https://doi.org/10.3799/dqkx.2022.175

湖南嘉禾大窝岭剖面晚二叠世吴家坪 期-长兴期之交长英质火山作用记录

高秋灵^{1,2},陈中强³,张 宁^{2*},夏雪飞⁴,姜腾飞⁵,王国庆²,肖 明¹,陈 晴¹

1. 河南工程学院环境与生物工程学院,河南郑州 451191

2. 中国地质大学地球科学学院,湖北武汉 430074

3. 中国地质大学生物地质与环境地质国家重点实验室,湖北武汉 430074

4. 中国石化江汉油田分公司,湖北潜江 433124

5. 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队),山东济宁 272100

摘 要: 在华南地区,中一晚二叠世之交和二叠纪一三叠纪之交的火山作用已成为地学研究的热点.相比较,地学界对晚二叠世内部的火山活动关注较少,以至对华南地区晚二叠世内部火山作用的喷发特征认识不够.湖南省嘉禾地区大窝岭剖面大隆组中下部,即吴家坪阶一长兴阶界线附近沉积了3层粘土岩,自下而上分别为HD08、HD12和HD20.对这3层粘土岩进行全岩地球化学,锆石U-Pb年代学、微量元素和Lu-Hf同位素测试工作表明,这些粘土岩源自蚀变的火山灰,代表吴家坪阶一长兴阶之交的三期火山作用.全岩和锆石微量元素特征显示火山灰来源于流纹质或流纹英安质火山作用,具有钙碱系列的亲属性,形成于汇聚大陆边缘的后碰撞构造环境.其中,HD08和HD20的ε_{Hf}(t)值为-6.4~7.1,范围变化较大,岩浆源于峨眉山/新元古代新生地壳物质和古老地壳物质的混合;HD12的ε_{Hf}(t)值为-12.0~-3.5,岩浆主要来源于古老地壳物质.这3层火山灰层的发现丰富了华南地区乐平统地层中火山作用的记录,综合前人研究成果,进一步证实了华南地块周边地区在晚二叠世中期发生强烈的、与Pangea超大陆汇聚有关的长英质火山作用.

关键词:晚二叠世;Pangea超大陆;火山作用;地球化学;锆石微量元素;锆石Lu-Hf同位素. 中图分类号: P597 文章编号: 1000-2383(2022)08-2925-15 收稿日期:2022-04-08

Felsic Volcanisms across the Wuchiapingian-Changhsingian Boundary (Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province

Gao Qiuling^{1,2}, Chen Zhong-Qiang³, Zhang Ning^{2*}, Xia Xuefei⁴,

Jiang Tengfei⁵, Wang Guoqing², Xiao Ming¹, Chen Qing¹

1. School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China

2. Faculty of Earth Science, China University of Geosciences, Wuhan 430074, China

3. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

基金项目:国家自然科学基金项目"陆相断陷盆地深部热流体活动及其成岩效应——以白音查干凹陷下白垩统腾格尔组为例"(No. 42102168).

作者简介:高秋灵(1986—),副研究员,主要从事岩石地球化学和储层成岩作用研究.ORCID:0000-0002-9169-8293.E-mail:g3q7191@163.com * 通讯作者:张宁,ORCID:0000-0002-5528-8334.E-mail:zhangn@cug.edu.cn

引用格式:高秋灵,陈中强,张宁,夏雪飞,姜腾飞,王国庆,肖明,陈晴,2022.湖南嘉禾大窝岭剖面晚二叠世吴家坪期一长兴期之交长英质火山 作用记录.地球科学,47(8):2925-2939.

Citation: Gao Qiuling, Chen Zhong-Qiang, Zhang Ning, Xia Xuefei, Jiang Tengfei, Wang Guoqing, Xiao Ming, Chen Qing, 2022. Felsic Volcanisms across the Wuchiapingian-Changhsingian Boundary (Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province. *Earth Science*, 47 (8):2925–2939. 4. Jianghan Oilfield Company, SINOPEC, Qianjiang 433124, China

5. Shandong Lunan Institute of Geo-Engineering Exploration, Jining 272100, China

Abstract: The volcanisms of the Guadalupian-Lopingian (also middle-late Permian) and Permian-Triassic boundaries in South China have attracted increasing attentions from geologists. In contrast, less studies concerned the volcanisms between the two. Here, we report geochemical studies on volcanisms near the Wuchiapingian - Changhsingian boundary within the late Permian from the Dawoling section of Jiahe Area, Hunan Province, South China, in which three layers of claystones, named as HD08, HD12 and HD20, are pronounced in the Wuchiapingian-Changhsingian boundary beds that are calibrated to the lower and middle Dalong Formation. The integrated analyses of whole-rock geochemistry, zircon U-Pb chronology, trace elements and Lu-Hf isotopes reveal that these three claystones originated from altered volcanic ashes, representing three episodes volcanism across the Wuchiapingian-Changhsingian boundary. The whole-rock and zircon trace element signatures indicate that the volcanic ashes originated from rhyolitic or rhyodacitic volcanism, with calc-alkaline affinities, and formed in post-collisional tectonic settings in the convergent continental margins. Among them, $\varepsilon_{\rm Hl}(t)$ values of HD08 and HD20 are - 6.4 to 7.1, with a wide range of variability, and the magma originates from the mixing of Emeishan/Neoproterozoic neogenic crustal materials of and ancient crustal materials; $\varepsilon_{\rm Hl}(t)$ values of HD12 are - 12.0 to - 3.5, and the magma mainly originates from ancient crustal materials. These three volcanic ash layers, together with previous researches, further confirm the occurrence of intense felsic volcanisms related to the convergence of the Pangea supercontinent in the areas around the South China block during the middle of the Lopingian (late Permian).

Key words: Lopingian; pangea supercontinent; volcanism; geochemistry; zircon trace elements; zircon Lu-Hf isotopes.

中一晚二叠世之交和二叠纪一三叠纪之交发 生了两次引人注目的生物大绝灭事件和两个大火 成岩省强烈喷发事件,分别为约260 Ma的峨眉山大 火成岩省和约252 Ma的西伯利亚大火成岩省 (Renne et al., 1995; Xu et al., 2004; Yin et al., 2007; Shellnutt, 2014; Chen et al., 2015; Lai et al., 2018; Shen et al., 2019a; Davydov, 2021; Zhu et al., 2021). 与此伴生的酸性火山作用也强烈喷 发,且频率密集(Gao et al., 2013; Zhao et al., 2016, 2019; Huang et al., 2018; Pei et al., 2019; Wang et al., 2019a; Bailie and Leetz, 2021; Liu et al., 2021). 西伯利亚大火成岩省主要表现为沉积地 层中的汞含量和同位素出现特别的异常值(Shen et al., 2019a, 2019b; Wang et al., 2019b); 峨眉山大 火成岩省和酸性火山作用主要表现为地层序列中 记录明显的火山灰层.其中,火山灰层在生物大灭 绝附近地层中特别发育,譬如,二叠纪一三叠纪界 线粘土层就是典型的例子,该粘土层源自蚀变的火 山灰,与生物大灭绝事件共生,稳定地遍布华南地 区各省,成为华南地区二叠纪-三叠纪界线和生物 大灭绝最理想的标志层(盛金章等, 1983; Yin et al., 2001; Chen et al., 2015). 研究显示, 二叠纪一 三叠纪界线附近的火山灰层主要来源于汇聚大陆 边缘相关的长英质火山作用(Gao et al., 2013; Wang et al., 2019a; Zhao et al., 2019; Liu et al.,

2021). 中一晚二叠世界线附近的火山灰层的来源 有峨眉山大火成岩省相关的镁铁质火山作用,也有 汇聚大陆边缘相关的长英质火山作用(Zhong et al., 2013; Zhao et al., 2016; Huang et al., 2018). 相比较,很少研究关注晚二叠世最早和最晚两次火 山喷发密集期之间的火山作用,因此,晚二叠世内 部的火山作用是否也与两次大灭绝时期的火山活 动那样强烈尚不得而知.

我们在湖南省嘉禾地区的大窝岭剖面二叠纪 大隆组中下部吴家坪阶-长兴阶界线附近地层中 发现3层灰白色粘土岩,颜色纯净、组分均一,显示 为蚀变的火山灰层.本文对这3层粘土岩开展了全 岩地球化学,锆石U-Pb年代学、微量元素及Lu-Hf 同位素分析,揭示这些粘土岩来源的火山作用性质 和形成的大地构造背景,以及与两次大绝灭事件同 期的火山作用的异同之处.

1 区域地质背景与样品采集

研究区位于湖南省郴州市嘉禾县.嘉禾县东部 发育有一个SN走向的小向斜,即袁家向斜(图1), 乐平统地层主要发育在此向斜的两侧.研究区内乐 平统地层从老到新可分为斗岭组、小元冲组和大隆 组,斗岭组岩性为深灰色泥岩夹泥质灰岩透镜体; 小元冲组岩性主要为黑色、黑褐色硅质泥岩、硅质 灰岩和硅质岩;大隆组则主要由硅质岩、硅质灰岩

112°40'E图 1 湖南嘉禾大窝岭剖面区域地质Fig.1 Geological map of the Jiahe aera, Hunan Province, showing the location of the Dawoling section

和页岩等组成(张志沛等,1993).大窝岭剖面位于 袁家向斜西部的大窝岭村附近,主要出露乐平统大 隆组.剖面描述见叶茜和江海水(2016).

大隆组下部地层主要为黄褐色一黄色泥岩、灰 黑色硅质岩(夹硅质灰岩)、灰白色灰岩互层,发育3 层灰白色粘土岩(图2);上部地层主要为灰褐色一 灰黑色灰岩与泥岩互层.地层中产出C.wangi、C. deflecta、C.sp.3种牙形石,以C.wangi的首现,暂将 吴家坪阶一长兴阶界线置于第11层的底部(叶茜和 江海水,2016;郝少波等,2021;吴奎等,2022).

3 层粘土岩,厚 5~7 cm,自下而上分别为 HD08、HD12和HD20,颜色、组分均匀,与已报道的 蚀变火山灰层特征一致(Gao *et al.*, 2013),推测为火 山灰蚀变成因.

2 测试技术与数据处理方法

项目组对3个样品开展了全岩地球化学,锆石 U-Pb年代学、微量元素和Lu-Hf同位素分析测试工 作.样品分两部分进行处理.一部分磨碎至200目, 准备进行全岩主量元素和微量元素分析.另一部分 利用重液和重磁分选进行重矿物分离,然后在双目 镜下挑选出锆石颗粒.利用双面胶和环氧树脂将锆 石颗粒制成靶圈,然后将靶圈磨平、抛光.在分析之 前,对所有的靶圈在透射光和反射光下拍照.锆石 阴极发光(CL)分析在 Macquarie 大学 GEMOC ARC 实验中心 Zeiss EVO MA15 扫描电镜上完成. 利用锆石光学照片和CL照片进行锆石颗粒大小、 外形、内部结构和包裹体的鉴别,以选择合适的锆 石颗粒进行 U-Pb年代学、微量元素和Lu-Hf同位素 分析.

2.1 全岩地球化学分析

全岩主量元素分析在中国地质大学(武汉)生物地质与环境地质国家重点实验室完成,测试仪器为XRF-1800.首先将样品置于烘箱中,于105℃烘干2h.烘过的样品在1000℃下熔融制玻璃熔片,并进行烧失量的测定,然后在XRF-1800进行主量元素氧化物含量的测定.XRF-1800的X光管靶材为Rh靶,测试功率为2500W,光栏为30mm.测试标

据叶茜和江海水(2016)

准物质为GBW07105和GBW07109,分析过程中, 每10个样品做一次重复样.标准物质和重复样的测试结果显示:含量大于5%的氧化物的测试误差多在1%以内,含量在5.0%~0.5%的氧化物的测试误差多在3%以内,含量在0.5%~0.1%的氧化物 的测试误差多在9%以内.

全岩微量元素测定在贵州拓谱资源环境分析 检测中心完成,使用仪器为Bruker Aurora M90 ICP -MS. 具体操作手续参照(Qi et al., 2000):准确称 取 0.050 0 g 样品于 Teflon 杯中,加入 1 mL HF、1 mL HNO₃,密封,于 185 ℃分解 30~36 h,取出,冷 却,于160℃电热板上蒸干,加入500 ng Rh内标溶液,加入2 mL HNO₃、4 mL水,再密封,于135℃密封溶解5h,冷却.取出Teflon杯,取0.4 mL溶液于15 mL离心管中,稀释至10 mL,待测.

应用普通灵敏度模式,仪器灵敏度调整为1 ng mL⁻¹¹¹⁵In 400 000 cps,1 ng mL⁻¹²³²Th 150 000 cps. 标样 AMH-1(andesite)和 OU-6(slate)结果与推荐 值(Potts and Kane, 2005)基本一致,大部分元素结 果相对误差为±(5%~10%).

2.2 锆石 U-Pb 年代学和微量元素分析

告石U-Pb同位素定年和微量元素含量分析在 中国地质大学(武汉)地质过程与矿产资源国家重 点实验室(GPMR)利用LA-ICP-MS同时分析完 成.激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a.激光剥蚀过程中采用氦气作载气、氩气 为补偿气以调节灵敏度,二者在进入ICP之前通过 一个T型接头混合.在等离子体中心气流(Ar+ He)中加入了少量氦气,以提高仪器灵敏度、降低检 出限和改善分析精密度(Hu et al., 2008).每个时间 分辨分析数据包括大约 20~30 s的空白信号和50 s 的样品信号.对分析数据的离线处理(包括对样品 和空白信号的选择、仪器灵敏度漂移校正、元素含 量及U-Th-Pb同位素比值和年龄计算)采用软件 ICPMSDataCal(Liu et al., 2010)完成.详细的仪器 操作条件和数据处理方法同Liu et al. (2010).

U-Pb 同位素定年中采用锆石标准 91500 作外标进行同位素分馏校正,每分析 5 个样品点,分析 2次 91500.对于与分析时间有关的 U-Th-Pb 同位素比值漂移,利用 91500 的变化采用线性内插的方式进行了校正(Liu *et al.*, 2010). 锆石标准 91500 的U-Th-Pb 同位素比值推荐值据 Wiedenbeck *et al.* (1995). 锆石样品的 U-Pb 年龄谐和图绘制和年龄权重平均计算均采用 Isoplot/Ex_ver4 (Ludwig, 2003)完成. 监控标样 GJ-1的²⁰⁶Pb/²³⁸U加权平均年龄为 601.7±2.3 Ma(*N*=28,1σ,MSWD=0.86),与推荐值(Jackson *et al.*, 2004)在误差范围内一致.

锆石微量元素含量利用多个 USGS 参考玻璃 (BCR-2G, BIR-1G)作为多外标、Si作内标的方法 进行定量计算(Liu *et al.*, 2010). 这些 USGS 玻璃 中元素含量的推荐值据 GeoReM 数据库(http:// georem.mpch-mainz.gwdg.de/). 测试误差在 10% 以内.

图 3 稀土元素和微量元素蛛网图

Fig.3 Rare earth elements and trace elements spider diagrams

	HD08	HD12	HD20	样品	HD08	HD12	HD20
SiO	53.37	55.69	61.51	Y	93.6	45.8	72.8
TiO.	0.42	0.2	0.24	Zr	534	208	449
Al _e O _e	27.37	25.92	22.77	Nb	40.4	11.9	40
Fe ₂ O ₂	1.62	1.48	1.42	Cs	8.31	5.58	4.82
MnO	0.02	0.01	0	Ba	268	202	329
MgQ	1.81	1 79	1.54	La	122	38	82.9
CaO	1.06	1.03	0.79	Ce	292	84.4	199
Na ₂ O	0.47	1	1.01	Pr	34.2	11	24.7
K.O	3.96	3 52	3 11	Nd	128	41.3	88.9
P ₂ O ₂	0.08	0.07	0.06	Sm	25.7	9.96	18.8
LOI	10	8.8	7 37	Eu	0.97	0.47	0.68
Total	100 18	99.51	99.82	Gd	23.05	8 56	16.61
甲转晶指数(。)	19	1.6	0.9	Th	3 76	1 49	2.86
Li	12.4	8.05	11.3	Dv	21.6	9.1	17.1
Be	5.2	2.18	3.04	Но	4.62	1 01	3 50
V	3.2	16.2	0.20	Fr	4.02	6.16	11 /
C.r.	26.5	13.8	13.0	Tm	2.2	0.10	1 74
Co	6.27	2 7 2	2.46	Vh	12.0	6.72	1.74
C0 Ni	0.27	0.46	12		13.9	0.72	11.4
INI C	17.1	9.40	12	Lu	1.69	0.95	1.35
Cu	18.2	9.18	11.6		22.6	8.11	18.2
Zn	105.8	64.2	92.0	la	5.12	1.52	4.13
Ga	45.3	26.9	36.3	Pb	50	31.5	21.8
Ge	1.49	0.86	1.2	Th	77.6	40.9	55.9
Rb	107	108	93.5	U	18.4	10.7	15
Sr	163	159	193				

X1 入内吸的固入口从压土石土重九条件做重九条数加入

 Table 1
 Major and trace-element compositions of whole rocks from the Dawoling ash beds

2.3 锆石 Lu-Hf 同位素分析

锆石 Lu-Hf 同位素测试工作在中国地质大学 (武汉)地质过程与矿产资源国家重点实验室完成. 仪器由一个 GeoLas 2005 激光剥蚀系统和一个 Neptune Plus MC-ICP-MS 组成.具体的仪器参数和实 验条件参考 Hu *et al.* (2012).测试采用单点剥蚀模 式,激光输出能量密度为5.3 J/cm²,斑束直径为44 µm. 对于¹⁷⁶Yb对¹⁷⁶Hf的干扰,实验室采用锆石样品 自身的 β_{Yb} 进行干扰校正.利用¹⁷⁹Hf/¹⁷⁷Hf=0.7325 和¹⁷³Yb/¹⁷¹Yb=1.13017(Segal *et al.*, 2003)来计算 Hf和Yb的质量分馏系数 β_{Hf} 和 β_{Yb} ,利用¹⁷⁹Hf/¹⁷⁷Hf 和¹⁷³Yb/¹⁷¹Yb的比值来计算Hf(β_{Hf})和Yb(β_{Yb})的 质量偏差,然后使用¹⁷⁶Yb/¹⁷³Yb =0.793 81(Segal *et al.*, 2003)来扣除¹⁷⁶Yb对¹⁷⁶Hf的干扰.对于¹⁷⁶Lu对¹⁷⁶Hf的干扰,使用¹⁷⁶Lu/¹⁷⁵Lu=0.026 56(Blichert-Toft *et al.*, 1997)来进行校正.同时,由于Yb和Lu具有相似的物理化学属性,实验室采用Yb的质量分馏系数 β_{Yb} 来校正Lu的质量分馏行为.分析数据的信号选择和同位素质量分馏校正等采用软件ICPMSDataCal(Liu *et al.*, 2010)完成.

测试的监控标样为锆石 Temora,其校正的¹⁷⁶Hf/¹⁷⁷Hf加权平均值为0.282 687±0.000 007 (*N*=19);与推荐值在误差范围内一致(Woodhead

and Hergt, 2005).

3 测试结果

3.1 全岩主量和微量元素特征

3个样品(HD08、HD12、HD20)的SiO₂含量为 53.37%~61.51%,呈依次升高趋势(表1);Al₂O₃含 量为27.37%~22.77%,呈依次降低趋势;Fe₂O₃和 MgO含量较低,均在2%以下;Na₂O+K₂O含量为 4.12%~4.52%;岩石的里特曼指数(o)为0.9~1.9, 为钙碱性系列.岩石的烧失量(LOI)较高(7.37%~

图 4 锆石阴极发光图像 Fig.4 Cathodoluminescence images of zircon grains

a, c, e. U-Pb年龄谐和图;b, d, f. 加权平均年龄b, d, f中, 红色标记数据为参与加权平均计算的数据;蓝色标记数据为未参与加权平均计算的数据;嵌入小图为²⁰⁶Pb/²³⁸U年龄频数和频率分布图,绿色曲线为全部谐和数据的频率分布, 红色曲线为参与加权平均计算的数据的频率分布. 所有图中数据误差均为1σ

10.0%),说明后期蚀变对主量元素影响较大.

相比主量元素,微量元素稳定性高很多.岩石 稀土元素显示轻稀土富集、重稀土亏损的分布特 征,具有明显的Eu负异常(图3a).微量元素蛛网图 显示明显的Th、U正异常和Ti、P、Sr、Nb、Ba负异 常(图3b).

3.2 锆石 U-Pb 年龄

锆石颗粒均为柱状外形,具有均一或震荡环带

的内部结构,显示岩浆锆石的特征(图4).对76个锆石颗粒进行了锆石U-Pb年代学分析,获得了68个谐和年龄.所有谐和年龄的²⁰⁶Pb/²³⁸U年龄均处于240~285 Ma范围内.

样品 HD08 获得 24 个谐和数据,排除 2 个较老 年龄,计算加权平均年龄为 255.1±2.0 Ma(表 2,图 5). HD12 和 HD20 均获得 22 个谐和数据,排除可能 因为 Pb 丢失导致的较年轻年龄和岩浆中结晶较早 的较老年龄数据,计算加权平均年龄分别为253.3± 2.4 Ma和253.9±1.8 Ma(表2,图5).3个样品的加 权平均年龄在误差范围内一致,且与吴家坪阶一长 兴阶界线年龄(254.14±0.07 Ma,国际地质年代表 2021.05)一致.综合3层粘土岩的产出层位和颜 色、组分特征,认为3层粘土岩为火山灰蚀变成因, 代表了吴家坪阶一长兴阶之交的3期火山作用.

3.3 锆石微量元素特征

所有颗粒均具有重稀土(HREE)富集的REE 配分模式(图 6),典型的岩浆锆石特征.REE元素 含量在(618~5109)×10⁻⁶范围内变化(表 2).正 Ce异常(δ Ce)变化较大(1.4~108),负Eu异常 (δ Eu)多小于0.3.Y含量从881×10⁻⁶变化到9 701×10⁻⁶,Hf含量为(6057~13872)×10⁻⁶,Ti含量为(1.25~51.70)×10⁻⁶.Th含量在(66~895)× 10⁻⁶范围内变化,U含量为(84~922)×10⁻⁶.U/Yb 比值为0.22~1.35,Nb/Ta比值为1.35~6.42.Yb/Y 比值为0.22~0.41,Yb/Nb比值为31.9~744.9,Hf/ Yb比值为3.5~37.0.(Yb/Gd)_N比值为9.4~31.1, Th/U比值为0.36~1.48.所有元素含量和比值都与 岩浆锆石一致.

3.4 锆石 Lu-Hf 同位素特征

HD08 获得 23 个 Lu-Hf 同位素数据,其 $\epsilon_{Hf}(t)$ 在 -5.0~4.6 范围内变化,平均值为 1.4,计算的二 阶段模式年龄(T_{crust})为 0.99~1.61 Ga; HD12 获得 20 个 Lu-Hf 同位素数据,其 $\epsilon_{Hf}(t)$ 在 -12.0~-3.5 范 围内变化,平均值为 -5.7,计算的二阶段模式年龄 (T_{crust})为 1.51~2.04 Ga; HD20获得 21 个 Lu-Hf 同位 素数据,其 $\epsilon_{Hf}(t)$ 在 -6.4~7.1 范围内变化,平均值 为 2.7,计算的二阶段模式年龄(T_{crust})为 0.83~1.68 Ga(表 2). HD08 和 HD20 具有相对亏损的 Hf 同位 素 组成,HD12 具 有相对富集的 Hf 同位素组 成(图 7).

HD08和HD20大的Hf同位素变化范围暗示火 山作用来源于混合的岩浆源区.最年轻的(0.83Ga) 和最老的(2.04Ga)T_{crust}模式年龄可能分别代表了 新生地壳端元的最大值和古老地壳物质端元的最 小值.HD12相对富集的Hf同位素组成暗示火山作 用的岩浆主要来自古老地壳物质的熔融.

4 讨论

4.1 火山作用岩石学性质

由于蚀变作用对全岩主量元素影响较大,这里

主要利用相对稳定的全岩微量元素和锆石微量元 素来探讨火山灰层来源的火山作用的岩石学性质 (图 8 和图 9).利用相对惰性的微量元素 Nb、Y、Zr、 Ti对岩石类型进行判断,3个样品落在了流纹岩和 流纹英安岩区域(图 8).其锆石的平均Y、Hf含量均 投在含石英的中酸性岩石范围内(图 9a).在锆石 Y₂O₃和HfO₂图(图 9b)中,HD08和HD12均显示钙 碱性中酸性岩石的特征,而HD20中锆石HfO₂含量 变化较大,部分颗粒具有钙碱性岩石特征,部分则 显示碱性岩石的特征,可能是岩浆房中不同端元物 质没有完全混合所致.因此,全岩微量元素和锆石 微量元素组成共同显示火山灰层来源于流纹质或 流纹英安质火山作用,HD08和HD12两期火山作用 具有钙碱性亲属性,HD20火山作用显示碱性一钙 碱性亲属性.

4.2 火山喷发的构造背景

晚二叠一早三叠时,Pangea 超大陆边缘广泛存 在泛古洋地壳的俯冲.晚二叠时沿着俯冲带,长英 质火山作用非常活跃,产生了大量的长英质火山 岩,形成了硅质大火成岩省和广泛分布的凝灰岩, 如:南美的 Choiyoi 岩浆岩省(Bastias-Mercado *et al.*, 2020),南美 Paraná 盆地(Rocha-Campos *et al.*, 2011)、南非 Karoo 盆地(Fildani *et al.*, 2007)、澳大 利亚 Bowen 盆地和 Sydney 盆地的凝灰岩(Kramer *et al.*, 2001; Grevenitz *et al.*, 2003).这些火山作用 在成分上都是流纹/英安质的,具有钙碱性和弧相 关火山作用的亲属性(Kramer *et al.*, 2001; Fildani *et al.*, 2007; Rocha-Campos *et al.*, 2011; Bastias-Mercado *et al.*, 2020).

古特提斯洋向东向华南和印支板块下面的俯

옄	筲	8	期
_	1	0	141

大窝岭剖面火山灰层锆石 U-Pb 测年、Tu-Hf 同位素和微量元素数据汇总表

表 2

2933

		Table	2 Summary of	U-Pb, Hf	f-isotope ratios	s and trace-elem	tent compositio	ns of zircon gra	ins from the Dav	woling ash beds			
居马	²⁰⁶ Pb/ ²³⁸ U年龄	加权平 均年龄	$\epsilon_{\rm Hf}(t)$	平均	T _{crust} 年龄	REE	$(\mathrm{Yb}/\mathrm{Gd})_{\mathrm{N}}$	Eu 异常。	Ce异常"	Υ	平均Y	Hf	平均Hf
	(Ma)	(Ma)		I	(Ga)	(10^{-6})				(10^{-6})	(10^{-6})	(10^{-6})	(10^{-6})
HD20	$244 {\sim} 279$	$\begin{array}{c} 253.9\pm\\ 1.8\end{array}$	$-6.4 \sim 7.1$	2.7	$0.83 \sim 1.68$	$801{\sim}5\ 109$	$9.4 \sim 25.5$	$0.00 \sim 0.27$	$1.5 \sim 108$	$1\ 171{\sim}9\ 701$	2 672	$6 057 \sim$ 13 252	8 513
HD12	$240{\sim}285$	$\begin{array}{c} 253.3\pm\\ 2.4\end{array}$	$-12.0 \sim -3.5$	-5.7	$1.51 \sim 2.04$	$619 \sim 3530$	$11.6 \sim 31.1$	$0.07 \sim 0.24$	$1.4 \sim 34.7$	$881 \sim 5\ 970$	1 824	$\begin{array}{c} 8 \ 737 \sim \\ 13 \ 872 \end{array}$	10 528
HD08	$246 \sim 283$	$\begin{array}{c} 255.1 \pm \\ 2.0 \end{array}$	$-5.0 \sim 4.6$	1.4	$0.99{\sim}1.61$	730~1 719	$11.1 \sim 29.4$	$0.01 \sim 0.32$	$2.5 \sim 102.4$	$1 \ 014{\sim}2 \ 795$	1 826	$8\ 029 \sim$ 13 836	10 037
居号	$ m Y_2O_3$ (10^{-6})	HfO_2 (10 ⁻⁶)	Ti (10^{-6})	Th (10 ⁻⁶)	U (10 ⁻⁶)	Th/U	U/Yb	Nb/Ta	Yb/Y	Yb/Nb	Hf/Yb		
HD20	$1488{\sim}12320$	$\begin{array}{c} 7 \ 143 \\ 15 \ 627 \end{array}$	$1.25 \sim 51.7$	$100\sim$ 794	$100 \sim 693$	$0.36 \sim 1.48$	$0.22 \sim 1.35$	$2.23 \sim 6.42$	0.20~0.31	$31.9 \sim 466.5$	$3.5 \sim$ 30.7		
HD12	$1\ 119{\sim}7\ 582$	$10\ 303 \sim 16\ 359$	$1.4 \sim 9.2$	$66 \sim 895$	$151 \sim 922$	$0.36 \sim 1.10$	$0.33 \sim 1.35$	$1.58 \sim 3.70$	$0.24 \sim 0.33$	$121.4 {\sim} 744.9$	$6.2\sim$ 37.0		
HD08	$1\ 288{\sim}3\ 550$	$\begin{array}{c} 9.468 \sim \\ 16.317 \end{array}$	$3.4 \sim 24.3$	$104\sim$ 366	$84 \sim 569$	$0.36 \sim 1.24$	$0.22 \sim 1.27$	$1.35 \sim 3.27$	$0.25 \sim 0.41$	$49.2 \sim 509.2$	$12.3\sim$ 30.4		

注:^{*}Eu异常和Ce异常计算公式; %Eu=[Eu]/SQRT([Sm]×[Gd]); %Ce=[Ce]/SQRT([La]×[Pr]).REE标准化数据引自McDoungh and Sun (1995).

a. ε_{HI}(*t*)值对年龄分布图; b. 地层沉积序列对 ε_{HI}(*t*)值分布图; 图 a 中:1. 峨眉山 A 型花岗岩(Xu *et al.*, 2008; Shellnutt *et al.*, 2009); 2. 峨眉山 正长岩和闪长岩(Xu *et al.*, 2008); 3、4. 新元古代裂谷环境形成的双峰式火山岩(全岩 Hf同位素)(Li *et al.*, 2005), 3. 流纹岩, 4. 玄武岩; 5. 新元古代裂谷环境形成的双峰式火山岩(全岩 Hf同位素)(Li *et al.*, 2005), 3. 流纹岩, 4. 玄武岩; 5. 新元古代裂谷环境形成的镁铁质岩墙(全岩 Hf同位素)(Lin *et al.*, 2007)

冲,以及华南和印支板块之间的碰撞也发生在晚二 叠一早三叠(Zi et al., 2012; Liu et al., 2020; 许王 等, 2021).沿着 Song Ma、哀牢山、金沙江等碰撞 带,长英质钙碱性岩浆作用非常活跃(Hoa et al., 2008; Halpin et al., 2016; 田梦宇等, 2021).同时, 还存在巨大体积的玄武质火山作用,即~260 Ma峨 眉山大火成岩省(Xu et al., 2004; Shellnutt, 2014),其中的高钛玄武岩具有OIB亲属性(Xiao et al., 2004),与地幔柱形成的大陆溢流玄武岩特征一 致(Xu et al., 2004);大火成岩省相关的长英质火山 作用和硅质侵入作用中有大量地壳物质的加入(Xu et al., 2008; Tran et al., 2015).

锆石U/Yb比值和Y含量特征显示大窝岭剖面 记录的三期火山作用可能形成于后碰撞或大陆弧 背景(图10a).Yb/Y比值则排除了大陆弧背景的可 能性,数据落在了后碰撞背景范围内(图10b),同 时,HD08和HD20部分颗粒具有相对低的Yb/Nb 比值(图10b),显示陆内裂谷环境的亲属性.综合锆 石Hf同位素组成(图7),认为3期火山作用主要形 成于后碰撞环境,与大陆汇聚有关;HD12的岩浆主 要来源于古老地壳物质,HD08和HD20来源于峨眉 山/新元古代新生地壳物质和古老地壳物质的混 合,部分锆石显示出陆内裂谷环境的亲属性.

4.3 华南记录的中-晚二叠世长英质火山作用

华南地块的周边地区在中二叠世至早三叠世 时期火山作用异常频繁.一方面,峨眉山大火成岩

省于~260 Ma 发生强烈喷发(Xu et al., 2004; Shellnutt, 2014);另一方面,与Pangea超大陆汇聚 相关的火山作用,包括古特提斯洋向华南和印支板 块下面的俯冲,以及华南和印支板块之间的碰撞 (Zi et al., 2012; Liu et al., 2020; 许王等, 2021), 沿着 Song Ma、哀牢山、金沙江等碰撞带,岩浆作用 非常活跃(Hoa et al., 2008; Halpin et al., 2016; 田 梦宇等, 2021).这些火山作用在华南地层剖面上均 有记录.之前的研究主要集中在生物绝灭界线附近 (中一晚二叠世之交和二叠纪一三叠纪之交).在两

图 9 锆石微量元素判别岩石类型图

Fig.9 Zircon trace element diagrams, showing discrimination of rock types 图 a 中: I.金伯利岩; II.超镁铁质、镁铁质和中性岩石; II.含石英的中酸性岩石; IV.具有高 SiO₂含量的酸性岩石; V.云英岩; VI.碱性杂岩 中的碱性岩和碱性交代岩; II.碳酸岩.图 b 中:拉斑质斜长花岗岩-1a;固溶线上碱性花岗岩/流纹岩-1b-c-d-e;碱性/过碱性正长岩/粗面岩-1cd-e;夏威夷岩和碱性玄武岩-1c;固溶线下碱性花岗岩/流纹岩-1e,2,3a-b-c,4a-b-c;中基性钙碱性岩石(辉长岩,闪长岩,英云闪长岩,石英闪长 岩,安山岩-英安岩)-4a-b-c,5a-b-c,6a-b;钙碱性花岗岩/流纹岩-5a-b-c;高钾钙碱性或 Mg-K花岗岩/流纹岩-4a-b,5a-b-c;亚碱性或 Fe-K花岗 岩/流纹岩-4c,5a-b-c;过铝质斑状花岗岩/流纹岩-3b-c,4b-c,5b-c,6a-b;过铝质淡色花岗岩-3c,4c,5c,6a;原地产生的过铝质花岗岩和混合岩-3c,4c,5c,6a;图中灰色区域代表钙碱性中性岩石(闪长岩-英云闪长岩/安山岩-英安岩)中的锆石; a. Hf vs Y(Belousova *et al.*, 2002); b.

图 10 锆石微量元素判别构造背景图

个界线附近,发育有大量的火山灰层(Gao et al., 2013; Zhong et al., 2013; Huang et al., 2018; Zhao et al., 2019; Liu et al., 2021). 中一晚二叠世界线 附近的火山灰层既有峨眉山大火成岩省相关的镁 铁质火山作用,也有汇聚大陆边缘相关的长英质火山 作用 (Zhong et al., 2013; Zhao et al., 2016; Huang et al., 2018);二叠纪一三叠纪界线附近的火山灰层主要来源于汇聚大陆边缘的长英质火山作 用 (Gao et al., 2013; Wang et al., 2019a; Zhao et al., 2019; Liu et al., 2021).

本次研究报道的乐平统内部的长英质火山作 用补充了华南晚二叠世内部火山作用的记录,进一 步证实了华南地块周边地区晚二叠世时期持续、广 泛存在与Pangea超大陆汇聚有关的长英质火山作 用.这些持续且广泛的火山喷发导致了晚二叠世生 态环境的持续恶化,可能是引起二叠纪一三叠纪之 交生物大绝灭的前兆(Zhang *et al.*, 2021).

5 结论

大窝岭剖面吴家坪阶一长兴阶界线附近地层

中发育的三层灰白色粘土岩(HD08、HD12和HD20),为火山灰蚀变成因.火山灰来源于流纹质或流纹英安质火山作用,具有钙碱性亲属性,形成于Pangea超大陆汇聚相关的构造背景.其中,HD08和HD20样品具有变化较大的Hf同位素组成范围 [$\epsilon_{Hf}(t)$ 值:-6.4~7.1],岩浆来源于峨眉山/新元古 代新生地壳物质和古老地壳物质的混合;HD12样 品具有相对富集的Hf同位素组成范围[$\epsilon_{Hf}(t)$ 值:-12.0~-3.5],岩浆主要来源于古老地壳物质.3层 火山灰层的发现丰富了华南晚二叠世地层中火山 作用的记录,揭示了华南地块周边地区在乐平世最 早期和末期两个火山强烈喷发密集期之间火山作 用也非常强烈,至少在吴家坪期一长兴期之交发生 强烈的、与Pangea超大陆汇聚相关的长英质火山 作用.

致谢:我们感谢江海水、张木辉、齐琦、王阳采 集并提供样品,感谢 Stephen Craven 在样品制备、 Kevin Grant 在 CL 图像拍摄、唐文秀在 LA-ICPMS 分析、张文在 LA-MC-ICPMS 分析中的帮助.感谢 两位审稿人提出的宝贵修改意见!

References

- Bailie, R., Leetz, A., 2021. A Comparison between the ~ 1.08-1.13 Ga Volcano-Sedimentary Koras Group and Plutonic Keimoes Suite: Insights into the Post-Collisional Tectono-Magmatic Evolution of the Eastern Namaqua Metamorphic Province, South Africa. Journal of Earth Science, 32(6): 1300-1331. https://doi.org/10.1007/ s12583-021-1462-7
- Bastias Mercado, F., González, J., Oliveros, V., 2020. Volumetric and Compositional Estimation of the Choiyoi Magmatic Province and Its Comparison with other Silicic Large Igneous Provinces. *Journal of South American Earth Sciences*, 103: 102749. https://doi.org/10.1016/j. jsames.2020.102749
- Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. *Contributions to Mineralogy and Petrology*, 143(5): 602-622. https://doi.org/ 10.1007/s00410-002-0364-7
- Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. *Contributions to Mineralogy and Petrology*, 127(3): 248– 260. https://doi.org/10.1007/s004100050278

Chen, Z. Q., Yang, H., Luo, M., et al., 2015. Complete

Biotic and Sedimentary Records of the Permian-Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and its Aftermath. *Earth-Science Reviews*, 149: 67–107. https://doi.org/ 10.1016/j.earscirev.2014.10.005

- Davydov, V. I., 2021. Tunguska Coals, Siberian Sills and the Permian - Triassic Extinction. *Earth - Science Re*views, 212: 103438. https://doi.org/10.1016/j.earscirev.2020.103438
- Fildani, A., Drinkwater, N. J., Weislogel, A., et al., 2007. Age Controls on the Tanqua and Laingsburg Deep-Water Systems: New Insights on the Evolution and Sedimentary Fill of the Karoo Basin, South Africa. *Journal* of Sedimentary Research, 77(11): 901-908. https:// doi.org/10.2110/jsr.2007.088
- Gao, Q. L., 2013. Felsic Volcanism in South China across the Permain - Triassic Boundary (Dissertation). China University of Geosciences, Wuhan, 26-30 (in Chinese with English abstract).
- Gao, Q. L., Zhang, N., Xia, W. C., et al., 2013. Origin of Volcanic Ash Beds across the Permian-Triassic Boundary, Daxiakou, South China: Petrology and U-Pb Age, Trace Elements and Hf-Isotope Composition of Zircon. *Chemical Geology*, 360-361: 41-53. https://doi.org/ 10.1016/j.chemgeo.2013.09.020
- Grevenitz, P., Carr, P., Hutton, A., 2003. Origin, Alteration and Geochemical Correlation of Late Permian Airfall Tuffs in Coal Measures, Sydney Basin, Australia. *International Journal of Coal Geology*, 55(1): 27-46. https://doi.org/10.1016/s0166-5162(03)00064-8
- Halpin, J. A., Tran, H. T., Lai, C. K., et al., 2016. U-Pb Zircon Geochronology and Geochemistry from NE Vietnam: A 'Tectonically Disputed' Territory between the Indochina and South China Blocks. *Gondwana Research*, 34: 254-273. https://doi.org/10.1016/j.gr.2015.04.005
- Hao, S. B., Chen, Y., Huang, P., et al., 2021. Lopingian Conodont Biostratigraphy and Age of Dalong Formation at Wujiachong Section, East Hubei Province. *Earth Science*, 46(11): 4057-4071 (in Chinese with English abstract).
- Hoa, T. T., Anh, T. T., Phuong, N. T., et al., 2008. Permo-Triassic Intermediate-Felsic Magmatism of the Truong Son Belt, Eastern Margin of Indochina. *Comptes Rendus Geoscience*, 340(2/3): 112-126. https://doi. org/10.1016/j.crte.2007.12.002
- Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. *Journal of Analytical*

Atomic Spectrometry, 23(8): 1093. https://doi.org/ 10.1039/b804760j

- Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. *Journal of Analytical Atomic Spectrometry*, 27(9): 1391. https://doi.org/ 10.1039/c2ja30078h
- Huang, H., Cawood, P. A., Hou, M. C., et al., 2018. Provenance of Late Permian Volcanic Ash Beds in South China: Implications for the Age of Emeishan Volcanism and its Linkage to Climate Cooling. *Lithos*, 314-315: 293-306. https://doi.org/10.1016/j. lithos.2018.06.009
- Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. *Chemical Geology*, 211(1/2): 47-69. https: //doi.org/10.1016/j.chemgeo.2004.06.017
- Kramer, W., Weatherall, G., Offler, R., 2001. Origin and Correlation of Tuffs in the Permian Newcastle and Wollombi Coal Measures, NSW, Australia, Using Chemical Fingerprinting. *International Journal of Coal Geology*, 47(2): 115-135. https://doi.org/10.1016/ s0166-5162(01)00034-9
- Lai, X. L., Jiang, H. S., Wignall, P. B., 2018. A Review of the Late Permian-Early Triassic Conodont Record and its Significance for the End-Permian Mass Extinction. *Revue de Micropaléontologie*, 61(3/4): 155-164. https: //doi.org/10.1016/j.revmic.2018.10.002
- Li, X. H., Qi, C. S., Liu, Y., et al., 2005. Petrogenesis of the Neopro-Terozoic Bimodal Volcanic Rocks along the Western Margin of the Yangtze Block: New Constraints from Hf Isotopes and Fe/Mn Ratios. *Chinese Science Bulletin*, 50(21): 2481. https://doi.org/10.1360/982005 -287
- Lin, G. C., Li, X. H., Li, W. X., 2007. SHRIMP U-Pb Zircon Age, Geochemistry and Nd-Hf Isotope of Neoproterozoic Mafic Dyke Swarms in Western Sichuan: Petrogenesis and Tectonic Significance. *Science in China Series D: Earth Sciences*, 50(1): 1–16. https://doi.org/ 10.1007/s11430-007-2018-0
- Liu, H. C., Liu, X. P., Zhang, Y. W., et al., 2020. Beginning of the Indosinian Orogeny: Insights from Late Permian Gabbro and Diorite in the Diancangshan Area of the Yunnan Province. *Geotectonica et Metallogenia*, 44(3): 527-542.

- Liu, T. J., Wang, Z. T., Wang, X. L., et al., 2021. The Source and Tectonic Setting of the Changhsingian K-Bentonites in the Huaying Mountain Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110642. https://doi. org/10.1016/j. palaeo.2021.110642
- Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling - Induced Melt - Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. *Journal of Petrology*, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
- Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, Berkeley Geochronology Center, California.
- McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. *Chemical Geology*, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
- Pei, Y., Chen, Z. Q., Fang, Y. H., et al., 2019. Volcanism, Redox Conditions, and Microbialite Growth Linked with the End - Permian Mass Extinction: Evidence from the Xiajiacao Section (Western Hubei Province), South China. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 519: 194–208. https://doi.org/ 10.1016/j.palaeo.2017.07.020
- Potts, P. J., Kane, J. S., 2005. International Association of Geoanalysts Certificate of Analysis: Certified Reference Material OU-6 (Penrhyn Slate). Geostandards and Geoanalytical Research, 29(2): 233-236. https://doi.org/ 10.1111/j.1751-908x.2005.tb00895.x
- Pupin, J. P., 2000. Granite Genesis Related to Geodynamics from Hf-Y in Zircon. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1/2): 245-256. https://doi.org/10.1017/s0263593300007410
- Qi, L., Hu, J., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. *Talanta*, (51): 507-513.
- Renne, P. R., Black, M. T., Zhang, Z. C., et al., 1995. Synchrony and Causal Relations between Permian-Triassic Boundary Crises and Siberian Flood Volcanism. Science, 269(5229): 1413-1416. https://doi.org/10.1126/ science.269.5229.1413
- Rocha-Campos, A. C., Basei, M. A., Nutman, A. P., et al., 2011. 30 Million Years of Permian Volcanism Recorded in the Choiyoi Igneous Province (W Argentina) and Their Source for Younger Ash Fall Deposits in the Paraná Basin: SHRIMP U-Pb Zircon Geochronology Evidence. Gondwana Research, 19(2): 509-523. https:

//doi.org/10.1016/j.gr.2010.07.003

- Segal, I., Halicz, L., Platzner, I. T., 2003. Accurate Isotope Ratio Measurements of Ytterbium by Multiple Collection Inductively Coupled Plasma Mass Spectrometry Applying Erbium and Hafnium in an Improved Double External Normalization Procedure. Journal of Analytical Atomic Spectrometry, 18(10): 1217. https://doi.org/ 10.1039/b307016f
- Shellnutt, J. G., 2014. The Emeishan Large Igneous Province: A Synthesis. *Geoscience Frontiers*, 5(3): 369– 394. https://doi.org/10.1016/j.gsf.2013.07.003
- Shellnutt, J., Wang, C. Y., Zhou, M. F., et al., 2009. Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A - Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. *Journal of Asian Earth Sciences*, 35(1): 45-55. https://doi.org/10.1016/j.jseaes.2008.12.003
- Shen, J., Chen, J. B., Algeo, T. J., et al., 2019a. Evidence for a Prolonged Permian - Triassic Extinction Interval from Global Marine Mercury Records. *Nature Communications*, 10(1): 1-10. https://doi.org/10.1038/s41467-019-09620-0
- Shen, J., Yu, J. X., Chen, J. B., et al., 2019b. Mercury Evidence of Intense Volcanic Effects on Land during the Permian-Triassic Transition. *Geology*, 47(12): 1117-1121. https://doi.org/10.1130/g46679.1
- Sheng, J. Z., Chen, C. Z., Wang, Y. G., et al., 1983. The Permian - Triassic Boundary Stratotype Research in the Changxing Area, Zhejiang. *Journal of Stratigraphy*, 7 (4): 245-257 (in Chinese with English abstract).
- Tian, M. Y., Di, Y. J., Wang, S., et al., 2021. Geochronology, Geochemical Characteristics and Genesis of Napeng Granite Biotite Monzogranite in Yunkai Area, Guangxi. *Journal of Jilin University (Earth Science Edition)*, 51(3): 749-766 (in Chinese with English abstract).
- Tran, T. H., Lan, C. Y., Usuki, T., et al., 2015. Petrogenesis of Late Permian Silicic Rocks of Tu Le Basin and Phan Si Pan Uplift (NW Vietnam) and their Association with the Emeishan Large Igneous Province. *Journal of Asian Earth Sciences*, 109: 1–19. https://doi.org/ 10.1016/j.jseaes.2015.05.009
- Wang, X. D., Cawood, P. A., Zhao, H., et al., 2019b. Global Mercury Cycle during the End-Permian Mass Extinction and Subsequent Early Triassic Recovery. *Earth* and Planetary Science Letters, 513: 144–155. https:// doi.org/10.1016/j.epsl.2019.02.026
- Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019a. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian-Triassic Boundary, South China:

Constraints from Trace Elements and Hf-Isotopes. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011

- Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. *Geostandards and Geoanalytical Research*, 19(1): 1-23. https://doi.org/10.1111/ j.1751-908x.1995.tb00147.x
- Woodhead, J. D., Hergt, J. M., 2005. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for in Situ Hf Isotope Determination. *Geostandards and Geoanalytical Research*, 29(2): 183-195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x
- Wu, K., Tong, J. N., Li, H. J., et al., 2022. Advance in the Study of Global Conodont during the Palaeozoic-Mesozoic Upheavals. *Earth Science*, 47(3): 1012-1037 (in Chinese with English abstract).
- Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low - Ti and High - Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume - Lithosphere Interaction. *Earth and Planetary Science Letters*, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002
- Xu, W., Liu, F. L., Ji, L., et al., 2021. Middle Permian-Late Triassic Magmatism in the Deqen-Weixi area of the Sanjiang Orogenic Belt: Implications for Paleo-Tethyan Evolution. Acta Petrologica Sinica, 37(2): 462-480(in Chinese with English abstract).
- Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. *Ge*ology, 32(10): 917. https://doi.org/10.1130/g20602.1
- Xu, Y. G., Luo, Z. Y., Huang, X. L., et al., 2008. Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. *Geochimica et Cosmochimica Acta*, 72(13): 3084-3104. https://doi. org/10.1016/j.gca.2008.04.019
- Ye, X., Jiang, H. S., 2016. Conodont Biostratigraphy and a Negative Excursion in Carbonate Carbon Isotopes across the Wuchiapingian-Changhsingian Boundary at the DawolingSection, Hunan Province. Earth Science, 41(11): 1883-1892 (in Chinese with English abstract).
- Yin, H., Feng, Q., Lai, X., et al., 2007. The Protracted Permo - Triassic Crisis and Multi - Episode Extinction around the Permian - Triassic Boundary. *Global and Planetary Change*, 55(1/2/3): 1-20. https://doi.org/ 10.1016/j.gloplacha.2006.06.005
- Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The

Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. *Episodes*, 24(2): 102–114. https://doi.org/10.18814/epiiugs/2001/v24i2/004

- Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End-Permian Mass Extinction. Science Advances, 7(47): 1390. https://doi. org/10.1126/sciadv.abh1390
- Zhang, Z. P., He, X. L., Zhu, M. L., et al., 1993. The Assemblage Characters of the Upper Permian Brachiopod in Chen County-Jiahe Area, Southern Hunan Province. *Journal of China University of Mining & Technology*, 22(3): 36-46 (in Chinese with English abstract).
- Zhao, L. X., Dai, S. F., Graham, I. T., et al., 2016. New Insights into the Lowest Xuanwei Formation in Eastern Yunnan Province, SW China: Implications for Emeishan Large Igneous Province Felsic Tuff Deposition and the Cause of the End-Guadalupian Mass Extinction. *Lithos*, 264: 375-391. https://doi. org/10.1016/j. lithos.2016.08.037
- Zhao, T. Y., Algeo, T. J., Feng, Q. L., et al., 2019. Tracing the Provenance of Volcanic Ash in Permian - Triassic Boundary Strata, South China: Constraints from Inherited and Syn-Depositional Magmatic Zircons. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 516: 190-202. https://doi.org/10.1016/j.palaeo.2018.12.002
- Zhong, Y. T., He, B., Xu, Y. G., 2013. Mineralogy and Geochemistry of Claystones from the Guadalupian-Lopingian Boundary at Penglaitan, South China: Insights into the Pre - Lopingian Geological Events. *Journal of Asian Earth Sciences*, 62: 438-462. https://doi.org/ 10.1016/j.jseaes.2012.10.028
- Zhu, J., Zhang, Z. C., Santosh, M., et al., 2021. Subma-

rine Basaltic Eruptions Across the Guadalupian-Lopingian Transition in the Emeishan Large Igneous Province: Implication for End-Guadalupian Extinction of Marine Biota. *Gondwana Research*, 92: 228–238. https:// doi.org/10.1016/j.gr.2020.12.025

Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. *Lithos*, 144–145: 145–160. https://doi.org/10.1016/j.lithos.2012.04.020

附中文参考文献

- 高秋灵,2013.华南二叠-三叠之交的长英质火山作用(博士 学位论文).武汉:中国地质大学,26-30.
- 郝少波,陈龑,黄攀,等,2021.鄂东伍家冲剖面乐平世牙形石生物地层及大隆组的时代.地球科学,46(11):4057-4071.
- 盛金章,陈楚震,王义刚,等,1983.浙江长兴地区二叠系与三 叠系界线层型研究.地层学杂志,7(4):245-257.
- 田梦宇,狄永军,王帅,等,2021.广西云开地区那蓬岩体黑云 母二长花岗岩年代学、地球化学特征及成因.吉林大学 学报(地球科学版),51(3):749-766.
- 吴奎,童金南,李红军,等,2022.全球古-中生代之交牙形石 研究进展.地球科学,47(3):1012-1037.
- 许王,刘福来,冀磊,等,2021.西南三江德钦-维西地区中二 叠一晚三叠世岩浆岩与古特提斯演化.岩石学报,37 (2):462-480.
- 叶茜,江海水,2016.湖南嘉禾大窝岭剖面吴家坪阶-长兴阶 界线牙形石生物地层及一次碳同位素负偏.地球科学, 41(11):1883-1892.
- 张志沛,何锡麟,朱梅丽,等,1993.湖南郴县——嘉禾地区晚 二叠世腕足动物组合特征.中国矿业大学学报,22(3): 36-46.