https://doi.org/10.3799/dqkx.2019.191

Pb 同位素对努日铜钼钨多金属矿床成矿物源的制约

闫国强^{1,2},王欣欣^{3*},黄 勇⁴,李光明⁴,刘 洪⁴,黄瀚霄⁴,

张志4,田恩源5,赖杨5

1. 中国地质调查局天津地质调查中心,天津 300170

2. 中国地质调查局铀矿地质重点实验室, 天津 300170

3. 山西大同大学煤炭工程学院,山西大同 037003

4. 中国地质调查局成都地质调查中心,四川成都 610081

5. 中国地质调查局成都矿产综合利用研究所,四川成都 610061

摘 要:西藏努日铜钼钨矿是冈底斯成矿带规模最大的首例含白钨矿多金属矿床,对于矿床的成矿物质来源还存在较大的争议.为厘定努日铜钼钨矿的成矿物质来源,对矿区的侵入岩和各类硫化物进行了Pb同位素研究,研究结果表明,矿区各类辉钼矿、黄铁矿具有较为一致的Pb同位素组成:²⁰⁶Pb/²⁰⁴Pb比值为17.525~18.581;²⁰⁷Pb/²⁰⁴Pb比值为15.621~15.661;²⁰⁸Pb/²⁰⁴Pb比值为37.524~38.929.黄铜矿的²⁰⁶Pb/²⁰⁴Pb比值为18.414~18.578;²⁰⁷Pb/²⁰⁴Pb比值为15.619~15.642;²⁰⁸Pb/²⁰⁴Pb比值为38.617~38.863,且黄铜矿存在明显的分组特征.S-Pb同位素特征表明:努日铜钼钨矿的成矿物质主要来源于地幔,矿床的辉钼矿Re-Os同位素特征也暗示其成矿物质主要来源于地幔.该矿床可能是在印度板块向欧亚板块俯冲一碰撞一伸展构造环境下,印度陆块下地壳部分熔融形成的熔体在其向上运移过程中与俯冲洋壳释放出的富含Fe³⁺的流体发生混合后,与雅鲁藏布江MORB亏损地幔橄榄岩发生交代作用,Fe³⁺氧化地幔中赋存的各类硫化物后,使得成矿物质Cu、Mo等被释放进入岩浆系统;并在上升过程中萃取了部分加厚下地壳部分熔融形成黑云母花岗岩中的Cu等,最终在浅部与围岩发生接触交代形成努日铜钼钨多金属矿床.**关键词:**努日铜钼钨矿床;Pb同位素;成矿物源;冈底斯;埃达克质斑岩;地球化学.

中图分类号: P597 **文章编号:** 1000-2383(2020)01-031-12 **收稿日期:** 2019-08-02

Constraint of Pb Isotope on Ore-Forming Source Origin of Nuri Polymetallic Deposit, Tibet

Yan Guoqiang^{1,2}, Wang Xinxin^{3*}, Huang Yong⁴, Li Guangming⁴, Liu Hong⁴, Huang Hanxiao⁴, Zhang Zhi⁴, Tian Enyuan⁴, Lai Yang⁵

1. Tianjin Center, China Geological Survey, Tianjin 300170, China

2. Key Laboratory of Uranium Geology, China Geological Survey, Tianjin 300170, China

3. Institute of Coal Engineering, Shanxi Datong University, Datong 037003, China

4. Chengdu Center, China Geological Survey, Chengdu 610081, China

5. Institute of Mineral Resources Multi-Utilization, China Geological Survey, Chengdu 610061, China

Abstract: The Nuri Polymetallic Deposit, Tibet, is the largest and first scheelite deposit in Gangdese, and there have been some

引用格式:闫国强,王欣欣,黄勇,等,2020.Pb同位素对努日铜钼钨多金属矿床成矿物源的制约.地球科学,45(1):31-42.

基金项目:国家自然科学基金项目(No.41702080);国家重点研发计划(Nos.2016YFC0600308,SQ2018YFC060162);中国地质调查项目(No. DD20190813);中国地质调查局成都地质调查中心青藏高原国际大科学计划联合资助.

作者简介:闫国强(1985—),男,工程师,博士,从事矿床成因、矿床地球化学研究.ORCID:0000-0002-1321-9218.E-mail:tjyguoqiang@163.com *通讯作者:王欣欣,E-mail:sxdk217wxx@163.com

controversies on the ore-forming source of this deposit. The Pb isotope analyses of molybdenite, chalcopyrite, and pyrites from the mine have been carried out to determine the source. The results show that the molybdenite and pyrites have the consistent Pb isotopes, with $^{206}Pb/^{204}Pb$ ratios ranging from 17.525-18.581, $^{207}Pb/^{204}Pb$ ratios ranging from 15.621-15.661, $^{208}Pb/^{204}Pb$ ratios ranging from 37.524-38.929, and the chalcopyrite with $^{206}Pb/^{204}Pb$ ratios ranging from 18.414-18.578, $^{207}Pb/^{204}Pb$ ratios ranging from 15.619-15.642, and $^{208}Pb/^{204}Pb$ ratios ranging from 38.617-38.863, respectively, which have obvious grouping characteristics. The S and Pb isotope features indicate that the ore-forming sources are mainly derived from the mantle, and the Re-Os isotope characteristics of molybdenite indicate that the minerals are mainly derived from mantle. The melt from the lower crust of India continent partial melting migrated upward and mixed with the Fe³⁺ enriched fluid derived from the subducted oceanic crust, which metasomatized with Yarlung Zangbo MORB peridotite, and the Cu, Mo were released into the magma system after oxidezed by Fe³⁺, thus, Cu and other elements in biotite granite which partially melted in the thickened lower crust were extracted in the rising process, finally formed the deposit by contact metasomatism with the wall rock.

Key words: Nuri Polymetallic; Pb isotope; ore-forming source; Gangdese; adakite porphyry; geochemistry.

0 引言

努日铜钼钨多金属矿位于西藏冈底斯中东段 南缘,是目前冈底斯成矿带发现的最大的含白钨矿 矽卡岩型铜钼多金属矿床,含铜48.72万吨,WO3资 源量16.75万吨,钼金属资源量2.86万吨,其白钨矿 储量已达到大型.努日铜钼钨多金属矿床分为南矿 段、中矿段、北矿段三部分,南矿段主要产出共伴生 铜钼钨矿化体,中矿段主要以钨铜矿化体产出,北 矿段则出现独立钨矿体,总体以铜钼共生矿体为主. 前人对该矿床已开展了部分的研究(莫济海等, 2008;黄树峰等,2011;江化寨等,2011;姜子琦等, 2011;陈雷等,2011,2012;赵珍等,2012,2013;孙祥 等,2013;闫国强等,2014;王立强等,2014),基本查 明了矿区各类岩浆岩的成岩时代:锆石U-Pb年龄 石英闪长玢岩(93.42±0.76 Ma)→安山岩(92.04± 0.71 Ma)→黑云母花岗岩(50.46±0.56 Ma)→花岗 闪长斑岩(24.83±0.21 Ma)(王欣欣等, 2015; 闫国 强等,2018)和成矿时代:辉钼矿Re-Os年龄23.46~ 24.94 Ma,黄铜矿 Re-Os 年龄 55.34±0.74 Ma、 29.16±0.34 Ma、23.53±0.37 Ma~24.94±0.35 Ma (王欣欣等,2014).矿区多阶段岩浆演化与多期成矿 事件暗示,努日铜钼钨多金属矿床的成矿物质来源 较为复杂,特别是矿区内新发现的花岗闪长斑岩 (王勤等,2018),是否作为潜在的含矿斑岩体需要 更直接的证据,如铜、钼主要来源于经典岛弧岩浆 岩(王欣欣等,2014),个别学者认为成矿物质来源 于壳幔混源(王立强等,2014),还有少数学者认为 来源于俯冲板片的上覆沉积物的部分熔融(梁华英 等,2010;赵珍等,2013;董随亮等,2015).

为进一步查清楚努日铜钼钨多金属矿床的成

矿物质来源,本文对该矿床南矿段、中矿段、北矿段 中的辉钼矿、黄铜矿、黄铁矿进行了Pb同位素的研 究,同时对矿区内中新世、始新世岩体开展了全岩 的Pb同位素分析,结合对比矿床的辉钼矿Re-Os同 位素特征,S同位素特征等研究成果,对努日铜钼钨 矿的成矿物质来源进行综合示踪.

1 区域地质与矿床地质特征

努日大型铜钼钨多金属矿床位于中国西藏山 南乃东县内,属于冈底斯成矿带中东段的一部分, 该矿床构造上位于冈底斯岩浆弧中东段南缘NWW 向陆缘走滑断裂带与NEE向陆缘走滑断裂带的交 汇部位,冈底斯成矿带广泛发育中酸性岩浆岩(图 1). 岩浆活动高峰期始于海西晚期一燕山晚期, 火山 岩也从海相过渡为陆相、类型由早期的中基性逐渐 向中酸性为主过渡(闫国强等,2018),而伴随的火 山岩岩性则主要为安山岩、英安岩、凝灰岩等;侵入 岩活动时限集中于燕山晚期一喜山期,前者岩性组 合则以中酸性为主,后者以酸性岩为主.受印度板 块向欧亚板块俯冲-碰撞-挤压-伸展等-系列 构造作用影响,区内主构造以东西向展布为主,发 育超岩石圈断裂、转换断裂构造以及热穹隆引起的 环形构造等.矿区侵入岩包括石英闪长玢岩、花岗 闪长斑岩、黑云母花岗岩、安山岩,少量煌斑岩脉 (图 2). 矿区地层为白垩系下统比马组(K₁b)、第四 系风成堆积物.比马组区域上分为上下5个岩性段, 矿区出露第三、四、五岩性段,在矿区呈近东西走 向,地层在矿区出露面积达60%以上,第三岩性段 (K₁b³):主要出露于矿区中部及东部,出露面积较 大,其中大部分被风成砂所覆盖,根据岩性组合分

图 2 西藏山南努日矿区各类岩浆岩的岩石学特征 Fig.2 The characteristics of various magmatic rocks in Nuri deposit 品, b. 單云母花崗岩及鏡下風黑云母, c. 花崗闪长斑岩及鏡下半角形角闪石

a. 石英闪长玢岩及镜下角闪石斑晶;b. 黑云母花岗岩及镜下见黑云母;c. 花岗闪长斑岩及镜下半自形角闪石;d. 安山岩及镜下隐晶质基质. Hbl.普通角闪石;Bit. 黑云母;Pl. 斜长石;Q.石英

为上下两部分,下部(K₁b³⁻¹)为浅灰色碎屑岩,出露 较少,上部(K₁b³⁻²)为灰白色厚层块状结晶灰岩,可 见零星的砂卡岩化、大理岩化,表明厚层块状灰岩 与砂卡岩化关系不紧密.第四岩性段(K₁b⁴):主要分 布在矿区中部及北部,出露面积较大,岩性为一套 碎屑岩与碳酸盐岩互层,岩性组合主要为砂岩、灰 岩,呈薄层状,地层被岩浆大部分所吞蚀,与岩体接 触边界可见较强烈的砂卡岩化及热烘烤作用.砂岩 层理清晰,节理裂隙发育,并伴有后期热液充填,可 见比较强烈的角岩化特征,显示其受到了较强的热 烘烤作用.砂岩与灰岩层间破碎带及节理裂隙内, 可见石榴子石砂卡岩呈似层状、脉状,并可见铜矿 化,地表主要表现为孔雀石化、铜蓝.矿区的砂卡岩 化及矿化与本岩性段薄层灰岩关系密切,其是矿区 的主要赋矿层位.在矿区南部石榴子石砂卡岩可见 铜钼矿化,其结构主要为细粒结构,构造为浸染状、 脉状,矿区北部矿化不明显.第五岩性段(K₁b⁵)可分 为上下两个部分,下部(K₁b⁵¹)为一套呈灰绿色砂砾 岩,上部(K₁b⁵²)为安山岩、角岩夹砂岩.

石英闪长玢岩呈近EW向分布于南矿段,是矿 区出露最为广泛的侵入岩,岩石新鲜面为浅灰色, 具斑状结构,斑晶以斜长石为主,石英呈熔蚀港湾 状,基质为细粒-隐晶质,露头青磐岩化发育.

黑云母花岗岩呈网状、岩枝状侵入到早期岩体中出露于北矿段中部,新鲜面为灰白色,花岗结构,黑云母呈团斑状,含少量浅肉红色钾长石

斑晶,粒度约2~3 mm,局部见不规则灰黑色辉 长岩捕虏体散布.

花岗闪长(斑)岩:分布于矿区南部,以小岩株 或岩脉的形式穿插于早期石英闪长玢岩中,岩石为 灰色、灰白色,细粒结构,斑状构造(图2g).具有典 型的花岗不等粒结构,主要矿物:斜长石(35%)、钾 长石(25%)、石英(15%);次要矿物:黑云母、绢云 母、方解石、角闪石、电气石;副矿物:磷灰石、锆石、 金红石.斜长石:常见聚片双晶、卡一纳复合双晶、 偶尔可见巴温诺双晶,常被绢云母交代. 钾长石:干 涉色一级灰白,表面有较多麻点,泥化蚀变较强,局 部可见碳酸盐交代钾长石,可见条纹结构,部分为 条纹长石.石英:干涉色一级灰白,他形不等粒结 构,常见文象结构,可见波状消光.黑云母:多色性 明显,浅绿至浅褐色,部分黑云母未见解理,常呈团 簇状分布,黑云母中常见不透明金属矿物,与围岩 接触带可见强烈的铜钼矿化砂卡岩,岩体中可见团 斑状、细脉状黄铜矿、辉钼矿化.

安山岩出露于南矿段,岩石破碎,节理发育,裂隙中可见方解石细脉、石英脉.新鲜面为墨绿色,块状构造.主要由长石、石英、晶屑组成,斜长石颗粒发生粘土化、绢云母化,但残留卡纳联晶结构,石英颗粒被熔蚀成港湾状.

努日矿区的矿化组合模式及矿化分带现象在 平面和纵向上均有较为明显的表现,在平面上,努 日矿区南矿段以铜钼矿化为主,矿区最大的 [#矿 体位于南矿段,且有独立的铜矿体、钼矿体、或铜钼 组合矿体,矿体厚度大,产状稳定,是目前矿区重点

开采区域;中矿段则以钼矿化为主,钨矿化仅在靠 近努日山附近达到品位,铜矿化普遍较弱,没有达 到品位的组合矿体;北矿段以钨钼矿化为主,铜矿 化依旧不明显,矿区钨矿化品位最高的矿体就位 于北矿段5线.在纵向上,整个矿区露头可见大量 砂卡岩化,砂卡岩化主要以钨、铜矿化为主,钼矿 化肉眼很难见到,探槽中往往出露矽卡岩型铜矿 体或铜钨组合矿体,部分角岩中可见石英硫化物 脉体穿插,主要为黄铜矿、黄铁矿,在矿区中酸性 侵入岩中也可见黄铜矿化,尤以中新世花岗闪长 岩中最富集,且矿化随着深度的增加,砂卡岩化愈 发强烈,其中黄铜矿化进一步增强,同时出现部分 辉钼矿化,网状石英硫化物脉发育,逐步向着深部 增加,形成铜钼组合矿体,但主体仍以黄铜矿化为 主,此时出现部分白钨矿化伴随产出,随着深度的 进一步加深, 砂卡岩化逐渐变弱, 常形成石英硫化 物脉体(石英-黄铜矿-辉钼矿、石英-黄铜矿-黄铁矿)发育,钼矿化增强,钨矿化变弱.

努日矿床赋矿岩石为石榴子石砂卡岩,矿石构 造为块状(图 3c)、浸染状(图 3d)、细脉状,矿石结构 为放射状、鳞片状(图 3f)、交代残余结构(图 3g)等. 矿石矿物为黄铜矿、辉钼矿(图 3e、3f),散点状白钨 矿(图 3a),同时可见少量蓝辉铜矿(图 3g),大量发 育Q+Cpy脉(图 3b)、Q+Mo脉、以及共生硫化物 细脉(图 3h).矿床围岩蚀变以强烈的砂卡岩化为 主,可见大量石榴子石、绿帘石等硅酸盐矿物组合, 少量萤石、石膏等低温矿物等.

图 3 努日铜钼钨多金属矿床矿石特征及显微镜下照片 Fig.3 Photomicrographs showing ore minerals from the Nrui deposit FI. 萤石; Sch. 白钨矿; Mo. 辉钼矿; Cp. 黄铜矿; Dg. 蓝辉铜矿; Py. 黄铁矿

2 样品采集及测试方法

本次研究对努日矿区内与砂卡岩化有关的侵 入岩(南矿段花岗闪长斑岩、北矿段黑云母花岗岩) 样品的Pb同位素进行测定,其中石英闪长玢岩和黑 云母花岗岩样品在核工业北京地质研究院实验室 完成,花岗闪长斑岩样品在武汉地调中心实验室完 成,实验流程简述如下:首先将200目全岩样品溶解 后采用交换树脂法将Sr和Nd分离提纯,之后提纯 物通过TIMS测试得到Sr和Nd的同位素比值,详 细流程见张松等(2012a).Pb同位素测试方法简述 如下:称取适量样品溶解后,去除其他酸根离子,最 后通过阴离子交换树脂淋洗提纯,在MAT-261多 接收质谱计上完成,整个实验流程均在超净操作室 内完成.Pb空白本底为1×10⁻⁹~2×10⁻⁹g,采用国 际标准值监控样品误差.

3 测试结果

测试数据见表1,除铀矿床外,其他矿床中的金 属硫化物往往含有较低的U、Th含量以及U/Th比 值(周清等,2013),而造成放射性成因Pb(²⁰⁶Pb、 ²⁰⁷Pb、²⁰⁸Pb)含量低,可忽略不计其影响,特别是当矿 石形成时代较年轻时,可不进行Pb同位素校正.

实验结果表明,努日铜钼钨多金属矿床黑云母 花岗岩的²⁰⁶Pb/²⁰⁴Pb范围为18.541~18.565(平均值 为18.552),²⁰⁷Pb/²⁰⁴Pb比值为15.587~15.601(平均 值为15.595),²⁰⁸Pb/²⁰⁴Pb比值为38.625~38.678(平 均值为38.652);花岗闪长斑岩的²⁰⁶Pb/²⁰⁴Pb比值为 18.541~18.562(平均值为18.552),²⁰⁷Pb/²⁰⁴Pb比值 为15.640~15.653(平均值为15.649),²⁰⁸Pb/²⁰⁴Pb比

- XI 白威力日刑扣持夕亚内9 小位八石、9 日肌化物的ID 巴杀奴)	表1	西藏努日铜钼钨多	金属矿床侵入岩、	矿石硫化物的 Pb	同位素数据
--------------------------------------	----	----------	----------	-----------	-------

Table 1 Pb isotope analysis data for instrusive rock and sulfide minerals in the Nuri polymetallic deposit

样品编号	测试对象	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	数据来源
NR-1		18.597	15.697	38.973	
NR-2		18.572	15.696	38.871	
NR-3	花岗闪长斑岩	18.597	15.744	39.029	王勤等,2018
NR-5		18.625	15.667	38.952	
NR-6		18.579	15.687	38.848	
ZK1005-384.12 m		18.589	15.655	38.984	
ZK1005-379.57 m	花岗闪长斑岩	18.571	15.641	38.912	
ZK1005-394 m		18.591	15.654	38.981	· 슈 · 뉴 · 구·
005-R-1		18.541	15.587	38.625	木日平义
005-R-2	黑云母花岗岩	18.565	15.601	38.678	
005-R-3		18.55	15.597	38.653	
ZK4501-124.8	黄铜矿	18.441	15.619	38.617	
ZK4103-258.6	辉钼矿	18.513	15.629	38.839	
ZK4103-310.4	黄铁矿	17.525	15.549	37.524	
ZK4103-310.6	黄铜矿	18.578	15.633	38.836	
ZK4103-311.4	辉钼矿	18.533	15.635	38.871	
ZK4103-317.4	辉钼矿	18.555	15.621	38.827	
ZK4103-473.8	黄铜矿	18.568	15.642	38.863	
ZK4103-474.9	黄铁矿	18.555	15.642	38.909	
ZK4901-130.9	黄铁矿	18.539	15.63	38.871	王立强等,2014
ZK4901-153.35	黄铜矿	18.518	15.624	38.811	
ZK3701-213.5	黄铜矿	18.414	15.619	38.695	
ZK3701-355.2	黄铁矿	18.548	15.643	38.916	
ZK3701-358.31	辉钼矿	18.539	15.631	38.879	
ZK3701-399.2	辉钼矿	18.555	15.643	38.918	
ZK3701-447.7	辉钼矿	18.581	15.661	38.929	
ZK3701-513	黄铜矿	18.499	15.63	38.802	
ZK3701-513.4	黄铁矿	18.545	15.64	38.895	

数据来自表1

值为38.885~38.960(平均值为38.934).前人报道 的矿区各类辉钼矿的²⁰⁶Pb/²⁰⁴Pb比值为18.513~ 18.581 (平均值为18.546),²⁰⁷Pb/²⁰⁴Pb比值为 15.621~15.661(平均值为15.637),²⁰⁸Pb/²⁰⁴Pb比值 为 38.827~38.929 (平均值为 38.877);黄铜矿 的²⁰⁶Pb/²⁰⁴Pb 比值为18.414~18.578(平均值为 18.503),²⁰⁷Pb/²⁰⁴Pb比值为15.619~15.642(平均值 为15.628),²⁰⁸Pb/²⁰⁴Pb比值为38.617~38.863(平均 值为38.771);黄铁矿的²⁰⁶Pb/²⁰⁴Pb比值为17.525~ 18.555 (平均值为18.342),²⁰⁷Pb/²⁰⁴Pb比值为 15.630~15.649(平均值为15.621),²⁰⁸Pb/²⁰⁴Pb比值 为 37.524~38.916(平均值为 38.623). 可见矿区各 类辉钼矿、黄铜矿、黄铁矿具有明显一致的 Pb 同 位素组成.努日铜钼钨多金属矿的矿石 Pb 同位素 组成主要与花岗闪长斑岩的大致相同,而个别发 生偏移,介于花岗闪长斑岩和黑云母花岗岩的 Pb 同位素组成范围(图4).

4 讨论

4.1 成矿物质来源

Pb同位素在自然界中几乎不发生分馏,其组成 伴随成矿元素运移和沉淀,受成矿流体的物理化学 条件影响较小(童英等,2006),矿床中的Pb同位素 组成受源区的U、Th含量控制,其分布规律与U/ Pb、Th/Pb的值具有明显的一致性,通多对矿床中 各类矿石中Pb同位素的组成分析,可以较为直观地 反映其对应的成矿物质来源.

为了有效约束努日铜钼钨多金属矿床成矿物

质来源,笔者搜集了矿床中主要的硫化物 Pb 同 位素,结合矿区大面积砂卡岩化的地质事实,对 南矿段花岗闪长斑岩、北矿段黑云母花岗岩开展 全岩 Pb 同位素测试.前述矿区的辉钼矿、黄铜 矿、黄铁矿显示较为明显的分组 Pb 同位素组成, 在 Pb 同位素来源判别图解中,辉钼矿、黄铁矿、 部分黄铜矿全部落入花岗闪长斑岩体的 Pb 同位 素范围内,而个别黄铜矿样品落入花岗闪长斑岩 和黑云母花岗岩过渡区域内,而更靠近后者范围 (图4),暗示努日铜钼钨多金属矿床的成矿物质 可能主要来源于花岗闪长斑岩.

由于 Pb 同 位 素 构 造 环 境 判 别 图 解²⁰⁸Pb/ ²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb 不适合中国大陆 Pb 的演化(张理 刚, 1992), 因此, 本次研究全部利用²⁰⁷Pb/ ²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb和²⁰⁷Pb/²⁰⁴Pb⁻²⁰⁸Pb/²⁰⁴Pb图解进行投 点. $\Delta \gamma - \Delta \beta$ 图解中, 所有样品点数据投入上地壳 与地幔混合的俯冲带区域,且更偏上地壳范围,个 别点甚至已投进上地壳区域(图 5a), 在²⁰⁷Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb构造环境演化判别图中,样 品数据点则全投入造山带和上地壳过渡区域,但更 接近上地壳演化线(图 5b),在Gariépy and Allègre (1985)的²⁰⁷Pb/²⁰⁴Pb⁻²⁰⁶Pb/²⁰⁴Pb构造环境演化判别 图解中,努日铜钼钨矿床金属硫化物铅同位素几乎 全部落在了冈底斯岩基范围内(王立强等,2014), 或冈底斯岩基与拉萨地块重合的范围内,暗示了矿 床成矿物质可能起源于古老的拉萨地块的部分熔 融.笔者在研究矿区中新世黑云母花岗岩锆石U-Pb 年龄时也发现了数颗新元古代寄生锆石,Hou et al.

Fig.5 Plumbotectonic framework diagrams of molybdenite, chalcopyrite and pyrites from the Nuri polymetallic deposit 数据来源于表 1;底图据 Zartman et al. (1981);1. 地幔源铅;2. 上地壳铅;3. 上地壳与地幔混合的俯冲带铅,3a. 岩浆作用,3b. 沉积作用;4. 化学沉积型铅;5. 海底热水作用铅;6. 中深变质作用铅;7. 深变质下地壳铅;8. 造山带铅;9. 古老页岩上地壳铅;10. 退变质铅;A. 地幔(Mantle);B. 造山带(Orogene);C. 上地壳(Upper Crust);D. 下地壳(Lower Crust)

(2004)、Guo et al.(2007)、纪伟强等(2009)研究冈 底斯岩基中新世花岗岩也证实其岩浆源区或岩浆 演化过程存在地幔物质和古老地壳物质的混入,王 立强等(2014)认为这一古老地壳极可能为拉萨地 块结晶基底.因此,综合分析表明,努日铜钼钨矿床 的矿石 Pb 同位素为一混合来源,既有幔源物质的贡 献也有壳源物质的加入.

上述观点也同样在矿床中矿石 S 同位素组成特 征得到验证(表 2),研究结果表明:努日铜钼钨多金 属 矿 床 黄 铁 矿 的 δ^{34} S 值 范 围 $-0.5\%\sim1.8\%$ (Mean=0.51%),黄铜矿 的 δ^{34} S 值 范 围 $-2.9\%\sim$ 1.0%,(Mean=-0.61%),辉钼矿 的 δ^{34} S 值 范 围 $-0.1\%\sim0.6\%$ (Mean=0.13%),显示成矿流体中 硫同位素具有较高的均一化,伴随硫化物在运移过 程中沉淀析出,硫同位素并未发生明显分馏效应, 指示成矿流体中 S 来源较单一.通常认为, δ^{34} S 达到 分馏平衡条件下,硫化物中 δ^{34} S 的含量具有良好的 大小顺序,努日铜钼钨矿床矿石中硫化物的 δ^{34} S 大 致表现出 Mo>Py>Cpy 的趋势.样品总体变化范 围 全 部 介 于 原 始 地 幔 储 库 (δ^{34} S 值 $0\pm0.5\%$)和 MORB(δ^{34} S 值 $0\pm2\%$),这些特征表明,努日铜钼钨 多金属的成矿 S 同位素主要来源于原始地幔.

为进一步验证其成矿物质来源,笔者对矿床中 辉钼矿 Re-Os 同位素特征进行分析,Re是一种中度 不相容亲铜元素,主要赋存于地幔,由于地球化学 行为与 Mo 类似,因此其往往集中在辉钼矿中, Zhou *et al.*(2013)、周清等(2013)通过统计国内外 30多个含钼矿床辉钼矿中的Re(及对应的放射性 Os)含量及相应的物质来源,统计结果显示,幔源成 因辉钼矿其Re含量一般超过100×10⁻⁶,而壳源成 因辉钼矿Re的含量一般不超过10×10⁻⁶,壳幔混源 的处于二者之间,毛景文等(1999)也曾统计部分矿 床数据得出相似结论,即幔源一壳幔混源一壳源其 对应辉钼矿中Re的含量呈指数递减.因此,其含量 在一定程度上反映了矿床成矿物质来源.通过整理 努日铜钼钨矿床中辉钼矿的Re-Os同位素定年结果 (闫学义等,2010;张松等,2012b),其辉钼矿中Re的 含量变化范围为239.0×10⁻⁶~667.3×10⁻⁶,平均值 为 400.08×10⁻⁶, 对 应 的 ¹⁸⁷Os 含 量 普 遍 较 高 介 于 59.8×10⁻⁹~168.4×10⁻⁹,平均值为100.77×10⁻⁹, 根据上面的规律,努日铜钼钨矿床辉钼矿中具有非 常高的Re含量,同时黄铜矿中Re的含量高达数千 10⁻⁶,但¹⁸⁷Os含量普遍较低,暗示矿床的成矿物质 来源于地幔(图6),这一结论与冈底斯成矿带上众 多斑岩型矿床(如厅宫(李光明等,2005)、帮浦 (Hou et al., 2009)、亚贵拉(高一鸣等, 2011)和雄 村(黄勇等,2013))、砂卡岩型矿床(如知不拉(李 光明等,2005)、甲玛(应立娟等,2010))的辉钼矿 中的Re的含量一致(普遍大于100×10⁻⁶);与南岭 成矿带中柿竹园(李红艳等,1996)、姚岗仙(Peng et al., 2006)、黄沙坪(Yao et al., 2007)相应辉钼矿 中所含Re含量低指示成矿物质起源于下地壳的部 分熔融明显不同,暗示整个冈底斯成矿带成矿物质 可能来源于统一的岩浆系统,同时也很好地与前述

表 2 西藏努日铜钼钨矿床硫化物矿石硫同位素组成

 Table 2
 S isotope compositons of the sulfide minerals from the Nuri polymetallic deposit

样品编号	测试对象	$\delta^{34} S(\%_{00})$	数据来源	
ZK4501-124.8	黄铜矿	-1.2		
ZK4103-258.6	辉钼矿	-0.3		
ZK4103-310.4	黄铁矿	-0.5		
ZK4103-310.6	黄铜矿	-1.2		
ZK4103-311.4	辉钼矿	0.6		
ZK4103-317.4	辉钼矿	0.3		
ZK4103-473.8	黄铜矿	-0.6		
ZK4103-474.9	黄铁矿	0.1		
ZK4901-130.9	黄铁矿	-0.1	王立强等,2014	
ZK4901-153.35	黄铜矿	-0.8		
ZK3701-213.5	黄铜矿	-2.9		
ZK3701-355.2	黄铁矿	-1.0		
ZK3701-358.31	辉钼矿	-0.1		
ZK3701-399.2	辉钼矿	0.0		
ZK3701-447.7	辉钼矿	-0.1		
ZK3701-513	黄铜矿	-1.4		
ZK3701-513.4	黄铁矿	-0.3		
ZK4103-506	黄铁矿	0.8		
ZK4103-461	黄铁矿	0.9		
ZK4103-254	黄铁矿	0.7		
ZK4103-304	黄铁矿	-0.3		
ZK4103-471	黄铁矿	0.8		
ZK1203-198	黄铁矿	1.1		
ZK4501-194	黄铁矿	0.7	Chen <i>et al.</i> , 2012	
ZK1203-258	黄铜矿	-0.3		
ZK4501-215	黄铜矿	0.6		
ZK4103-306	黄铜矿	-0.2		
ZK4501-126	黄铜矿	-0.3		
ZK4502-306	辉钼矿	0.4		
ZK4501-194	辉钼矿	-0.4		
ZK1203-362	辉钼矿	0.3		
LB4101-194	黄铜矿	1.0		
LB4101-194-1	黄铁矿	1.8	Listal 2006	
LB4101-67.6	黄铁矿	1.3	L1 et al., 2006	
LB4101-159	黄铁矿	1.7		

金属硫化物的Pb同位素特征吻合.

4.2 成矿机制

冈底斯埃达克质斑岩的同位素地球化学特征 表明,其岩浆源区物质组成包括印度陆壳、雅鲁藏 布江 MORB 和拉萨地块成分(高成等,2014).前面 提到努日铜钼钨多金属矿床的成矿物质主要来源 于花岗闪长斑岩体,而少部分可能来源于黑云母花 岗岩.对努日矿区花岗闪长斑岩、黑云母花岗岩的

底图据Zhou et al. (2013);数据来源于张松等(2012b)、闫学义等(2010)

锆石 U-Pb年代学及 Sr-Nd-Pb-Hf 同位素地球化学 的研究表明(王欣欣等,2015,王勤等,2018),具有 埃达克质的中新世花岗闪长斑岩,起始于印度板块 与欧亚板块碰撞后伸展期,由俯冲的印度大陆的下 地壳熔融形成,熔体在侵位过程中与雅鲁藏布江 MORB亏损地幔之间进行了熔体一地幔的物质交 换.Chen et al.(2011)、王立强等(2014)对矿石S同 位素的研究也表明成矿物质可能来自于地幔和雅 鲁藏布江 MORB. 这一特征也符合冈底斯含矿埃达 克质斑岩的源区特征(高成等,2014).具有岛弧岩浆 岩特点的始新世黑云母花岗岩,形成于印度板块与 欧亚板块主碰撞阶段,受新特提斯洋壳后期高角度 俯冲及随后的断离作用影响,软流圈上涌提供巨量 的热烘烤效应,使得因碰撞而加厚的拉萨地块南缘 下地壳发生部分熔融.伴随着始新世强烈的地壳隆 升导致下地壳拆沉作用引发弧岩浆的广泛出露的 同时,部分铜等成矿物质也逐渐从熔融玄武质下地 壳中析出并富集于初始成矿流体中.

闫国强等(2015a、2015b)利用辉钼矿、白钨矿 单矿物微量元素、稀土元素对矿床成矿流体物理化 学条件制约,发现主成矿期成矿流体在辉钼矿结晶 沉淀的过程中不同程度混入了部分外来流体而富 集 Cl,其具有较高的氧逸度,从而更有益于幔源岩 石中的成矿物质氧化并逐步溶解于岩浆中,结合 Re 含量变化,努日铜钼钨矿床的成矿物质 Mo可能来 源于单一的深部幔源,而矿区白钨矿测试表明,富 钨的原始成矿流体可能来源于深部壳源岩浆的结 晶分异,成矿流体沿着构造裂隙运移过程中与围 岩比马组进行充分的水岩反应,最终赋存于热液 中的WO4²⁻和钙质结合,使得大量白钨矿沉淀析 出.努日铜钼钨多金属矿床其形成时代(55.34~ 24.77 Ma)几乎与黑云母花岗岩、花岗闪长斑岩 (50.46~ 24.94 Ma)同时.该矿床可能是印度板 块向欧亚板块俯冲一碰撞一伸展构造环境下,为 印度陆块下地壳部分熔融形成的熔体在其向上 运移过程中与俯冲洋壳释放出的富含Fe³⁺的流 体发生混合后,与雅鲁藏布江MORB亏损地幔橄 榄岩发生交代作用,Fe³⁺氧化地幔中赋存的各类 硫化物后,Cu、Mo等被释放进入岩浆系统;并在 上升过程中萃取加厚下地壳部分熔融形成黑云 母花岗岩中的Cu等,最终在浅部与围岩发生接 触交代形成努日铜钼钨多金属矿床.

5 结论

努日铜钼钨多金属的矿石 Pb-S-Re-Os 同位 素特征表明其成矿物质主要来源于地幔,而不是 来源于地壳,该矿床可能是在印度板块一欧亚板 块碰撞后伸展阶段,由印度板块下地壳的部分熔 融与具有幔源特征的富含 Fe³⁺的流体混合后与 亏损地幔相互作用后,侵入过程中进一步萃取 W 等成矿物质到浅部,并与围岩比马组发生强烈的 矽卡岩化沉淀形成.

致谢:野外工作得到成都地质调查中心戴婕 工程师,福建冶金二院的张凯,王国峰工程师的 帮助,室内工作得到四川冶金地勘院白景国工程 师的帮助,在此表示感谢,感谢匿名评审专家和 编辑的辛勤工作!

References

- Chen, L., Qin, K. Z., Li, J. X., et al., 2012. Fluid Inclusions and Hydrogen, Oxygen, Sulfur Isotopes of Nuri Cu-W-Mo Deposit in the Southern Gangdese, Tibet. *Resource Geology*, 62(1): 42-62. https://doi. org/10.1111/ j.1751-3928.2011.00179.x
- Chen, L., Qin, K. Z., Li, G. M., et al., 2011. Geochemical Characteristics and Origin of Skarn Rocks in the Nuri Cu-Mo-W Deposit, Southern Tibet. *Geology and Prospecting*, 47(1):78-88 (in Chinese with English abstract).
- Chen, L., Qin, K. Z., Li, G. M., et al., 2012. Geological and Skarn Mineral Characteristics of Nuri Cu-W-Mo Deposit in Southeast Gangdese, Tibet. *Mineral Deposits*, 31(3):

417-437 (in Chinese with English abstract).

- Dong, S. L., Huang, Y., Li, G. M., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Late Cretaceous Quartz Diorite in the Nuri Cu-Mo-W Deposit, South Tibet. *Rock and Mineral Analysis*, 34(6):712-718 (in Chinese with English abstract).
- Gao, C., Li, D. W., Liu, D.M., et al., 2014. Petrogenesis of the Miocene Ore - Bearing Granite Porphyries in the Southern Gangdese, Tibet. *Geotectonica et Metallogenia*, 38(4):962-983 (in Chinese with English abstract).
- Gao, Y. M., Chen, Y. C., Tang, J. X., et al., 2011. Re-Os Dating of Molybdenite from the Yaguila Porphyry Molybdenum Deposit in Gongbo' Gyamda Area, Tibet, and Its Geological Significance. *Geological Bulletin of China*, 30(7): 1027-1036 (in Chinese with English abstract).
- Gariépy, C., Allègre, C. J., 1985. The Lead Isotope Geochemistry and Geochronology of Late-Kinematic Intrusives from the Abitibi Greenstone Belt, and the Implications for Late Archaean Crustal Evolution. *Geochimica et Cosmochimica Acta*, 49(11): 2371-2383. https://doi. org/10.1016/0016-7037(85)90237-6
- Guo, Z. F., Wilson, M., Liu, J. Q., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction - Modified Lower Crust. *Lithos*, 96(1-2): 205-224. https://doi.org/10.1016/j.lithos.2006.09.011
- Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. *Earth and Planetary Science Letters*, 220(1-2): 139-155. https://doi.org/ 10.1016/s0012-821x(04)00007-x
- Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. https://doi.org/ 10.1016/j.oregeorev.2008.09.006
- Huang, S. F., Jiang, S. Y., Jiang, H. Z., et al., 2011. Copper Polymetallic Ore-Forming System in Shannan Area and Analysis of Tectonic Stress Field in the Strike - Slip Transfer Zone in Tibet. *Geology and Exploration*, 47 (1):1-10 (in Chinese with English abstract).
- Huang, Y., Tang, J. X., Ding, J., et al., 2013. The Re-Os Isotope System of the Xiongcun Porphyry Copper-Gold Deposit, Tibet. *Geology in China*, 40(1): 302-311 (in Chinese with English abstract).
- Ji, W. Q., Wu, F. Y., Zhong, S. L., et al., 2009. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science in China (Series D),

39(7): 849-871 (in Chinese).

- Jiang, H. Z., Zeng, H. L., Wu, Z. S., et al., 2011. Geological Characteristics and Prospecting Prediction in Deep Area of Layer Skarn Cu-W-Mo Deposit in Shannan Nuri Ore District, Tibet. *Geology and Prospecting*, 47(1): 71-77 (in Chinese with English abstract).
- Jiang, Z. Q., Wang, Q., Wyman, D. A., et al., 2011. Origin of ~30 Ma Chongmuda Adakitic Intrusive Rocks in the Southern Gangdese Region, Southern Tibet: Partial Melting of the Northward Subducted Indian Continent Crust?. *Geochimica*, 40(2): 126-146 (in Chinese with English abstract).
- Li, G. M., Qin, K. Z., Ding, K. S., et al., 2006. Geology, Ar-Ar Age and Mineral Assemblage of Eocene Skarn Cu - Au±Mo Deposits in the Southeastern Gangdese Arc, Southern Tibet: Implications for Deep Exploration. *Resource Geology*, 56(3): 315-336. https://doi.org/ 10.1111/j.1751-3928.2006.tb00286.x
- Li, G. M., Rui, Z. Y., Wang, G. M., et al., 2005. Molybdenite Re-Os Dating of Jiama and Zhibula Polymetallic Copper Deposits in Gangdese Metallogenic Belt of Tibet and Its Significance. *Mineral Deposits*, 24(5):481-489 (in Chinese with English abstract).
- Li, H. Y., Mao, J. W., Sun, Y. L., et al., 1996. Re-Os Istopic Chronology of Molybdenites in the Shizhuyuan Polymentallic Tungsten Deposit, Southern Hunan. *Geological Review*. 42(3): 261-267 (in Chinese with English abstract).
- Liang, H. Y., Wei, Q. R., Xu, J. F., et al., 2010. Study on Zircon LA-ICP-MS U-Pb Age of Skarn Cu Mineralization Related Intrusion in the Southern Margin of the Gangdese Ore Belt, Tibet and Its Geological Implication. Acta Petrologica Sinica, 26(6):1692-1698 (in Chinese with English abstract).
- Mao, J. W., Hua, R. M., Li, X. B., 1999. Preliminary Study of Large - Scale Metallogenesis and Large Clusters of Mineral Deposits. *Mineral Deposits*, 18(4):291-299 (in Chinese with English abstract).
- Mo, J. H., Liang, H. Y., Yu, H. X., et al., 2008. Zircon U-Pb Age of Biotite Hornblende Monzonitic Granite for Chongmuda Cu - Au(Mo) Deposit in Gangdese Belt, Xizang, China and Its Implications. *Geochimica*, 37(3): 206-212 (in Chinese with English abstract).
- Peng, J. T., Zhou, M. F., Hu, R. Z., et al., 2006. Precise Molybdenite Re-Os and Mica Ar-Ar Dating of the Mesozoic Yaogangxian Tungsten Deposit, Central Nanling District, South China. *Mineralium Deposita*, 41(7): 661-669. https://doi.org/10.1007/s00126-006-0084-4

- Sun, X., Zheng, Y. Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze - Chengba Porphyry - Skarn Mo - Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406 (in Chinese with English abstract).
- Tong, Y., Wang, T., Hong, D. W., et al., 2006. Pb Isotopic Composition of Granitoids from the Altay Orogen (China): Evidence for Mantle-Derived Origin and Continental Growth. Acta Geologica Sinica, 80(4):517-528 (in Chinese with English abstract).
- Wang, L. Q., Tang, J. X., Chen, W., et al., 2014. Sulfur and Lead Isotopic Geochemistry of the Nuri and Chengba Cu-Mo-W Deposits in Tibet. Acta Geoscientica Sinica, 35(1):39-48 (in Chinese with English abstract).
- Wang, Q., Huang, Y., Dong, S. L., et al., 2018. Zircon LA-ICP-MS U-Pb Geochronology, Geochemistry and Implications of Ore-Forming Porphyry in Nuri Skarn Cu-Mo-W Deposit, Eastern Gangdise. *Mineral Deposits*, 37(3): 571-586 (in Chinese with English abstract).
- Wang, X. X., Ding, J., Yan, G. Q., et al., 2015. Zircon U-Pb Age of the Biotite Granite of Nuri Skarn Type Cu-Mo-W Deposit in Shannan, Tibet and Its Metallogenic Significance. Acta Geologica Sinica, 89(3):549-559 (in Chinese with English abstract).
- Wang, X. X., Zheng, R. C., Yan, G. Q., et al., 2014. Re-Os Dating of Chalcopyrite of Nuri Cu-Mo-W Deposit and Its Significance. *Metal Mine*, 32(10): 126-129 (in Chinese with English abstract).
- Yan, G. Q., Ding, J., Huang, Y., et al., 2014. Geochronology and Significances of Bima Formation Andesite of Shannan, Tibet. *Metal Mine*, 32(8):91-94 (in Chinese with English abstract).
- Yan, G. Q., Ding, J., Huang, Y., et al., 2015a. Geochemical Characteristics of Rare Earth Elements and Trace Elements in the Nuri Scheelite Deposit, Tibet, China—Indications for Ore-Forming Fluid and Deposit Genesis. *Acta Mineralogica Sinica*, 35(1): 87-94 (in Chinese with English abstract).
- Yan, G. Q., Ding, J., Huang, Y., et al., 2015b. Geochemical Characteristics of Trace Elements and REE of Molybdenites from the Nuri Cu-Mo-W Deposit, Tibet: Constraint on Nature of the Ore-Forming Fluid. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3):564-570 (in Chinese with English abstract).
- Yan, G. Q., Wang, X. X., Huang, Y., et al., 2018. Evolution Characteristics of Magma in the Nuri Superlarge Polymetallic Deposit, Tibet: Implications for Regional Mineralization in the Shannan Ore Cluster Area. Acta

Geologica Sinica, 92(10): 2138-2154 (in Chinese with English abstract).

- Yan, X. Y., Huang, S. F., Du, A. D., et al., 2010. Re-Os Ages of Large Tungsten, Copper and Molybdenum Deposit in the Zetang Orefield, Gangdisê and Marginal Strike -Slip Transforming Metallogenesis. *Acta Geologica Sinica*, 84(3):398-406 (in Chinese with English abstract).
- Yao, J. M., Hua, R. M., Qu, W. J., et al., 2007. Re-Os Isotope Dating of Molybdenites in the Huangshaping Pb-Zn-W-Mo Polymetallic Deposit, Hunan Province, South China and Its Geological Significance. *Science China Earth Sciences*, 50(4): 519-526. https://doi.org/10.1007/s11430-007-2052-y
- Ying, L. J., Wang, D. H., Tang, J. X., et al., 2010. Re-Os Dating of Molybdenite from the Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance. *Acta Geologica Sinica*, 84(8): 1165-1174 (in Chinese with English abstract).
- Zartman, R. E., Doe, B. R., 1981. Plumbotectonics—The Model. *Tectonophysics*, 75(1-2): 135-162. https:// doi.org/10.1016/0040-1951(81)90213-4
- Zhang, L. G., 1992. Present Status and Aspects of Lead Isotope Geology. *Geology and Prospecting*, 28(4):21-29 (in Chinese with English abstract).
- Zhang, S., Wang, Y. B., Chu, S. X., 2012a. Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Composition of the Haigou Granitoids at the Northeastern Margin of North China Craton: Implications for Geodynamic Setting. Acta Petrologica Sinica, 28(2): 544-556 (in Chinese with English abstract).
- Zhang, S., Zheng, Y. C., Huang, K. X., et al., 2012b. Re-Os Dating of Molybdenite from Nuri Cu-W-Mo Deposit and Its Geological Significance. *Mineral Deposits*, 31(2): 337-346 (in Chinese with English abstract).
- Zhao, Z., Hu, D. G., Lu, L., et al., 2013. Discovery and Metallogenic Significance of the Late Cretacous Adakites from Zetang, Tibet. *Journal of Geomechanics*, 19 (1):45-52,112 (in Chinese with English abstract).
- Zhao, Z., Hu, D. G., Wu, Z. H., et al., 2012. Molybdenite Re-Os Isotope Dating of Sangbujiala Copper Deposit in the South Margin of the Eastern Gangdese Section, Tibet, and Its Geological Implications. *Journal of Geomechanics*, 18(2): 178-186 (in Chinese with English abstract).
- Zhou, Q., Jiang, Y. H., Zhang, H. H., et al., 2013. Mantle Origin of the Dexing Porphyry Copper Deposit, SE China. International Geology Review, 55(3): 337-349. https://doi.org/10.1080/00206814.2012.708987

Zhou, Q., Jiang, Y. H., Liao, S. Y., et al., 2013. New Re-

search Progress of the Dexing Porphyry Copper Deposit. Geological Review. 59(5): 933-940 (in Chinese with English abstract).

附中文参考文献

- 陈雷,秦克章,李光明,等,2011. 西藏山南努日铜钼钨矿床砂 卡岩地球化学特征及成因. 地质与勘探,47(1):78-88.
- 陈雷,秦克章,李光明,等,2012. 西藏冈底斯南缘努日铜钨钼 矿床地质特征与砂卡岩矿物学研究. 矿床地质,31(3): 417-437.
- 董随亮,黄勇,李光明,等,2015.藏南努日铜一钨一钼矿床晚 白垩世石英闪长岩U-Pb定年及其地球化学特征.岩矿 测试,34(6):712-718.
- 高成,李德威,刘德民,等,2014. 西藏冈底斯南缘中新世含矿 斑岩源区组成与成因.大地构造与成矿学,38(4): 962-983.
- 高一鸣,陈毓川,唐菊兴,等,2011.西藏工布江达地区亚贵拉 铅锌钼矿床辉钼矿 Re-Os测年及其地质意义.地质通 报,30(7):1027-1036.
- 黄树峰,江善元,江化寨,等,2011.西藏山南铜多金属成矿系 统及走滑转换构造应力场分析.地质与勘探,47(1): 1-10.
- 黄勇,唐菊兴,丁俊,等,2013. 西藏雄村斑岩铜矿床辉钼矿 Re-Os同位素体系.中国地质,40(1):302-311.
- 纪伟强,吴福元,锺孙霖,等,2009.西藏南部冈底斯岩基花岗 岩时代与岩石成因.中国科学(D辑),39(7):849-871.
- 江化寨,曾海良,吴志山.2011.西藏山南努日矿区层砂卡岩 型铜钨钼矿床地质特征及深部找矿预测.地质与勘探, 47(1):71-77.
- 姜子琦,王强,Wyman,D.A.,等,2011.西藏冈底斯南缘冲 木达约30 Ma埃达克质侵入岩的成因:向北俯冲的印度 陆壳的熔融?.地球化学,40(2):126-146.
- 李光明, 芮宗瑶, 王高明, 等, 2005. 西藏冈底斯成矿带甲马和 知不拉铜多金属矿床的 Re-Os 同位素年龄及其意义. 矿床地质, 24(5):481-489.
- 李红艳,毛景文,孙亚利,等,1996. 柿竹园钨多金属矿床的 Re-Os 同位素等时线年龄研究. 地质论评,42(3): 261-267.
- 梁华英,魏启荣,许继峰,等,2010.西藏冈底斯矿带南缘矽卡 岩型铜矿床含矿岩体锆石 U-Pb年龄及意义.岩石学 报,26(6):1692-1698.
- 毛景文,华仁民,李晓波,1999.浅议大规模成矿作用与大型 矿集区.矿床地质,18(4):291-299.
- 莫济海,梁华英,喻亨祥,等,2008. 西藏冲木达铜一金(钼)矿 床黑云角闪二长花岗岩锆石 U-Pb年龄及其意义. 地球 化学,37(3):206-212.
- 孙祥,郑有业,吴松,等,2013. 冈底斯明则一程巴斑岩一砂卡 岩型Mo-Cu矿床成矿时代与含矿岩石成因. 岩石学报,

29(4):1392-1406.

- 童英,王涛,洪大卫,等,2006.中国阿尔泰造山带花岗岩 Pb 同位素组成特征:幔源成因佐证及陆壳生长意义.地质 学报,80(4):517-528.
- 王立强,唐菊兴,陈伟,等,2014.西藏努日、程巴铜一钼一钨 矿床硫铅同位素地球化学.地球学报,35(1):39-48.
- 王勤,黄勇,董随亮,等,2018. 冈底斯成矿带东段努日矿床成 矿斑岩年代学,地球化学及其意义. 矿床地质,37(3): 571-586.
- 王欣欣,丁俊,闫国强,等,2015.西藏山南努日砂卡岩型铜钼 钨矿床黑云母花岗岩锆石U-Pb定年及其成矿意义.地 质学报,89(3):549-559.
- 王欣欣,郑荣才,闫国强,等,2014.努日铜钼钨矿床黄铜矿 Re-Os定年及意义.金属矿山,32(10):126-129.
- 闫国强,丁俊,黄勇,等,2014. 西藏山南比马组安山岩形成时 代及意义.金属矿山,32(8):91-94.
- 闫国强,丁俊,黄勇,等,2015a.西藏努日白钨矿床微量和稀 土元素地球化学特征——对成矿流体与矿床成因的指 示.矿物学报,35(1):87-94.
- 闫国强,丁俊,黄勇,等,2015b.西藏努日铜钼钨矿床辉钼矿
 微量元素、稀土元素地球化学特征——对矿床成矿流
 体性质的约束.矿物岩石地球化学通报,34(3):
 564-570.
- 闫国强,王欣欣,黄勇,等,2018. 西藏山南努日超大型钨多金

属矿床岩浆演化对区域成矿作用指示.地质学报,92 (10):2138-2154.

- 闫学义,黄树峰,杜安道,2010. 冈底斯泽当大型钨铜钼矿
 Re-Os年龄及陆缘走滑转换成矿作用. 地质学报. 84
 (3):398-406.
- 应立娟,王登红,唐菊兴,等,2010.西藏甲玛铜多金属矿辉钼 矿 Re-Os 定年及其成矿意义.地质学报,84(8): 1165-1174.
- 张理刚,1992.铅同位素地质研究现状及展望.地质与勘探, 28(4):21-29.
- 张松,王永彬,褚少雄,2012a. 华北克拉通北缘东段海沟岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素组成及其动力学背景. 岩石学报,28(2):544-556.
- 张松,郑远川,黄克贤,等,2012b.西藏努日砂卡岩型铜钨钼 矿辉钼矿 Re-Os 定年及其地质意义.矿床地质,31(2): 337-346.
- 赵珍,胡道功,陆露,等,2013.西藏泽当地区晚白垩世埃达克 岩的发现及其成矿意义.地质力学学报,19(1):45-52,112.
- 赵珍,胡道功,吴珍汉,等,2012.西藏冈底斯东段南缘桑布加 拉辉钼矿Re-Os定年及地质意义.地质力学学报,18(2): 178-186.
- 周清,姜耀辉,廖世勇,等,2013.德兴斑岩铜矿床研究新进 展.地质论评,59(5):933-940.