https://doi.org/10.3799/dqkx.2020.378

甘蒙北山后红泉地区海相玄武岩 地球化学、年代学特征及成因

郭小刚^{1,2},陈守余^{1*},苟 瑞²,刘 鑫³,王 秦²,蒲强林²

1. 中国地质大学资源学院,湖北武汉 430074

2. 甘肃省有色金属地质勘查局白银矿产勘查院,甘肃白银 730900

3. 甘肃省地质矿产勘查开发局第一地质矿产勘查院,甘肃天水 741020

摘 要:甘蒙北山地区发育的海相二叠系地层是中亚造山带南缘最年轻的海相沉积地层之一,为进一步探讨二叠纪古亚洲洋的关闭及后期的碰撞造山作用的时间节点,选取甘蒙北山后红泉地区二叠系海相火山岩-碎屑岩地层的5条代表性剖面进行了岩性-岩相及分布特征研究,并对海相地层中的玄武岩进行了岩相学、元素地球化学以及全岩Sr-Nd同位素等研究,同时选择剖面典型岩石进行了LA-ICP-MS 锆石U-Pb定年.获得流纹英安岩与含砂亮泥晶生屑灰岩年龄分别为273±1.7 Ma和275.8±1.4 Ma,结合已发表年龄数据及古生物资料,明确了火山岩的喷发时代介于早二叠世亚丁斯克期-中二叠世沃德期,应厘定为双堡塘组;地球化学研究表明,后红泉地区玄武岩SiO₂含量介于47.48%~54.56%,主要为玄武岩和玄武安山岩,属钠质拉斑玄武岩;稀土总量(2REE)较高,为74.90×10⁻⁶~173.61×10⁻⁶,LREE/HREE为2.32~6.55,表现出轻稀土相对重稀土轻微富集,(La/Yb)_N=1.30~6.20,在球粒陨石标准化分布曲线整体上呈现LREE轻度富集、配分曲线平缓的特征,相对富集La、Ce、Nd、Zr、Hf等元素,不同程度地亏损Ta、Nb、P、Ti等元素,∂Eu=0.83~1.20,无明显的Eu异常;(⁵⁷Sr/⁵⁸Sr)_i为0.702 024~0.706 432, ε_{Nd}(t)值介于1.99~6.54(除了一0.59 和-0.83).因此,后红泉地区玄武岩岩浆是由接近原始地幔成分的石榴石二辉橄榄岩低程度熔融形成,其演化成岩过程中并未经地壳的强烈混染,而在岩浆源区发生了强烈的混染作用,推测软流圈地幔受到了陆源沉积岩、大陆地壳或蚀变大洋地壳改造,岩石圈拆沉作用可能是其产生的重要机制;说明古亚洲洋在早期已闭合,至早-中二叠世进一步拉张裂解形成了裂谷盆地.

关键词:北山;二叠系;地球化学特征;年代学特征;构造环境;岩石学.

中图分类号: P588; P595; P597 **文章编号:** 1000-2383(2021)11-3945-20 **收稿日期:** 2020-12-29

Geochemistry, Chronology and Genesis of Marine Basalts in Houhongquan Area, Beishan, Gansu and Inner Mongolia

Guo Xiaogang^{1,2}, Chen Shouyu^{1*}, Gou Rui², Liu Xin³, Wang Qin², Pu Qianglin²

1. School of Earth Resources, China University of Geosciences, Wuhan 430074, China

2. Baiyin Mineral Exploration Institute of Gansu Nonferrous Metal Geological Exploration Bureau, Baiyin 730900, China

3. The First Institute of Geology and Mineral Exploration and Development of Gansu Province, Tianshui 741020, China

Abstract: The marine Permian strata developed in the Beishan area, Gansu and Inner Mongolia, is one of the youngest marine sedimentary strata in the southern margin of the Central Asian orogenic belt. To further explore the timeline of the Permian paleo-

基金项目:甘肃省基础地质调查项目(Nos.甘国土资勘发2016[33]-6,2017[47]-17,2018[45]-28).

作者简介:郭小刚(1989-),男,硕士研究生,工程师,主要研究矿产资源综合勘查与评价.ORCID:0000-0003-4784-9741.E-mail: 491935960@qq.com

^{*} 通讯作者:陈守余, E-mail:sychen@cug.edu.cn

引用格式:郭小刚,陈守余,苟瑞,等,2021.甘蒙北山后红泉地区海相玄武岩地球化学、年代学特征及成因.地球科学,46(11):3945-3964.

Asian Ocean closure and the later collisional orogeny, five representative sections of the Permian marine volcaniclastic-clastic strata in the Houhongquan, Beishan, Gansu and Inner Mongolia were selected for lithology-petrography and distribution characteristics studies, and petrography, elemental geochemistry and whole-rock Sr-Nd isotope studies were conducted on the basalts in the marine strata. In addition, a typical rock profile was selected for LA-ICP-MS zircon U-Pb dating. The ages of the rhyodacite and the sand-bearing bright micrite bioclastic limestone are 273 ± 1.7 Ma and 275.8 ± 1.4 Ma, respectively. Combined with published age data and paleontological data, it is clear that the eruption age of the volcanic rock is between the Artinskian age of Early Permian to the Ward stage of the Middle Permian. It should be determined as the Shuangbaotang Formation. The SiO₂ contents of basalt in Houhongquan area ranges from 47.48% to 54.56%, mainly basalt and basalt andesite, belonging to sodiumtholeiitic basalt. The total content of rare earth elements (ΣREE) is relatively high, ranging $74.90 \times 10^{-6} - 173.61 \times 10^{-6}$, LREE/ HREE is between 2.32-6.55, showing slight enrichment of light rare earth elements relative to heavy rare earth elements, with $(La/Yb)_{N} = 1.30 - 6.20$. On the whole, chondrite-normalized distribution curve shows slightly enriched LREE with the gentle distribution curve, relatively enriched elements such as La, Ce, Nd, Zr, Hf, and depleted Ta, Nb, P, Ti and other elements to varying degrees, $\delta Eu = 0.83 - 1.20$, no obvious Eu anomaly. $({}^{87}Sr/{}^{86}Sr)_i$ is 0.702 024 - 0.706 432, the $\varepsilon_{Nd}(t)$ values between 1.99 and 6.54 (except -0.59 and -0.83). Therefore, the basalt magma in the Houhongquan area is formed by low-degree melting of the garnet peridotite, which is close to the original mantle composition. During its evolution and diagenesis, it was not strongly contaminated by the crust, but a strong contaminant occurred in the magma source area. It is speculated that the asthenospheric mantle has been modified by terrigenous sedimentary rocks, continental crust or altered oceanic crust, and lithospheric delamination may be an important mechanism for its generation. It shows that the Paleo-Asian Ocean was closed in the early period, and the rift basin was formed by further extension and rifting in the Early-Middle Permian.

Key words: Beishan; Permian; geochemical characteristics; chronological characteristics; tectonic setting; petrology.

0 引言

甘蒙北山地区位于中国西北部新疆-甘肃-内 蒙古交汇处,大地构造位置处于中亚造山带南缘, 天山-兴蒙构造带中段,西接天山造山带,东连兴蒙 造山带(党犇等,2011;张新虎等,2013;Xiao et al., 2015; Li et al., 2016; Zhou et al., 2018), 横跨 3个不 同的大地构造单元,即西伯利亚、塔里木和华北板 块(图1).在漫长的地质演化历史进程中,形成了多 层次、多旋回、多时代、多体制、多尺度的构造组合, 构造形式复杂多样,构造置换强烈,为一多旋回复 合造山带(杨合群等,2008).对于北山地区构造单元 划分和构造演化历史,长期以来各家观点不尽一致 (聂凤军等,2002;许伟等,2019),北山构造演化的 争议主要反映在晚古生代洋盆闭合时限上(卜建军 等,2020),而问题的焦点主要集中在二叠纪古亚洲 洋的关闭及后期的碰撞造山作用的时间节点上 (Xiao et al., 2010;张新虎等, 2013;李敏等, 2020). 杨立业(2014)、高磊(2017)等诸多学者分别从岩石 地层、古生物、岩石地球化学及年代学特征等方面 对内蒙古二叠系地层及沉积环境进行分析,认为双 堡塘组相应层位形成时代在早二叠世早期之后乌 拉尔统空谷期,岩石组合类型由陆源碎屑岩-碳酸 盐岩过渡到陆源火山碎屑夹少量陆源粗碎屑岩,呼 和套尔盖早古生代洋内弧褶皱带北缘残余海盆的 存在说明古亚洲洋在中二叠世尚未闭合;牛亚卓等 (2018)、许伟等(2019)等对北山南部下-中二叠统 代表剖面进行古生物化石、玄武岩岩相学、元素地 球化学、Sr-Nd同位素及LA-ICP-MS锆石U-Pb年 龄测试研究,认为北山地区的二叠系海相火山岩自 下而上分为双堡塘组、菊石滩组和金塔组,所包含 的时代为早二叠世亚丁斯克期-中二叠世卡匹敦 期,整体为拉斑玄武岩系列,产于大陆裂谷环境, 源区为受俯冲物质改造的软流圈地幔,在成岩过 程中未受上覆大陆地壳的强烈混染改造,说明古 亚洲洋在早期已闭合,至早-中二叠世进一步拉 张裂解形成了裂谷盆地.基于以上问题,笔者在 北山南带后红泉地区选取二叠系海相火山岩代 表性剖面进行了详细的野外地质考察,针对典型 火山岩进行了系统采样,依据相当层位的流纹英 安岩和生物碎屑灰岩的锆石 U-Pb 同位素年龄精 确厘定了该套火山岩的喷发时限,开展了主微量 元素地球化学与同位素地球化学研究,以期进一 步分析其成因机制,探讨岩石形成构造环境,为北 山南带晚古生代构造演化认识提供新的依据.

图1 甘蒙北山地区构造地质简图

Fig.1 Tectonic and geological sketch map of the Beishan area, Gansu and Inner Mongolia

据聂风军等(2002);党犇等(2011);张新虎等(2013)修改.①骆驼山-红石山-黑鹰山-雅干深大断裂;②明水-石板井-小黄山深断裂;③红柳河-牛圈子-洗肠井蛇绿岩带;④黑山-咸泉子深大断裂;⑤柳园-大奇山-帐房山深大断裂;⑥安山-旧寺墩深大断裂;⑦ 阿尔金-恩格尔乌苏深大断裂;⑧龙首山断裂;⑨查干础鲁断裂带;⑩吉兰泰断裂带;I.西伯利亚板块;II.哈萨克斯坦板块;III.塔里 木板块;IV.华北板块;V.柴达木-祁连板块

1 地质背景

下二叠统双堡塘组火山岩在甘蒙北山南带(红 柳园裂谷带)内广泛分布,上部为细-粗粒长石砂岩 夹砾岩、粉砂岩、粉砂质页岩、灰岩等:下部以粉砂 岩、细砂岩及含钙质砂岩为主,在河西北东一带相 变为辉绿玢岩、辉绿岩、玄武岩、细碧岩、凝灰质砂 岩;厚度为924~1318m,主要分布于小独山、菊石 滩、孤山、黑尖山、四道梁、大红山等地,在四顶黑 山、红石山、破城山等地也有出露,与下伏石炭系甘 泉组为不整合接触,与上覆金塔组为整合接触,灰 岩中含腕足类、头足类、腹足类、珊瑚等化石,其火 山岩主要有安山岩、安山凝灰岩、英安质凝灰岩、 流纹英安质凝灰岩及火山角砾岩,与正常沉积岩 相间产出:时代为早二叠世至中二叠世早期(表 1;张新虎等,2013).牛亚卓等(2018)在双堡塘、红 柳干沟、珊瑚井、俞井子等地调查发现其中部发育 有一套玄武岩,局部在其顶部发育有厚层酸性火 山岩及火山碎屑岩,时代为早二叠世亚丁斯克期-沃德期.在甘蒙北山东部银根-额济纳旗及其邻区 主要呈北东东向分布于杭乌拉-蒙根乌拉和北部 哈日敖日布格一带,其岩性比较复杂,可进一步分 为上、下两段,双堡塘组下段以发育生物碎屑灰岩 为主要特点,含腕足化石,上部主要为细碎屑岩; 高磊(2017)在杭乌拉南双堡塘组下段地层中发现 腕足化石 Paeckelmanella quadriplicata,并测得粗 砂岩碎屑锆石最新年龄约为 299 Ma,将杭乌拉南 双堡塘组形成时代厘定为早二叠世早期.

2 研究区地质特征及样品采集

研究区位于北山南部红柳园裂谷带中东部,区 内二叠系由西向东沿甘草泉-四道梁-珊瑚井-二断 井-后红泉-东三洋井一线呈雁列式分布,1:20万 后红泉幅区调工作根据化石组合特征将其厘定为 哲斯组(Piz),不整合于前寒武系、加里东期花岗岩、 上泥盆统或石炭系甘泉组之上,沉积时代主要介于 二叠纪亚丁斯克期-卡匹敦期(牛亚卓等,2018),并 将其北西部的部分地层根据下伏基岩特征厘定为 石炭系柳园组下亚组;1:25万区调工作根据四道梁 地区岩性组合特征、上覆音凹峡复式深成杂岩体的 Rb-Sr全岩等时线年龄值及其具晚二叠世末期就位 等特点,将该套地层厘定为乐平统.牛亚卓等 (2018)、许伟等(2019)根据古生物组合特征及锆石 U-Pb 同位素年龄将其精准厘定为下二叠统双堡塘 组(289.5±2.3 Ma)和中二叠统菊石滩组,时代为早 二叠世亚丁斯克期-中二叠世沃德期(图2).本次研 究在对区内二叠系火山岩地层的代表性剖面进行 详细地质测量的基础上,系统采集了典型剖面的火

Tat	ole 1	Histor Inner 1	y of Mong	the stratı golia	graphi	cal su	bdivi	sion and fc	rmat	ions of the	Perm	ian s	strata	ın th	ne Beishan	area, Gar	isu and
	郭荀 (196	郭敬信 (1964)		朱伟元和沈光 隆(1977)		甘肃省地层 表编写组 (1983)		内蒙古自治区 地质矿产局 (1991)		李文国 (1996)	杨雨 (19	雨等 197)			张新月 (201	記等 3)	
统	组		统	组	统	组统		组	统	组	统	组	统	组			
上二叠统	;	红柳峡群	上 二 叠 统	方山口群	上 二 叠 统	红 岩 井 组	上 二 叠 统	哈尔苏 海群	上 二 叠 统	哈尔苏海组 一一一组	上 二 叠 统	方山口组 红岩井组 金塔组	上二叠统 		红 岩 井 组	方 山 日	
下 二 叠	梧 桐 沟 组		下 下	金塔组	下二叠	金 塔 组 双	中二叠统下	方山口组	下二叠	金塔组	下二叠	双堡塘	中二叠统 下	双堡塘	双堡塘组	双堡塘组	金塔组
登 双 统 堡 塘 组		哲斯组	- 二 叠 统	菊石滩组 双堡塘组	 叠 双 统 堡 塘 组 	☆ 堡 塘 组	- 二 叠 统	双堡塘组	叠统	双堡塘组	<u>堂</u> 统	组	- 二 叠 统	组	黄丘泉 砂岩	红山井 灰岩	双堡 塘组

表1 甘蒙北山地区二叠系划分及命名沿革表

山岩样品(图3),现由西到东对各剖面的地质概 况及岩石样品岩石学特征分述如下.

四道梁一带:以嘎顺呼都格西及四道梁一带最 为发育,总体呈近东西向带状展布,由于断裂切割 和岩体侵位而残缺不全,根据岩石组合特征及空间 分布,将本组划分为2个岩性段:双堡塘组一段分布 于西北部,多呈残留体"漂浮"于花岗岩之上,总体 呈北西西向不规则条带状展布,主要由灰-浅灰绿 色英安岩及同质凝灰岩、角砾凝灰岩、蚀变英安岩、 角岩化安山岩组成,西端零星出露灰白色大理岩 (结晶灰岩)等,控制厚度大于677.99m;双堡塘组 二段分布于嘎顺呼都格-四道梁一带,总体呈近东 西向展布,因岩体侵蚀,空间连续性较差,主要由灰 色英安质变余糜棱岩,灰绿色、深灰色英安岩夹同 质凝灰岩组成,局部可见少量灰绿色杏仁状玄武 岩,控制厚度大于629.33 m;向东部逐渐过渡为砂 岩、粉砂岩及硅质岩等.四道梁西典型剖面(图3a) 未见底,其底部受印支期花岗岩侵入破坏,其中、下 部由一套中酸性火山岩及其同质凝灰岩组成,控制 厚度大于1503.63 m;顶部为一套厚层的英安岩、安 山岩、英安质熔岩、英安质凝灰岩,控制厚度大于 3 277.96 m; 根据岩性组合特征认为: 火山活动早期 以中酸性岩浆喷溢作用为主,中间有少量代表火山 喷发间歇期的火山-沉积作用;晚期则以大量中酸 性岩浆喷溢作用及少量与火山活动密切相关的次 火山岩相伴生产出为特征,代表火山活动已接近尾 声.火山岩系的空间分布明显受近东西向区域性断 裂构造带控制,具有裂隙式喷发的特点(甘肃省地质 调查院,2001.1/25万马鬃山幅区域地质调查报告).

珊瑚井一带:总体呈近东西向带状展布,与四 道梁地区的双堡塘组构成向斜构造,珊瑚井地区的 双堡塘组火山岩组成向斜的南翼.典型剖面(图 3b) 未见底,底部受印支期花岗岩侵入破坏,下部为一 套砂泥岩,有少量灰岩和砾岩夹层,控制厚度大于 440.01 m;中部为英安岩、英安质凝灰岩夹少量细碎 屑岩,局部可见玄武岩、流纹岩,控制厚度大于 1237.06 m;上部为安山岩、英安岩夹生物亮晶灰 岩,控制厚度大于246.29m;顶部为厚层酸性火山

Fig.2 Geological map of the study area

岩及火山碎屑岩,未见顶;灰岩中富含菊石、腕足 类、苔藓虫和海百合化石(牛亚卓等,2018),其中剖 面底部产出的腕足类 Spiriferella keilhavii, Spiriferella saranae, Yakovlevia mammateformis 是 SY 组合 的重要分子(甘肃省地质局第二区域地质测量队, 1969.1/20万后红泉幅区域地质图及调查报告);牛 亚卓在剖面中部采集流纹质凝灰熔岩进行了锆石 U-Pb年龄测试,岩石主要由石英、碱性长石、斜长石 晶屑(35%)和酸性火山熔岩(65%)组成,其中石英 和长石晶屑呈棱角状、次棱角状和熔蚀状,粒径为 0.15~1.5 mm;熔岩由细小长石与石英晶体组成.

后红泉一带:呈穹隆状分布在后红泉北部,层 序较清楚,未见顶底.以基性、中性、中酸性火山岩 发育为特征,酸性火山岩相对不发育;剖面(图 3c) 位于后红泉南山西部,其未见顶底(受三叠系珊瑚 井组及新近系苦泉组砂砾岩覆盖),控制厚度大于 2131.43 m;主要岩性为英安岩、硅质岩及含砾粗砂 岩、粉砂岩等含火山碎屑物质的碎屑岩,腕足类化 石极为丰富,主要有 Spiriferella keilhavii、Spiriferella saranae、Waagenoconcha cf. irginae、Yakovlevia mammatiformis、Liosotella sptzbergiana等(甘肃省 地质局第二区域地质测量队,1969.1/20万后红泉幅 区域地质图及调查报告),根据其岩性组合特征可 厘定为双堡塘组下部层位;剖面(图 3d)位于后红泉 西部地区,不见顶底,底部受印支期花岗岩侵入破 坏,主要为厚层英安岩,控制厚度大于475.5m;下 部为含火山碎屑物质的碎屑岩夹薄层碎屑灰岩、灰 质砂岩,局部见英安岩,控制厚度大于2622.5m;中 上部为中基性火山岩与凝灰质砂岩、粉砂岩、硅质 岩互层,控制厚度大于2339.3 m.火山岩与海相沉 积地层呈不等厚互层产出,反映出火山喷发的多旋 回性特点,火山岩喷发岩性以喷溢熔岩相为主,爆 发火山碎屑岩相及次火山岩相次之;由若干个火山 喷发韵律组成,一般由英安岩→安山岩组成,个别 韵律则由安山岩→玄武岩组成,整体表现为反序列 成分演化特点.早、中期旋回具持续火山活动特征, 由5个喷发韵律组成,韵律构成可分2类:中酸性喷 溢相→中性喷溢相→沉积相(间歇相),中性喷溢 相→基性喷溢相→沉积相(间歇相).晚期喷发旋回 则火山爆发相、喷溢相→沉积相(间歇相)交互出现. 根据喷发物特征,应属早坳陷带海相火山-沉积建 造,可能为裂隙喷发(甘肃省有色金属地质勘查局 白银矿产勘查院,2020.甘肃省肃北县骆驼泉-红柳 泉北地区1:5万矿产远景调查工作总结).在其底部

图3 北山地区研究剖面地层综合柱状图

Fig.3 Generalized composite stratigraphical sections for the measured geological profiles in Beishan area

采得流纹英安岩 XWG12 样品,岩石由斑晶正 长石(20%)和基质(80%)组成,正长石斑晶 近宽板状,粒度约为0.2~0.6 mm,破裂及边缘 轻度碎粒化,有少量粘土(高岭土)等次生物, 不均匀分布,基质由粒度约为0.01~0.08 mm 的长石、石英组成;沿裂隙有较多细小纤维状 集合体绿泥石、少量碳酸盐、隐晶质帘石、氧 化铁等蚀变物分布或填充(图4a).

哥德坑一带:主要出露于哥德坑一带,构成向 斜、背斜构造.由于褶皱、断裂发育及花岗岩体侵

图 4 流纹英安岩(a)和含砂亮晶泥晶生屑灰岩(b) Fig.4 Rhyodacite(a) and sand-bearing sparry micrite bioclastic limestone (b)

 $a, b.(+)10 \times 2$

入,地层层序多不连续.下部为黄绿色片理化砾岩、 砂岩、硬砂岩夹火山岩和碎屑灰岩透镜体:上部为 紫红、黄绿等色酸性火山岩.典型剖面(图3e)与蓟 县系平头山组呈不整合接触,底部为灰黄色砾岩、 含砾粗砂岩,成分较复杂,砾石组分有杂色大理岩、 硅质岩、脉石英等,砾径为1~1.5 cm,次圆形,分选 中等,呈定向排列,控制厚度大于17m;中下部为一 套黄绿色中厚层中细粒石英砂岩,局部夹块状玄武 岩及灰岩透镜体,控制厚度大于575m,显示出较稳 定的沉积环境;上部为流纹岩、含晶屑角砾凝灰岩 等,厚度大于719m,以喷溢相为主,爆发相发育较 差.在其顶部采得含砂亮泥晶生屑灰岩 XWG8样 品,岩石由生屑、陆源砂、填隙物组成;生屑主要为 海百合、海胆类,少见苔藓虫等,杂乱分布,粒度一 般为0.5~2.2 mm,少数为0.1~0.5 mm,组成矿物为 方解石;陆源砂由长石、石英、岩屑组成,呈次棱角-次圆状,杂乱分布,粒度一般为0.25~1.1 mm,为中 粗砂,少数为0.1~0.25 mm,为细砂;长石包括斜长 石、钾长石;石英端元包括单晶石英、多晶石英、硅 质岩等;岩屑成分可见安山岩、流纹岩等.填隙物由 泥晶基质、亮晶胶结物组成,组成矿物为方解石,填 隙状分布;泥晶方解石粒度<0.01 mm;亮晶方解石 呈他形粒状,粒度为0.01~0.15 mm(图4b).

3 分析方法

本次研究样品主要为采自于后红泉地区不同位置的火山岩,由于区内的火山岩普遍发育不同程度蚀变,尽量采集蚀变弱、较新鲜的样品11件;并收集了前人在后红泉地区采集的5件玄武岩数据(许伟等,2019),后红泉地区的11件样品主量元素由中矿(天津)岩矿检测有限公司的PW4400/40X射线荧光光谱仪测试所得,分析精

度和准确度优于5%;微量元素和稀土元素由中 矿(天津)岩矿检测有限公司的XSeriesII等离子 质谱仪测试所得,分析精度和准确度优于10%.

样品加工和锆石挑选工作由河北区调实验室 完成,锆石制靶工作由北京锆年领航科技有限公司 完成,将野外样品粉碎后通过标准重矿物分离技 术,挑洗晶形完好、透明度好、无明显包裹体、无明 显破裂的单颗粒锆石用环氧树脂固定并抛光.LA-ICP-MS 锆石 U-Pb 定年测试分析在北京科荟测试 技术有限公司完成,锆石定年分析所用仪器为Anlyitik Jena PQMS Elite 型 ICP-MS 及与之配套的 ESINWR193 nm 准分子激光剥蚀系统.激光剥蚀所 用斑束直径为35μm,频率为10Hz,能量密度约为 2.31 J/cm²,以He 为载气.LA-ICP-MS 激光剥蚀采 样采用单点剥蚀的方式,测试前先用锆石标样GJ-1 进行调试仪器,使之达到最优状态(侯可军等, 2009). 锆石 U-Pb 定年以标样 GJ-1 为外标, 微量元 素含量利用 SRM610 做为外标、Si 做内标的方法进 行定量计算(Liu et al., 2010).测试过程中在每测定 10个样品前后重复测定两个锆石标样GJ-1对样品 进行校正,并测量一个锆石 Plesovice,观察仪器的 状态以保证测试的精确度.数据处理采用 ICP-MS Data Cal 程序(Liu et al., 2010),测量过程中绝大多 数分析点²⁰⁶Pb/²⁰⁴Pb>1000,未进行普通铅校 正,²⁰⁴Pb含量异常高的分析点可能受包体等普 通 Pb 的影响,对²⁰⁴Pb 含量异常高的分析点在计 算时剔除,锆石年龄谐和图用 Isoplot3.0 程序获 得.详细实验测试过程可参见侯可军等(2009). 样品分析过程中, Plesovice标样作为未知样品 的分析结果为 337.2±0.7 Ma(n=58, 2σ), 对应 的 年 龄 推 荐 值 为 337.13±0.37 Ma(2σ)(Slama et al., 2008), 两者在误差范围内完全一致.

全岩 Sr-Nd同位素分析在中矿(天津)岩矿检测 有限公司实验室利用 Phoenix 热表面电离质谱仪和 ISOPROBE-T 热表面电离质谱仪完成.样品处理 流程如下:(1)称取粉碎至大约200目的岩石粉末 50~100 mg 置于 Teflon 溶样弹中;(2)依次加入 1.5 mL HNO₃和 1.5 mL HF,轻轻震荡使样品全部 溶解;(3)将样弹装入钢套后在190℃条件下消解 48 h;(4)将其在120℃条件下蒸干后,加入约1 mL HCl;(5)用 AG50X8 阳离子交换树脂分离 Rb、Sr 和 REE,再用 HDEHP 萃淋树脂分离 Sm 和 Nd.测得 的⁸⁷Sr/⁸⁶Sr 和¹⁴³Nd/¹⁴⁴Nd 比 值 分 别 用⁸⁶Sr/⁸⁸Sr= 0.119 4 和¹⁴⁶Nd/¹⁴⁴Nd=0.721 9标准化.详细的实验 流程和分析方法见文献(Ling *et al.*,2009).

4 分析结果

4.1 锆石 CL 图像和 U-Pb 测年

在后红泉地区采集了2件二叠纪火山岩-沉积 岩样品(XWG8和XWG12)进行LA-ICP-MS锆石 U-Pb年代学测试(表2).

从 XWG8、XWG12 样品中分选出的锆石颗粒 无色、透明,主要呈短柱状自形晶或半自形粒状(图 5). 锆石的长轴长度范围大多在 50~130 μm,且宽 度:长度比分布在 1:1~1:3, Th/U比值除了少数几 个在 0.30~0.39之间,其余均大于 0.4,在 0.41~1.01 之间变化,发育岩浆锆石特征的振荡环带,均有典型的岩浆锆石特征(吴元保和郑永飞,2004). XWG8共分析了20个测点,XWG12分析了14个 测点,其测试数据见表2;XWG8的20个测点数据 较集中落在谐和线上及其附近,其²⁰⁶Pb/²³⁸U年龄 变化范围(273~281 Ma),得到²⁰⁶Pb/²³⁸U加权平均 年龄275.8±1.4 Ma(MSWD=0.64;图6a),因其 年龄数据较统一,基本可以代表相当层位火山岩 的形成年龄;XWG12的14个测点数据均较集中 落在谐和线上及其附近,其²⁰⁶Pb/²³⁸U年龄有狭窄 的变化(270~275 Ma),给出了一个较好 的²⁰⁶Pb/²³⁸U加权平均年龄273±1.7 Ma(MSWD= 0.15)(图6b),可代表该样品的成岩年龄.

表 2 后红泉剖面样品锆石 U-Pb 测试结果

Table 2 Zircon U-Pb dating results of the samples from Houhongquan profiles

	DI	232.001	238	232.001 /			同位到	素比值				同	位素年間	龄(Ma)		
测试	Pb	(10^{-6})	(10^{-6})	1 N/ 2381 T	²⁰⁷ Pb/	1	²⁰⁷ Pb/	1	²⁰⁶ Pb/	1	²⁰⁷ Pb/	1	²⁰⁷ Pb/	1	²⁰⁶ Pb/	1
编号	(10)			1000	$^{206}\mathrm{Pb}$	lσ	$^{235}\mathrm{U}$	1σ	$^{238}\mathrm{U}$	1σ	$^{206}\mathrm{Pb}$	lσ	²³⁵ U	lσ	²³⁸ U	lσ
						X	WG8 含矿	ゆ亮泥晶生	三屑灰岩							
1	5	52	89	0.58	0.056 4	0.004 1	0.335 9	0.024 2	0.043 2	0.000 8	478	167.57	294	18.36	273	5.10
2	16	130	315	0.41	0.050 4	0.001 1	0.300 9	0.007 4	0.043 3	0.000 5	213	49.99	267	5.78	273	3.16
3	13	94	253	0.37	0.055 1	0.001 3	0.331 6	0.009 6	0.043 5	0.000 6	417	56.48	291	7.29	275	3.76
4	17	197	318	0.62	0.052 7	0.000 9	0.317 5	0.006 1	0.043 8	0.000 5	322	40.74	280	4.67	276	3.30
5	17	157	332	0.47	0.051 8	0.001 1	0.313 9	0.008 1	0.043 8	0.000 5	280	50.00	277	6.23	277	3.33
6	41	447	758	0.59	0.051 9	0.000 6	0.312 0	0.005 2	0.043 6	0.000 5	283	27.78	276	3.99	275	3.16
7	40	366	759	0.48	0.053 0	0.001 1	0.317 2	0.008 3	0.043 3	0.000 4	328	48.15	280	6.42	274	2.68
8	15	115	292	0.39	0.051 6	0.001 1	0.312 9	0.006 7	0.044 1	0.000 4	265	52.77	276	5.16	278	2.65
9	38	376	701	0.54	0.052 1	0.000 7	0.315 4	0.005 0	0.044 0	0.000 6	287	33.33	278	3.88	278	3.53
10	22	308	377	0.82	0.051 0	0.000 8	0.309 0	0.005 6	0.044 0	0.000 5	239	32.40	273	4.33	278	3.08
11	8	136	143	0.95	0.049 7	0.001 9	0.298 3	0.011 6	0.043 6	0.000 5	189	116.65	265	9.10	275	3.03
12	9	62	176	0.35	0.052 2	0.001 8	0.310 7	0.010 1	0.043 3	0.000 5	295	79.62	275	7.80	273	3.28
13	31	423	547	0.77	0.052 2	0.000 8	0.319 8	0.004 9	0.044 5	0.000 6	295	35.18	282	3.79	281	3.48

续表2																
测试	Ph	²³² Th	²³⁸ I I	²³² Th/			同位為	素比值				同	位素年	龄(Ma)		
编号	(10^{-6})	(10^{-6})	(10^{-6})	²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ
14	41	390	771	0.51	0.051 8	0.000 6	0.315 2	0.004 4	0.044 2	0.000 5	276	23.15	278	3.43	279	3.12
15	15	127	302	0.42	0.053 4	0.001 1	0.321 6	0.007 6	0.043 6	0.000 5	346	44.44	283	5.82	275	2.95
16	8	51	159	0.32	0.050 6	0.001 4	0.310 2	0.009 9	0.044 3	0.000 6	233	60.18	274	7.66	280	3.97
17	11	87	216	0.40	0.049 8	0.001 0	0.303 4	0.007 0	0.044 2	0.000 5	183	15.74	269	5.45	279	3.24
18	12	171	206	0.83	0.057 0	0.003 1	0.336 6	0.017 1	0.043 0	0.000 5	500	120.35	295	13.00	271	3.30
19	22	247	418	0.59	0.054 9	0.001 0	0.330 1	0.006 7	0.043 7	0.000 6	409	43.52	290	5.09	276	3.92
20	14	121	288	0.42	0.051 5	0.001 0	0.306 5	0.007 5	0.043 1	0.000 5	265	46.29	271	5.81	272	3.39
							XWG1	2 流纹英	安岩							
1	17	238	298	0.80	0.055 8	0.001 7	0.333 9	0.010 6	0.043 4	0.000 4	443	66.66	293	8.06	274	2.66
2	13	178	239	0.74	0.054 0	0.001 5	0.322 0	0.008 8	0.043 5	0.000 6	372	64.81	283	6.72	274	3.46
3	12	129	212	0.61	0.048 1	0.007 4	0.287 7	0.046 2	0.043 2	0.000 5	106	325.89	257	36.43	273	2.79
4	25	336	449	0.75	0.050 7	0.001 6	0.302 2	0.009 7	0.043 3	0.000 5	228	72.21	268	7.55	273	3.24
5	38	437	708	0.62	0.052 3	0.001 2	0.309 8	0.009 8	0.042 8	0.000 5	298	53.70	274	7.62	270	3.00
6	13	124	236	0.53	0.056 2	0.002 7	0.333 9	0.017 0	0.043 0	0.000 4	457	105.55	293	12.97	271	2.74
7	15	187	274	0.68	0.052 6	0.001 6	0.315 6	0.010 0	0.043 5	0.000 4	309	66.66	279	7.71	274	2.76
8	32	504	545	0.92	0.052 6	0.000 9	0.312 7	0.007 0	0.043 1	0.000 7	309	38.89	276	5.40	272	4.18
9	25	343	433	0.79	0.053 9	0.002 4	0.323 0	0.018 6	0.043 3	0.000 7	369	99.99	284	14.29	273	4.32
10	18	258	325	0.79	0.050 8	0.001 9	0.302 0	0.010 7	0.043 2	0.000 5	232	87.02	268	8.31	273	2.95
11	11	122	193	0.63	0.050 6	0.004 4	0.299 4	0.026 2	0.042 9	0.000 8	220	199.98	266	20.51	271	5.10
12	17	233	304	0.77	0.053 7	0.001 7	0.318 3	0.010 8	0.043 0	0.000 5	367	72.22	281	8.31	271	3.37
13	22	290	376	0.77	0.058 3	0.001 0	0.351 3	0.011 0	0.043 6	0.001 1	539	43.51	306	8.27	275	6.61
14	29	423	501	0.84	0.055 3	0.001 3	0.328 4	0.006 8	0.043 2	0.000 5	433	51.85	288	5.22	273	3.38

4.2 主量元素特征

后红泉地区双堡塘组玄武岩主量元素分析结

果(表3)显示:SiO₂含量为47.48%~54.56%,Al₂O₃ 含量为12.98%~17.84%,MgO含量为3.57%~

图 5 后红泉剖面同位素样品锆石 CL 图像 Fig.5 The zircon CL images for the samples from Houhongquan profiles 图中红色圈为U-Pb年龄测点

8.36%, FeO+Fe₂O₃含量为7.86%~11.28%, 样品 的部分碳酸盐化导致CaO(6.81%~12.21%)含量 偏高; Na₂O 与 K₂O 含量分别介于 2.61%~4.37% 和 0.10%~1.19%, K₂O/Na₂O 比值介于 0.03~0.31, Na₂O>K₂O,显示出钠质火山岩特征,全碱(Na₂O+ K₂O)含量变化为2.77%~5.04%;TiO₂含量大多为 1.17%~2.39%, 平均值为1.71%, P2O5含量为 0.20%~0.52%,平均值为0.30%.在火山岩SiO2-(Na₂O+K₂O)(TAS)图解中(图 7a),6件样品落入 玄武岩区域,8件样品落入玄武安山岩区域,各有1 件样品落入玄武粗安岩和安山岩区域;通过镜下观 察及火山岩样品的烧失量LOI>1.5%,显示普遍具 有不同程度的蚀变,为了尽可能消除蚀变带来的影 响,利用抗蚀变元素Nb/Y-Zr/Ti再次进行岩石分 类,根据抗蚀变Nb/Y-Zr/TiO2图解(图7b),Nb/Y 值皆<0.5,落入玄武安山岩和安山岩范围内;Mg* 为0.47~0.63;里特曼指数(o)为0.90~3.74,平均值 为2.26,大多显示钙碱性特征(仅1个样品为碱性); 固结指数(SI)(23.17~38.43,小于40)较低,表明岩 浆分异程度高.由于样品遭受不同程度的蚀变,使 K、Na元素含量发生变化,导致在SiO₂-K₂O图解(图 7c)中,有10件样品在钙碱性系列区域,6件样品落 在低钾(拉斑玄武系列)区域,而在SiO₂-FeO*/MgO 图解(图7d)中,除了少数几个样品落在拉斑与钙碱 性系列的界线附近,其余样品均落入拉斑系列区域 中,与许伟等(2019)研究的一致,可见研究区二叠 纪基性火山岩整体属于拉斑玄武系列.

4.3 稀土元素特征

后红泉地区双堡塘组玄武岩稀土元素及参 数特征见表 3.16件玄武岩样品的稀土总量 ΣREE 为 74.90×10⁻⁶~173.61×10⁻⁶, 平均值为 105.34×10⁻⁶, 为较高丰度型; 轻稀土总量 LREE 为 54.53×10⁻⁶~150.63×10⁻⁶, 平均值为 82.20× 10⁻⁶, 重稀土总量 HREE 为 18.67×10⁻⁶~28.77× 10⁻⁶, 平均值为 23.15×10⁻⁶, LREE/HREE 为 2.32~6.55, 平均值为 3.58; (La/Sm)_N=0.98~ 1.85,平均值为1.43,(La/Yb)_N=1.30~6.20,平 均值为2.50,表现出轻稀土相对重稀土轻微富 集; ôEu=0.83~1.20, 平均值为0.97, 无明显的 Eu异常,表明岩浆在成岩过程中未发生斜长石 的分离结晶或斜长石的分离结晶作用较弱.稀 土球粒陨石标准化分布曲线整体上呈现LREE 轻度富集、配分曲线平缓的特征,明显区别于 N-MORB,高于E-MORB,较OIB趋势平缓(图 8a).

4.4 微量元素特征

笔者对后红泉地区双堡塘组玄武岩微量元素 结果(表3)进行分析,在微量元素原始地幔标准化 蛛网图上(图8b),玄武岩样品相对富集La、Ce、Nd、

Zr、Hf等元素,不同程度地亏损Ta、Nb、P、Ti等 元素,Ti的亏损特征表明岩浆源的贫钛特征或富 钛矿物分离结晶后残余熔体特征.微量元素原始 地幔标准化配分曲线明显不同于N-MORB、E-MORB以及OIB.虽然有类似Ta-Nb-Ti异常的岛 弧岩特征,但不相容元素的丰度整体上高于弧亚 碱性玄武岩.Nb/Ta为9.76~16.48,平均值高于 大陆地壳的Nb/Ta比值(约11~12)(Taylor and Mclennan,1985),低于球粒陨石及原始地幔的 Nb/Ta比值(约17.5)(Sun and McDonough, 1989),Nb、Ta比值反映岩浆源区很可能有壳 源的物质成分加入(赵振华等,2008).

4.5 Sr、Nd 同位素特征

本文对后红泉双堡塘组的火山岩样品进行了 全岩 Sr、Nd 同位素测定(表4),计算时采用的年龄 是新测得的锆石年龄(273 Ma).数据表明,后红泉 火山岩样品 Sr同位素的初始比值(87 Sr/ 86 Sr)_i值为 0.702 024~0.706 432; $\epsilon_{Nd}(t)$ 值有两个样品为负值 (-0.59和-0.83),其余全为正值,为0.13~6.54.同 时收集了许伟等(2019)后红泉双堡塘组火山岩 Sr、 Nd同位素数据(表4),Sr同位素的初始比值相对较 高,(87 Sr/ 86 Sr)_i=0.705 854~0.707 285,对应的 $\epsilon_{Nd}(t)$ 值均为正值,介于1.2~10.0.

5 讨论

5.1 火山岩成岩年龄

在前人对甘蒙北山后红泉地区研究的基础上, 笔者依据锆石 U-Pb 定年及古生物资料,对后红泉 剖面火山岩的喷发时代及延限进行了补充.本次研

图7 后红泉火山岩样品 SiO₂-(Na₂O+K₂O)图解(a)、Nb/Y-Zr/TiO₂判别图解(b)、SiO₂-K₂O图解(c)和SiO₂-FeO*/ MgO图解(d)

Fig.7 SiO₂-(Na₂O+K₂O)(a), Nb/Y-Zr/TiO₂(b), SiO₂-K₂O(c), SiO₂-FeO*/MgO(d) diagrams for the volcanic samples from Houhongquan profiles

a. 底图据 Bas *et al.*(1986); b. 据 Winchester and Floyd(1977); c. 底图据 Hastie *et al.*(2007); d. Miyashiro(1974); Le Maitre 蓝色线, Rickwood 总结了 Peccerillo and Taylor(1976), Ewart(1982), Innocenti *et al.*(1982), Carr(1985)和 Middlemost(1985)的分类界线, 以绿色阴影条带表示

究获得后红泉火山岩样品流纹英安岩(XWG12)的 年龄为273±1.7 Ma,含砂亮泥晶生屑灰岩 (XWG8)中锆石的年龄为275.8±1.4 Ma,表明该 剖面双堡塘组玄武岩的喷发时代为早二叠世空谷 期;后红泉双堡塘组下部层位中腕足类化石较为丰 富,可见中二叠世标准生物分子(Waagenoceras); 许伟等(2019)的研究发现后红泉剖面下段英安岩 的年龄为289.5±2.3 Ma,喷发时代为早二叠世亚 丁斯克期.可见后红泉双堡塘组火山岩喷发时代 介于早二叠世亚丁斯克期-中二叠世沃德期.

5.2 火山岩的成因讨论

5.2.1 成岩机制 在La-La/Yb协变关系图中,通常由同一源区发生不同程度部分熔融所形成的火

山岩系列La与La/Yb呈正相关,由同一母岩浆分离 结晶所形成火山岩系列的La/Yb比值无明显变化 (Allègre and Minster, 1978),研究区火山岩样品La 与La/Yb呈正相关(图9a),可推测研究区玄武岩样 品则由母岩浆发生不同程度部分熔融所形成.经不 同程度部分熔融形成的岩浆通过岩石圈(包括岩石 圈地幔和地壳)到达地壳岩浆房和上升至地表途 中,会受到不同程度大陆地壳或岩石圈的混染作用 (夏林圻等,2007);利用微量元素及不相容元素的 比值能够有效判断岩石是否经历了同化混染作用, 通常认为未受到岩石圈混染作用的软流圈(或地幔 柱)源大陆玄武岩的鲜明特点是原始地幔标准化 Th/Nb比值小于1(Saunders *et al.*,1992),Nb/La比

表3 后红泉地区二叠纪玄武岩主量(%)及微量(10⁻⁶)元素结果

Table 3 Major (%) and trace element (10^{-6}) data of the Permian basalts from Houhong quan area

样品	XWG	XWG	XWG	XWG	XWG	XWG	XWG	XWG	XWG	XWG	XWG			を は /な (001)	0)	
编号	9	10	22	23	24	35	36	38	42	43	45		1 ⁴	+伟等(201)	9)	
型件	杏仁	杏仁	木仁	木仁	木仁	木仁	木仁	木仁	木仁	木仁	木仁	16HHQ-	16HHQ-	16HHQ-	16HHQ-	16HHQ-
石圧	状(安	状(安	宣仁	宣仁 壮女	宣仁 壯安	宣仁	宣仁	宣仁 壮女	宣仁 壮女	宣仁 壮女	宣仁 壮女	H5	H11	H13	H17	H18
名称	山)玄	山)玄	小文山岩	武岩	武岩	<u>大</u> 型	伝告	武岩	武岩	が立	武岩	玄武岩	玄武岩	支武岩	玄武岩	玄武岩
	武岩	武岩	щл	PA 11	1-V/LI	44					P-(1)	石區有	24 - 6 / 1	2 B (71	2 H (1)	
主量	元素															
SiO_2	47.76	49.46	50.66	49.78	53.12	48.70	50.08	50.28	49.80	47.48	53.10	48.6	48.72	47.5	54.56	51.04
$\mathrm{Al}_2\mathrm{O}_3$	15.36	14.12	17.84	16.30	16.75	15.15	13.78	15.63	17.01	16.89	15.57	14.7	15.56	15.69	13.91	12.98
Fe_2O_3	3.45	2.00	2.61	2.64	2.36	4.71	4.13	2.49	4.24	3.37	3.92	3.85	2.91	2.86	5.88	4.25
FeO	4.98	6.65	6.63	7.01	5.82	6.42	7.15	6.77	6.01	6.50	5.15	6.6	5.76	6.24	2.74	3.61
TiO ₂	1.41	1.82	1.58	1.78	1.17	1.85	2.39	1.71	2.07	2.06	1.40	1.86	1.75	1.84	1.4	1.32
K ₂ O	0.01	0.01	0.82	0.97	0.93	0.36	0.73	0.18	1.19	0.43	0.24	0.35	0.4	0.44	0.1	0.18
Na ₂ O	2.76	4.37	3.30	3.27	3.64	3.27	3.62	2.99	3.85	3.14	3.34	3.56	2.61	3.58	3.12	3.43
CaO	12.21	10.18	7.09	6.81	6.89	7.84	9.12	8.36	7.47	7.91	8.20	10.9	10.95	9.72	9.38	10.76
MgO	5.62	4.96	5.60	7.06	5.50	8.30	5.75	0.15	0.13	7.56	5.95	5.1Z	7.08	(3.57	4.77
MnO	0.17	0.16	0.16	0.14	0.13	0.20	0.21	0.15	0.18	0.21	0.16	0.14	0.2	0.18	0.1	0.11
P_2O_5	0.20 E 49	0.36	0.29	2.86	0.30	2.10	2.09	2.49	0.30	4.20	2.76	0.28	0.3	0.52	0.3Z	0.29
CO	5.40	4.40	0.46	0.20	0.62	0.20	3.00	0.22	2.55	4.29	0.07	3.74	3.43	4.10	4.05	0.94
0.02	0.00	4.77	0.40	2.65	2.06	2.21	2.67	1.20	2.74	2 0.92	1.97	-	-	- 2 50	-	-
0	22 /1	2.97	20.54	2.00	2.00	2.31	2.07	20.40	20 62	26.00	21.00	2.13	27.74	24 70	0.9	20.27
SI Ma [#]	0.55	0.51	0.53	0.57	0.55	0.58	20.89	0.61	0.53	0.50	0.55	20.28	0.63	0.61	23.17	29.57
		0.01	0.00	0.57	0.00	0.08	0.43	0.01	0.00	0.33	0.00	0.5	0.03	0.01	0.47	0.00
La	8.72	15.05	13 19	15 29	18 89	9 42	9.61	7 65	12 54	11 65	9.06	15.2	9.95	24.2	13 7	12.4
Ce	21.72	36.50	29.87	44 53	50.63	28.13	26.66	21.08	39.75	37.91	22.37	36.6	27.3	65.6	33.1	30.6
Pr	3.64	5.51	4.60	6.01	6.31	4.65	4.40	3.51	5.37	4.96	4.00	5.06	4.08	9.35	4.68	4.25
Nd	16.40	23.66	19.80	25.36	28.21	20.43	20.79	15.77	24.45	22.15	19.13	22.2	18.6	40	20.5	19
Sm	4.22	5.58	4.82	5.87	6.41	5.51	5.73	4.93	6.20	6.44	4.39	5.88	4.94	8.94	5.2	4.85
Eu	1.53	1.91	2.07	2.06	1.77	1.87	2.06	1.59	1.97	1.98	1.52	1.87	1.74	2.54	1.56	1.49
Gd	4.55	5.6	5.74	7.43	6.53	6.83	6.81	5.35	7.34	6.28	4.63	6.28	5.18	7.76	5.32	4.97
Tb	0.89	1.04	0.82	1.11	1.06	1.27	1.16	0.93	1.07	1.02	0.81	1.04	0.86	1.13	0.92	0.84
Dy	4.25	5.32	5.29	6.64	6.25	7.87	8.07	6.46	6.41	6.51	5.74	6.58	5.42	6.23	5.88	5.4
Но	1.14	1.24	1.11	1.35	1.22	1.66	1.62	1.36	1.50	1.34	1.13	1.42	1.17	1.18	1.2	1.13
Er	3.45	3.57	3.38	4.08	3.79	4.8	4.65	4.12	4.21	4.28	3.28	3.96	3.1	3.02	3.29	3.1
Τm	0.51	0.57	0.51	0.67	0.63	0.79	0.69	0.58	0.69	0.70	0.51	0.59	0.47	0.44	0.5	0.47
Yb	3.35	3.59	3.26	4.02	4.19	4.81	4.65	3.97	4.30	4.30	3.29	3.8	3	2.8	3.21	3.07
Lu	0.53	0.59	0.55	0.69	0.67	0.74	0.77	0.70	0.74	0.70	0.59	0.58	0.45	0.42	0.48	0.46
ΣREE	74.90	109.73	95.01	125.11	136.57	98.77	97.67	78.00	116.54	110.23	80.44	111.06	86.26	173.61	99.54	92.03
LREE	56.23	88.21	74.35	99.12	112.22	70.00	69.24	54.53	90.27	85.11	60.46	86.81	66.61	150.63	78.74	72.59
HREE	18.67	21.52	20.66	25.99	24.35	28.77	28.43	23.47	26.27	25.12	19.98	24.25	19.65	22.98	20.8	19.44
LREE/ HREE	3.01	4.10	3.60	3.81	4.61	2.43	2.44	2.32	3.44	3.39	3.03	3.58	3.39	6.55	3.79	3.73
δEu	1.06	1.03	1.20	0.95	0.83	0.93	1.01	0.94	0.89	0.94	1.02	0.94	1.05	0.93	0.91	0.93
δCe	0.93	0.96	0.92	1.12	1.11	1.02	0.98	0.98	1.16	1.20	0.89	1	1.03	1.05	0.99	1.01

续表3																
样品	XWG		14	r	0)											
编号	9	10	22	23	24	35	36	38	42	43	45		V	110-7(201	0)	
(La/ Yh).	1.75	2.83	2.73	2.56	3.04	1.32	1.39	1.30	1.97	1.83	1.86	2.87	2.38	6.2	3.06	2.9
(La/	1.00	1 70	1 70	1.04	1.05	1.00	1.05	0.00	1.07	1 1 4	1.20	1.00	1.07	1.7	1.00	1 01
$\mathrm{Sm})_{\mathrm{N}}$	1.30	1.70	1.72	1.64	1.85	1.08	1.05	0.98	1.27	1.14	1.30	1.63	1.27	1.7	1.66	1.61
微量																
元素																
Sr	379	207	472	401	375	206	237	184	496	226	212	184	445	546	290	285
Li	10.1	23.9	24.6	27.3	14.2	9.6	18.4	14.4	19.4	23.9	15.7	8.8	14.3	14.7	16	16.8
Be	0.75	1.22	1.27	1.38	1.26	1.10	1.21	0.89	1.58	1.39	0.85	-	-	-	-	-
V	97.8	98.2	220.2	211.5	161.7	298.4	354.1	258.4	252.1	246.5	245.6	350	290	265	242	233
Cr	144.1	93.75	78.64	123.3	105.0	250.5	174.2	236.3	150.8	166.3	146.7	93.2	272	246	146	148
Ga	11.1	12.50	21.00	20.22	20.02	19.92	18.38	19.08	21.44	19.76	17.33	21.9	17.2	18	13.5	14.1
Со	32.42	28.29	29.31	30.46	27.90	40.79	41.87	39.93	34.65	36.70	31.25	35.3	38	35.3	25.3	27.1
Ni	52.14	38.49	25.54	43.63	38.87	49.26	40.65	54.69	50.21	63.48	37.48	26.7	68.8	60.6	51.2	51.2
Ba	36	56	159	209	229	63	107	36	154	96	49	78	74	195	24	46
Sc	26.25	22.00	29.83	30.54	25.78	46.59	42.92	40.87	35.78	34.30	38.61	25.7	24.4	24.5	23.2	20.3
Rb	4.39	3.39	38.03	52.70	44.76	19.68	71.68	6.20	38.56	5.30	4.34	21.2	11.8	9.53	3.64	4.57
Hf	3.10	4.80	4.78	6.64	6.10	4.55	4.97	4.26	6.20	4.78	3.41	4.5	3.81	5.82	4.38	4.18
Zr	149	222	179	238	229	171	197	156	276	229	149	167	151	266	173	161
Nb	4.5	11.0	11.6	13.4	15.0	6.8	6.5	5.9	15.1	6.6	6.0	6.9	5.6	5.7	6.5	6
Cs	0.27	0.31	0.43	0.44	0.52	0.29	0.51	0.33	1.84	0.92	0.43	0.41	0.44	0.18	0.18	0.28
Cd	0.21	0.27	0.23	0.23	0.25	0.18	0.23	0.19	0.22	0.31	0.19	-	-	-	-	-
Th	0.97	1.37	1.28	1.34	2.20	0.96	1.01	0.86	0.90	0.88	1.01	1.07	0.45	1.44	1.47	1.3
U	0.72	0.58	0.53	0.68	0.80	0.43	0.74	0.37	0.54	0.49	0.46	0.31	0.28	0.66	0.56	0.3
Та	0.28	1.04	0.71	0.96	0.92	0.67	0.53	0.60	1.01	0.53	0.55	0.56	0.45	0.48	0.53	0.5
W	0.24	0.33	0.33	0.44	0.42	0.31	0.28	0.28	0.26	0.32	0.28	-	-	-	-	-
Pb	1.2	1.3	5.2	6.3	7.5	2.8	4.4	3.6	6.2	3.2	5.4	5.9	2.9	3.3	5.7	4.1
Bi	0.06	0.10	0.28	0.26	0.28	0.14	0.13	0.10	0.08	0.10	0.22	-	-	-	-	-
Υ	25.5	30.5	30.4	45.8	48.5	55.2	57.9	46.5	49.8	49.6	31.9	33	26.1	27.2	29	26.3

值 ≥ 1 (Kieffer *et al.*,2004),研究区火山岩样品 Nb/La< 1(只有一个值为1.2),大多数(Th/Nb)_N> 1,说明该区玄武岩遭受了岩石圈混染作用,在Y/Nb-Zr/Nb图解中(图9b),也呈现出软流圈地幔物质受到岩石圈物质混染的趋势.如果受地壳混染作用,SiO₂含量与 $\epsilon_{Nd}(t)$ 和(⁸⁷Sr/⁸⁶Sr)_i表现出一定相关性,然而后红泉剖面的玄武岩 $\epsilon_{Nd}(t)$ 值和(⁸⁷Sr/⁸⁶Sr)_i值并不随SiO₂含量变化(图9c,9d),可见本区玄武岩在演化成岩过程中并未经地壳的强烈混染,所以混染作用应发生在岩浆的源区.不同来源玄武岩的Nb/U、Nb/Th及Th/U等微量元素比值有所差异,在其相关图解上显示本区双堡塘组玄武岩具有IAB或大陆地壳与N-MORB端元混合的特征(图9e,9f),推测基性岩浆来源于受到陆源沉积岩、大陆地

壳或蚀变大洋地壳改造的软流圈地幔.

5.2.2 构造环境 高场强元素(Zr、Y)属非活动 性元素,对岩浆的结晶分离和同化混染反应不 灵敏,受蚀变影响也较小,故用Zr、Y等元素能有 效地判别其构造环境.在Zr/Y-Zr判别图解(图 10a)上,研究区火山岩样品点落入板内玄武岩范 围内,少数落入MORB范围内;由于Nb、Ta亏损 的影响,在Nb×2-Zr/4-Y图解上,样品点落入板 内玄武岩和火山弧玄武岩范围内,少数向N-MORB过渡(图10b);Ti和V在热液蚀变和中等 到高级变质作用过程中为不活泼元素,样品的 Ti/V比值为31.85~111.08,远高于岛弧玄武岩 (10~20)和典型MORB的Ti/V比值(约为 25),表明其应形成于板内伸展环境(图10c).

图8 后红泉玄武岩样品稀土元素球粒陨石标准化分布型式图(a)和微量元素原始地幔标准化蛛网图(b)

Fig.8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) for the basalts from Houhongquan area

标准化值据 Sun and Mcdonough (1989); Taylor and McDonough (1985), OIB、N-MORB、E-MORB 及弧亚碱性玄武岩的分配样式参考 Xia and Li (2019)

]	Γable 4	Sr-Nd	isotopic co	ompositio	ns of the	volcanic	sample	from Ho	uhongquan	profiles		
样品号	Rb (10 ⁻⁶)	Sr (10 ⁻⁶)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/	$\pm 2\sigma$	(⁸⁷ Sr/ ⁸⁶ Sr) _i	Sm (10 ⁻⁶)	Nd (10^{-6})	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	$\pm 2\sigma$	$\epsilon_{\rm Nd}(t)$	数据 来源
XWG9	4.39	379	0.033 5	0.705 57	0.000 02	0.705 44	4.22	16.40	0.156 6	0.512 778	0.000 008	4.13	
XWG10	3.39	207	0.047 4	0.705 58	0.000 02	0.705 39	5.58	23.66	0.143 5	0.512 784	0.000 008	4.70	
XWG22	38.03	472	0.233 1	0.707 33	0.000 01	0.706 43	4.82	19.80	0.148 2	0.512 521	0.000 010	-0.59	
XWG23	52.70	401	0.380 2	0.705 18	0.000 02	0.703 71	5.87	25.36	0.140 9	0.512 787	0.000 012	4.86	
XWG24	44.76	375	0.345 7	0.707 78	0.000 01	0.706 43	6.41	28.21	0.138 3	0.512 491	0.000 009	-0.83	
XWG35	19.68	206	$0.276\ 4$	0.704 59	0.000 02	0.703 51	5.51	20.43	0.164 2	0.512 915	0.000 008	6.54	本研究
XWG36	71.68	237	0.875 3	0.705 42	0.000 01	0.702 02	5.73	20.79	0.167 7	0.512 593	0.000 064	0.13	
XWG38	6.20	184	0.097 7	0.704 91	0.000 02	0.704 53	4.93	15.77	0.190 3	0.512 961	0.000 007	6.53	
XWG42	38.56	496	0.225 2	0.706 55	0.000 02	0.705 68	6.20	24.45	0.154 3	0.512 888	0.000 009	6.36	
XWG43	5.30	226	0.067 9	0.704 62	0.000 02	0.704 36	6.44	22.15	0.177 0	0.512 890	0.000 013	5.61	
XWG45	4.34	212	0.059 2	0.705 41	0.000 02	0.705 18	4.39	19.13	0.1397	0.512 743	0.000 009	4.04	
16HHQ-H11	11.8	445	0.076 7	0.705 96	0.000 01	0.705 85	4.9	18.6	0.160 3	0.512 886	0.000 009	6.2	
16HHQ-H13	9.5	546	0.050 5	0.706 17	0.000 01	0.706 28	5.2	40.5	$0.078\ 1$	0.512 922	0.000 002	10	许伟等
16HHQ-H18	4.6	285	0.043 2	0.706 49	0.000 01	0.706 31	4.9	19	0.157 0	0.512 697	0.000 004	2.7	(2019)
16HHQ-H5	21.2	184	0.333 1	0.708 66	0.000 01	0.707 29	5.9	22.2	0.161 8	0.512 629	0.000 003	1.2	

表4 后红泉剖面火山岩样品 Sr-Nd 同位素分析结果

注:计算参数为(⁸⁷Sr/⁸⁶Sr)_i=(⁸⁷Sr/⁸⁶Sr)_s-(⁸⁷Rb/⁸⁶Sr)_s×(e^λ-1); λ =1.42×10⁻¹¹/a; ϵ (Sr)=[(¹⁴³Nd/¹⁴⁴Nd)_s/(¹⁴³Nd/¹⁴⁴Nd)_{CHUR}-1]×10 000; ϵ (Nd)=[(¹⁴³Nd/¹⁴⁴Nd)_s/(¹⁴⁴Nd)_S/(¹⁴³Nd/¹⁴⁴Nd)_{CHUR}-1]×10 000; t代表样品形成时间;(¹⁴⁷Sm/¹⁴⁴Nd)_{CHUR}=0.1967;(¹⁴³Nd/¹⁴⁴Nd)_{CHUR}=0.512 638.

5.2.3 岩浆源区 前人通过大量的实验研究认为 玄武质岩浆来源于地幔橄榄岩的部分熔融,因此, 通过玄武岩的地球化学特征能够推断出岩浆源区 特征;惰性元素 Nb、Zr在部分熔融过程中不会随着 部分熔融程度和分离结晶作用而发生变化,故利用 Zr/Nb 比值可以推断岩浆源区的类型(张志伟, 2018);原始地幔物质 Zr/Nb 值是 18,富集地幔的则 小于 18,亏损地幔的大于 18,而研究区玄武岩 Zr/ Nb 为 15.14~47.08,平均值为 25.86,可推测本区玄 武质岩浆是由亏损地幔部分熔融形成的.研究区主量元素 TiO₂含量为1.17%~2.39%,平均值为1.71%,与洋中脊玄武岩(MORB)(1%~1.5%)(Sun and Mcdonough,1989)接近,表明该套玄武岩与亏损的软流圈地幔有一定的亲缘性(许伟等,2019),同位素 $\epsilon_{Nd}(t)$ 值除了有两个负值外(-0.59和-0.83),其余全为正值,进一步证明该区玄武岩浆是由亏损地幔部分熔融形成的.在尖晶石稳定区域所产生的玄武质岩浆的稀土

Fig.9 Trace element ratio and isotope diagrams for the Permian basalts from Houhongquan area a. La/Yb-La图解(据Baker *et al.*,1997); b. Y/Nb-Zr/Nb图解(据Wilson, 1989); c.SiO₂-e_{Nd}(*t*)图解; d.SiO₂-(⁸⁷Sr/⁸⁶Sr)_i图解; e. Nb/U-Nb/Th 图解; f. Nb/Th-Th/U图解(据Pearce and Peate, 1995).PM. 地幔柱; CC.大陆壳; OIB.洋岛玄武岩; IAB.岛弧玄武岩; N-MORB.正常洋中脊

元素存在较大差别,轻稀土元素 La 与稀土元素 Sm 在石榴石和尖晶石都为不相容元素,其丰度 与部分熔融有关,而 Sm 相对于重稀土元素 Yb 的富集程度依赖于地幔熔融过程中是否有石榴 子石的残留相,所以利用 La/Sm 以及 Sm/Yb 比 值可以了解岩浆源区的性质和部分熔融程度 (张招崇等,2005).在La/Sm-Sm/Yb图中,样品 点投在由石榴石二辉橄榄岩组成的原始地幔熔 融线上,指示其源区是由接近原始地幔成分的 石榴石二辉橄榄岩低程度熔融形成(图10d).

图 10 玄武岩 Zr/Y-Zr (a)、Nb×2-Zr/4-Y (b)、Ti-V(c)判别图解和 Sm/Yb-La/Sm 图解(d)

Fig.10 Zr/Y-Zr (a), Nb×2-Zr/4-Y (b), Ti-V (c) discrimination diagrams of basalts and Sm/Yb vs. La/Sm diagram (d) a. 据 Pearce and Norry (1979); A.火山弧玄武岩; B.MORB; C.板内玄武岩; D.MORB和火山弧玄武岩; E.MORB和板内玄武岩; b. 据 Meschede (1986); A I.板内碱性玄武岩; A II.板内玄武岩和板内拉斑玄武岩; B.E型MORB; C.板内拉斑玄武岩和火山弧玄武岩; D.N型 MORB和火山弧玄武岩; c.据 Shervais (1982)汇编; BABB.弧后盆地玄武岩; d.底图据 Mahoney and Coffin(1997); PM. 原始地幔; DMM. 亏 损地幔; CLM.大陆岩石圈地幔; LC.下地壳; CC.整个地壳; UC.上地壳

6 结论

(1)甘蒙北山地区后红泉一带获得火山岩 同位素年龄273±1.7 Ma和276±0.7 Ma,产出 腕足类 Spiriferella keilhavii、Spiriferella saranae、 Waagen- oconcha cf. irginae、Yakovlevia mammatiformis、Liosotella sptzbergiana,表明该区玄武岩 喷发时代为早二叠世卡斯丁克期-中二叠世沃 德期,应厘定为双堡塘组.

(2)后红泉一带火山岩为软流圈地幔不同 程度部分熔融形成,其演化成岩过程中并未经 地壳的强烈混染,在岩浆源区发生了强烈的混 染作用,推测软流圈地幔受到了陆源沉积岩、 大陆地壳或蚀变大洋地壳改造.

(3)北山南部后红泉地区二叠纪海相玄武岩产

于大陆裂谷环境,岩石圈拆沉作用可能是其产生的 重要机制,说明古亚洲洋在早期已闭合,至早-中二 叠纪进一步拉张裂解形成了裂谷盆地.

致谢:甘肃省有色金属地质勘查局周俊烈教授 级高级工程师、周宏高级工程师和甘肃省有色金属 地质勘查局白银矿产勘查院方春家教授级高级工 程师在研究工作中给予了帮助和指导,甘肃省肃北 县骆驼泉-红柳泉北地区1:5万矿产远景调查的项 目组成员参加了野外调查工作,中矿(天津)岩矿检 测有限公司、河北区调实验室及北京锆年领航科技 有限公司的各位老师在实验测试期间给予了悉心 指导,在此一并致以衷心的谢意!

References

Allègre, C.J., Minster, J. F., 1978. Quantitative Models of

Trace Element Behavior in Magmatic Processes. *Earth* and Planetary Science Letters, 38:1–25.

- Baker, J. A., Menzies, M. A., Thirlwall, M. F., et al., 1997. Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen: Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization. *Journal of Petrology*, 38(10): 1359-1390. https://doi.org/ 10.1093/petroj/38.10.1359
- Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. *Journal of Petrology*, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
- Bu, J.J., He, W. H., Zhang, K.X., et al., 2020. Evolution of the Paleo-Asian Ocean: Evidences from Paleontology and Stratigraphy. *Earth Science*, 45(3):711-727 (in Chinese with English abstract).
- Carr, P.E., 1985. Geochemistry of Late Permian Shoshonitic Lavas from the Southern Sydney Basin. In: Sutherland, F.L., FrankJin, B.J., Waltho, A.E., eds., Volcanism in Eastern Australia. *Geol. Soc. Aust. N. S. W. Div. Publ.*, 1:165–183.
- Dang, B., Zhao, H., Lin, G.C., et al., 2011. Geochemistry and Tectonic Setting of Permian Volcanic Rocks in Yingen-Ejin Banner Basin and Its Neighboring Areas, Western Inner Mongolia. *Geological Bulletin of China*, 30(6): 923-931 (in Chinese with English abstract).
- Ewart, A., 1982. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks: With a Special Reference to the Andesitic-Basaltic Compositional Range. In: Thorpe, R.S., ed., Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, 25-95.
- Gansu Province Stratigraphic Chart Compilation Group, 1983. Regional Stratigraphic Chart of the Northwest Region: Gansu Province. Geological Publishing House, Beijing (in Chinese).
- Gao, L., 2017. The Geological Characteristics and Geotectonic Significance of Shuangbaotang Formation of Lower Permian in Northern Alax Area, Inner Mongolia (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
- Guo, J.X., 1964. Paleozoic Strata in Beishan (Mazong Mountain), Gansu. Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou (in Chinese).
- Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. *Journal*

of Petrology, 48(12): 2341-2357. https://doi.org/ 10.1093/petrology/egm062

- Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. *Mineral Deposits*, 28(4): 481-492 (in Chinese with English abstract).
- Innocenti, F., Manetti, P., Mazuuoli, R., et al., 1982. Anatolia and North-Western Iran. In: Thorpe, R.S., ed., Andisites. Wiley, Chichester, 327-349.
- Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. *Journal of Petrology*, 45(4): 793-834. https://doi.org/10.1093/petrology/egg112
- Li, H.Y., Zhou, Z.G., Li, P.J., et al., 2016. Geochemical Features and Significance of Late Ordovician Gabbros in East Ujimqin Banner, Inner Mongolia. *Geological Re*view, 62(2):300-316.
- Li, M., Xin, H. T., Tian, J., et al., 2020. Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen. *Earth Science*, 45(7): 2393-2412 (in Chinese with English abstract).
- Li, W.G., 1996. Lithography in Inner Mongolia Autonomous Region. China University of Geosciences Press, Wuhan (in Chinese).
- Ling, W.L., Duan, R.C., Xie, X.J., et al., 2009. Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton. *Lithos*, 113(3-4): 640-658.
- Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. *Journal of Petrology*, 51(1/2): 537-571. https: //doi.org/10.1093/petrology/egp082
- Mahoney, J. J., Coffin, M. F., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, New York, 335-355.
- Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. *Chemical Geology*, 56(3-4):207-218.
- Middlemost, E. A. K., 1985. Magams and Magamtic Rocks. Longman, London, 1-266.
- Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and

Active Continental Margins. American Journal of Science, 274(4):321-355.

- Nie, F.J., Jiang, S.H., Bai, D.M., et al., 2002. Metallogenic Regularity and Prospecting Direction of Metal Deposits in Beishan Area. Geological Publishing House, Beijing (in Chinese).
- Niu, Y. Z., Lu, J. C., Liu, C. Y., et al., 2018. Chronostratigraphy and Regional Comparison of Marine Permian System in the Beishan Region, North China. *Acta Geologica Sinica*, 92(6): 1131-1148 (in Chinese with English abstract).
- Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. *Contributions to Mineralogy and Petrology*, 69(1): 33– 47. https://doi.org/10.1007/BF00375192
- Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Vocanic Arc Magmas. Annual Review Earth and Planetary Sicences, 23:251-285.
- Peccerillo, R., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58: 63-81.
- Saunders, A. D., Storey, M., Kent, R. W., et al., 1992. Consequences of Plume-Lithosphere Interactions. *Geological Society*, *London*, *Special Publications*, 68: 41-60.
- Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59:101-118.
- Slama, J., Kosler, J., Condon, D. J., et al., 2008. Plesovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. *Chemical Geology*, 249: 1-35.
- Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. *Geological Society, Lon*don, Special Publications, 42(1): 313-345.
- Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochenical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publishing House, Oxford, 1-312.
- The Inner Mongolia Autonomous Region Bureau of Geology and Mineral Resources, 1991. Regional Geology Chronicles of Inner Mongolia Autonomous Region. Geological Publishing House, Beijing (in Chinese).
- Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London, 464.
- Winchester, J. A., Floyd, P. A., 1977.Geochemical Discrim-

ination of Different Magma Series and Their Differentiation Products Using Immobile Elements. *Chemical Geology*, 20:325-343.

- Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. *Chinese Science Bulletin*, 49(16):1589-1604 (in Chinese).
- Xia, L.Q., Li, X.M., 2019.Basalt Geochemistry as a Diagnostic Indicator of Tectonic Setting. Gondwana Research, 65:43-67.
- Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007. The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26(1): 77-89 (in Chinese with English abstract).
- Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2010. Paleozoic Multiple Accretionary and Collision-Alprocesses of the Beishan Orogenic Collage. *American Journal* of Science, 310:1553-1594.
- Xiao, W.J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth & Planetary Sciences, 43(43):11-16.
- Xu, W., Xu, X.Y., Niu, Y.Z., et al., 2019. Geochronology and Petrogenesis of the Permian Marine Basalt in the Southern Beishan Region and Their Tectonic Implications. Acta Geologica Sinica, 93(8): 1928-1953 (in Chinese with English abstract).
- Yang, H.Q., Li, Y., Li, W.M., et al., 2008. General Discussion on Metallogenitic Tectonic Setting of Beishan Mountain Northwestern China. Northwestern Geology, 41(1): 22-28 (in Chinese with English abstract).
- Yang, L.Y., 2014. The Geological Characteristics and Tectonic Evolution of Permian in the North of Alashan Area, Inner Mongolian Autonomous Region (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
- Yang, Y., Fan, G.L., Yao, G.J., et al., 1997. Lithography in Gansu Province. China University of Geosciences Press, Wuhan (in Chinese).
- Zhang, X.H., Liu, J.H., Liang, M.H., et al., 2013.Regional Mineralization and Prospecting in Gansu Province. Geological Publishing House, Beijing (in Chinese).
- Zhang, Z.C., Wang, F.S., Hao, Y.L., 2005. Picrites from the Emeishan Large Igneous Province: Evidence for the Mantle Plume Activity. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 17-22 (in Chinese with English abstract).

- Zhang, Z. W., 2018. Study on the Petrography and Geochemistry Characteristics of Volcanic Rocks in the Northern Part of the Tarim Basin (Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract).
- Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2008. Some Aspects on Geochemistry of Nb and Ta. *Geochimica*, 37 (4): 304-320 (in Chinese with English abstract).
- Zhou, J.B., Wilde, S. A., Zhao, G.C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. *Earth-Science Reviews*, 186:76– 93. https://doi.org/10.1016/j.earscirev.2017.01.012
- Zhu, W.Y., Shen, G. L., 1977. Characteristics of the Late Permian Terrestrial Strata and Paleoflora in Beishan Area, Gansu. *Journal of the Lanzhou University (Science Edition)*, (1): 99-109 (in Chinese).

附中文参考文献

- 卜建军,何卫红,张克信,等,2020.古亚洲洋的演化:来自古 生物地层学方面的证据.地球科学,45(3):711-727.
- 党犇,赵虹,林广春,等,2011.内蒙古西部银根-额济纳旗 盆地及邻区二叠纪火山岩的地球化学特征和构造环 境.地质通报,30(6):923-931.
- 甘肃省地层表编写组,1983.西北地区区域地层表:甘肃省分 册.北京:地质出版社.
- 高磊,2017.内蒙古阿拉善北缘下二叠统双堡塘组地质 特征对比及其大地构造意义(硕士学位论文).北 京:中国地质大学.
- 郭敬信,1964.甘肃北山(马鬃山区)古生代地层.兰州:中国 科学院兰州地质研究所.
- 侯可军,李延河,田有荣,2009.LA-MC-ICP-MS 锆石微区原 位U-Pb定年技术.矿床地质,28(4):481-492.
- 李敏,辛后田,田健,等,2020.北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义.地球科学,45(7): 2393-2412.

- 李文国,1996.内蒙古自治区岩石地层.武汉:中国地质 大学出版社.
- 聂凤军,江思宏,白大明,等,2002.北山地区金属矿床成矿规 律及找矿方向.北京:地质出版社.
- 牛亚卓,卢进才,刘池阳,等,2018.甘蒙北山地区海相二叠 系时代及其区域对比.地质学报,92(6):1131-1148.
- 内蒙古自治区地质矿产局,1991.内蒙古自治区区域地质 志.北京:地质出版社.
- 吴元保,郑永飞,2004. 锆石成因矿物学研究及其对U-Pb年 龄解释的制约. 科学通报,49(16): 1589-1604.
- 夏林圻,夏祖春,徐学义,等,2007.利用地球化学方法判别 大陆玄武岩和岛弧玄武岩.岩石矿物学杂志,26(1): 77-89.
- 许伟,徐学义,牛亚卓,等,2019.北山南部二叠纪海相玄武 岩地球化学特征及其构造意义.地质学报,93(8): 1928-1953.
- 杨合群,李英,李文明,等,2008.北山成矿构造背景概论. 西北地质,41(1):22-28.
- 杨立业,2014.内蒙古阿拉善北部二叠系地质特征与构造演 化(硕士学位论文).北京:中国地质大学.
- 杨雨,范国琳,姚国金,等,1997.甘肃省岩石地层.武汉:中国 地质大学出版社.
- 张新虎,刘建宏,梁明宏,等,2013.甘肃省区域成矿及找矿. 北京:地质出版社.
- 张招崇,王福生,郝艳丽,2005.峨眉山大火成岩省中的苦 橄岩:地幔柱活动证据.矿物岩石地球化学通报,24 (1):17-22.
- 张志伟,2018.塔北二叠纪火山岩岩相学及地球化学特征研 究(硕士学位论文).徐州:中国矿业大学.
- 赵振华, 熊小林, 王强, 等, 2008. 铌与钽的某些地球化学问题. 地球化学, 37(4): 304-320.
- 朱伟元, 沈光隆, 1977. 甘肃北山地区晚二叠世陆相地层及 其古植物群特征. 兰州大学学报(自然科学版), (1): 99-109.