖南桂阳 146 52.74 0.74 11.55 0.89 7.20 0.19 11.01 8.26 1.65 5.08 0.69 Wang et al., 200 ZHC-13 湖南桂阳 146 50.64 0.61 9.92 1.16 9.43 0.16 14.58 7.26 1.09 4.55 0.58 Wang et al., 200	ZHC-2	湖南桂阳	146	52.08	0.70	11.61	0.88	7.16	0.19	11.09	8.58	1.68	5.35	0.68	Wang et al., 2003
ZHC-13 湖南桂阳 146 50.64 0.61 9.92 1.16 9.43 0.16 14.58 7.26 1.09 4.55 0.58 Wang et al., 200	ZHC-9	湖南桂阳	146	52.74	0.74	11.55	0.89	7.20	0.19	11.01	8.26	1.65	5.08	0.69	Wang et al., 2003
	ZHC-13	湖南桂阳	146	50.64	0.61	9.92	1.16	9.43	0.16	14.58	7.26	1.09	4.55	0.58	Wang et al., 2003