https://doi.org/10.3799/dqkx.2022.449

华北平原典型深部碳酸盐岩热储增产改造技术

王贵玲^{1,2},岳高凡^{1,2*},蔺文静^{1,2},马峰^{1,2},刘彦广^{1,2}

1. 中国地质科学院水文地质环境地质研究所,河北石家庄 050061

2. 自然资源部地热与干热岩勘查开发技术创新中心,河北石家庄 050061

摘 要:华北地区地热资源丰富,新发现的蓟县系高于庄组热储层开发利用潜力更大.然而,高于庄组存在裂缝非均质性强、储层产能低等问题.选取华北平原典型高于庄组地热井,进行了酸化压裂和加砂压裂两种改造技术的实验研究和现场增储改造,分析了改造不同阶段的压力监测曲线,进行了改造效果的评估,并初步提出了储层评价一改造设计一效果评价综合技术方法.结果显示,雄安新区高于庄组热储酸化压裂改造后涌水量由4.72 m³/h增加到44.10 m³/h,单位涌水量由0.024 m³/h·m增加到0.745 m³/h·m;沧县隆起高于庄组热储加砂压裂使得单位涌水量由3.009 m³/h·m翻倍式增加至6.158 m³/h·m,单位涌水量增加1倍多,增产改造效果显著.

关键词:碳酸盐岩热储;增产改造技术;酸化压裂;加砂压裂;华北平原;水文地质学.
中图分类号: P641 文章编号: 1000-2383(2024)04-1470-17 收稿日期:2022-09-17

Deep Carbonate Geohermal Reservoir Production Enhancement Technology in North China Plain

Wang Guiling^{1,2}, Yue Gaofan^{1,2*}, Lin Wenjing^{1,2}, Ma Feng^{1,2}, Liu Yanguang^{1,2}

1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China

2. Technology Innovation Center of Geothermal and Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China

Abstract: North China area is rich in geothermal resources. The newly discovered Gaoyuzhuang geothermal reservoir in the Jixian System has even greater potential for development and utilization. However, there are issues such as high fracture in homogeneity and low productivity in Gaoyuzhuang Formation. Two typical geothermal wells in the Gaoyuzhuang Formation of the North China plain were selected for experimental study and in-situ application of two reconstruction techniques, acid and sand fracturing. The efficiency is evaluated by analyzing the pressure curves at different stages. An integrated technical approach to geothermal reservoir evaluation-plan design-effect evaluation is presented. The water output increased from 4.72 m³/h to 44.10 m³/h after acid fracturing of the Gaoyuzhuang geothermal reservoir in Xiong an New Area, and the unit water surge increased from 0.024 m³/h·m to 0.745 m³/h·m. The sand fracturing of the Gaoyuzhuang reservoir in the Cangxian uplift has doubled the unit gushing water from 3.009 m³/h·m to 6.158 m³/h·m. Both methods show significant productivity gains.

引用格式:王贵玲,岳高凡,蔺文静,马峰,刘彦广,2024.华北平原典型深部碳酸盐岩热储增产改造技术.地球科学,49(4):1470-1486.

Citation: Wang Guiling, Yue Gaofan, Lin Wenjing, Ma Feng, Liu Yanguang, 2024. Deep Carbonate Geohermal Reservoir Production Enhancement Technology in North China Plain. *Earth Science*, 49(4):1470-1486.

基金项目:中国地质科学院项目(No. SK202306).

作者简介:王贵玲(1964-),男,研究员,博士,主要从事地热地质研究.ORCID: 0000-0002-2916-7360. E-mail: ihegwangguiling@sina.com

^{*}通讯作者:岳高凡(1989-),男,副研究员,博士,主要从事地热地质、多场耦合研究. E-mail:gaofan3904@163. com

Key words: carbonate geothermal reservoir; reservoir enhancement technology; acid fracturing; sand fracturing; hydrothermal in North China plain; hydrogeology.

0 引言

地热能作为新能源领域的研究热点之一,对于 缓解气候变化、促进能源转型具有重要意义.华北 平原京津冀地区是我国重要的经济带之一,同时也 是水热型地热资源主要的富集区(蔺文静等, 2013; 王贵玲等, 2017, 2020),大力开发利用地热 资源对于调整区域能源结构、缓解雾霾、促进经济 社会发展具有重要作用.

华北平原前期主要的开发利用热储层包括新近系明化镇组热储(Nm)、新近系馆陶组热储(Ng)、 古近系东营组热储层(E)、中生界寒武系一奥陶系 热储层(O-€)、蓟县系雾迷山组热储(Jxw)(陈墨香 等,1996;张德忠等,2013;王贵玲等,2017;刘明 亮等,2020).中国地质调查局在雄安新区和河北献 县实施的地热钻孔揭露蓟县系高于庄组热储,研究 表明高于庄组热储温度更高、潜力更大(王贵玲等, 2020),而且回灌条件下的开发利用不会引起地质 环境问题(马峰等,2021;岳高凡等,2021),有望成 为华北地区未来的主力热储层.

高于庄组热储岩性主要为白云岩,受微生物礁 滩、构造隆升、破裂及溶蚀作用影响(李朋威等, 2020),储层裂缝非均质性强(魏广仁,2020).地热 钻井很可能位于裂缝欠发育带,造成热水产量不 足,无法满足开发利用需求.如雄安新区容城凸起 D22井,天然裂缝发育程度远低于距离200m处的 D16井(Yue et al., 2022),完井后的抽水试验表明 水位降深196.68m时,涌水量仅为4.72m³/h;沧县 隆起献县GRY1井降深43.74m时,涌水量约为 60m³/h,均无法满足后期开发利用需求.因此,针对 低产能地热井进行储层改造是必要措施.

碳酸盐岩储层改造在石油领域应用较广,国内 专门针对地热储层的改造始于20世纪90年代,分 别在陕西(许宗余,1991)、山东(姬永红,2017)、浙 江(何铁柱和孙振添,2019)等地进行了水力压裂、 酸化压裂等相关工作.华北平原碳酸盐岩热储改造 始于北京、天津(王贵玲等,2020)的寒武系、奥陶系 热储层.随着开发深度的增加,蓟县系雾迷山组也 采用了储层改造技术以增加地热井产能,如天津 DL-24地热井热储层为蓟县系雾迷山组,于2000年 成井,最大出水量140 m³/h,出水温度90℃.后期开 发利用导致出水量减少至100 m³/h,水温81.4 ℃,产 能严重衰减.经过酸化压裂改造后,该井最大出水 量增加至157 m³/h,水温恢复至89 ℃.北京双桥地 热田东南部的京通4号地热井(李文等, 2019),取 水段为1730.00~2800.88m,前期的抽水和回灌实 验结果显示单位涌水量为23.80 m³/d•m,单位回灌 量仅为9.09 m³/d·m.经过酸化压裂单位涌水量上升 到 56.75 m³/d•m, 单位回灌量上升到 44.6 m³/d•m. 河北省地矿局第三水文工程地质大队于2008年对 牛驼镇凸起的两眼地热井进行了基质酸化(李砚智 和田京振, 2009),经过酸化单位出水量分别提高 3.56 倍和 5.40 倍,温度分别提高 3℃和 4℃,效果显 著.在酸化机理方面,国内学者同样进行了大量研 究,如林天懿等(2018)结合室内酸岩反应,通过引 入表皮系数,研究了北京蓟县系雾迷山组白云岩酸 化压裂机理.

综述目前碳酸盐岩热储改造实例可以发现,国 内外主要的技术包括基质酸化、酸化压裂和加砂压 裂(李德威和王焰新,2015;朱丽君和刘国良, 2015;谭现锋等,2016),针对深部热储层酸化压裂 和加砂压裂往往能获得更好的效果.已有的研究集 中于浅部热储的改造机理和现场试验,对于深部热 储的研究较少,特别是针对埋藏更深、温度更高和 非均质性强的蓟县系高于庄组热储的增产改造更 是鲜见报道.

本文以华北平原雄安新区和沧县隆起典型深 部高于庄组热储为研究对象,选取典型地热井,进 行了酸化压裂和加砂压裂两种改造技术的现场应 用,分析了改造不同阶段的压力监测曲线,进行了 改造效果的评估,为地热资源高效开发利用提供了 理论保证和技术支持.

1 地质背景

华北平原属于渤海湾盆地一部分,渤海湾盆地 是一个以新生代为主的中一新生代叠合断陷盆地, 自太古宙以来经历了一系列构造运动,其中对研究 区格局影响最大的主要包括芹峪运动、蓟县运动、 加里东运动、印支运动、燕山运动和喜马拉雅运动 (邱楠生等,2017),导致地层抬升和剥蚀(Wang,2021),盆地内发育一系列NE、NWW、近EW向的 张性大断裂,总体表现为凹凸相间的构造格局(毛 翔等,2020).

本次研究的两个场地分别位于冀中坳陷(容城 凸起)和沧县隆起两个次级构造单元内(图1).两个 场地的地层结构相似,深部热储为蓟县系,蓟县系 上段为雾迷山组热储,下段为高于庄组.上覆地层 主要为新生界和古生界的地层.高于庄组热储经过 多次构造运动,在岩溶作用下形成孔、洞、缝发育的 溶蚀型碳酸盐热储体,热储非均质性强(王贵玲等, 2020;唐博宁等,2020;魏广仁,2020).热储岩性为 白云岩,矿物以白云石为主,岩心 XRD测试结果表 明白云石含量在80%以上,其次为石英和粘土 矿物.

2018年中国地质调查局启动了冀中坳陷容城 凸起的深部热储调查评价工作,D16井是在雄安新 区施工的第一批地热地质勘探井,该井于2078m 钻遇高于庄组地层,于3003m停钻,揭露高于庄组 厚度925m,3000m深度地温为76.75℃.通过现场

的降压试验获得高于庄组流量171.4 m³/h时,降深 82.09 m, 渗透系数 0.360 m/d(王贵玲等, 2020). D22 井位于 D16 井西侧约 200 m, 完钻井深 3 517 m,但是,D22井的降压试验表明该井天然情 况下的出水量很低,平均渗透率仅为几个毫达西 (1mD≈10⁻³ µm²),无法满足生产需求.D22井一开 井径 Φ444.5 mm, 井段 0~987.14 m, 二开井径 Φ 311.2 mm, 井段 987.14~2 204.18 m, 三开井径 Φ215.9 mm, 井段 2 204.18~3 517.18 m, 钻井结构 详见图 2. 结合临井 D16 的水量情况和 D22 井测井 结果,分析D22井低产是两个方面的原因造成的: (1)高于庄组热储层较浅部雾迷山组热储缝洞发育 程度弱,天然裂缝非均质性强,D22井穿过裂缝数量 有限,与天然裂缝沟通能力差;(2)钻完井过程中存 在泥浆漏失堵寒过井裂缝.因此选用酸化压裂的方 式进行改造.

GRY1井位于京津冀地热资源梯级综合开发利 用(献县)科研基地,于2017年完钻,井深4025.82 m, 井底温度大于107℃(黄旭等,2021;张财华, 2021).该井揭露高于庄组厚度252.82 m,采用7in

图1 渤海湾盆地地质构造简图及井位分布

Fig. 1 Sketch map of geological structure and well distribution in Bohai Bay basin

1.海岸线;2.边界断层;3.盆地边界;4.断层;5.隆起区;Ⅰ.姜各庄隆起;II.石臼坨一柏各庄隆起;Ⅲ.海中隆起;Ⅳ.坦宁隆起;V.沧县隆起; VI.邢衡隆起;VII.内黄隆起.据孙冬胜(2001)和龚育龄(2003)

Fig.2 Structural diagram of D22 and GRY1 wells

套管固井+部分6in裸眼井段的完井方式(图2),降 压试验表明最大降深43.74 m时,最大涌水量 59.62 m³/h,同样需要通过改造提高水量.结合该井 降压试验结果,选择水力加砂压裂进行热储改造.

2 室内压裂实验

2.1 酸化压裂实验

针对 D22 井,通过室内岩心溶蚀实验、酸蚀裂 缝导流能力实验、酸液体系性能评价实验等,确定 了主体酸液采用 15% 盐酸+0.7% 稠化剂+1.5% 缓蚀剂+0.5% 铁离子稳定剂+0.5% 助排剂.

2.1.1 岩心溶蚀实验 岩屑溶蚀实验用于确定酸 液浓度,岩屑粉碎,充分混合,过筛(80目筛网).称 重约25g样品,加入预加热至60℃的不同浓度 (15%和20%)的500mLHCl溶液中,静置60min. 准备过滤设备,称量滤纸.过滤酸与样品的混合物, 用去离子水冲洗、干燥滤后的样品并称量,利用质 量差计算溶蚀率.计算方法为:

不同酸液浓度(15% 和 20%)对岩屑的溶蚀率 结果见表 1. 在 60 ℃条件下,反应 60 min 后,15% HCl 对 岩 屑 的 溶 蚀 率 分 别 为 78.1%、87.3% 和 86.9%,平均为 84.1%.20% HCl 对岩屑的溶蚀率分 别为 82.3%、88.5% 和 87.2%,平均为 86%.

同一酸液浓度下岩屑的溶蚀率出现差异,推测 是不同的岩屑矿物组成有所差异导致的.但是总体 上岩屑的溶蚀率均大于80%,表明HCl对于高于庄 组热储可以产生很好的酸化改造效果.20%HCl相 比于15%HCl具有更高的溶蚀率,但是它们的平均 差异仅为2.1%.考虑到酸化改造效果和酸液用量, 最终确定了15%HCl作为酸化改造主体酸液.

2.1.2 酸蚀裂缝导流能力实验 钻取岩心样品(直径25 mm,长度80 mm),人工造缝.放入岩心流动仪,标准盐水正向驱替,测初始渗透率;正向驱替酸液(15%HCl+0.5%稠化酸胶凝剂+3%缓蚀剂) 2PV(排量0.5 mL/min);正向驱替标准盐水,直至渗透率稳定.重复以上步骤.

酸蚀裂缝评价实验结果表明,随着酸液的多级 注入,岩心渗透率先增大后减小,最佳酸液加量为 2~8 PV(图3);多级注入酸液对改善储层渗流能力

Table 1 Experimental results of acid rock chip dissolution with different concentrations

山回市社资时(…)	酸溶反应温度	酸溶反应时间	15% HCl	20% HCl
石用取件休度(III)	(°C)	(min)	溶蚀率(%)	溶蚀率(%)
3 158~3 160	60	60	78.1	82.3
$3\ 174{\sim}3\ 176$	60	60	87.3	88.5
3 178~3 180	60	60	86.9	87.2

表 2 酸蚀裂缝渗流能力测试结果

Table 2	Acid-etching	fracture	seepage	capacity	test results
	0		1 0	1 2	

序号	驱替介质	排量(mL/min)	渗透率(mD)
1	标准盐水	0.5	5.5
2	酸液	0.5	5.3
3	标准盐水	0.5	33.4
4	酸液	0.5	35
5	标准盐水	0.5	61.3
6	酸液	0.5	63.1
7	标准盐水	0.5	132.2
8	酸液	0.5	134.2
9	标准盐水	0.5	208
10	酸液	0.5	205.2
11	标准盐水	0.5	127.6

Fig.5 Acid-etching fracture seepage capacity test results

是有明显效果的,有助于提高裂缝渗流能力(表2). 2.1.3 酸液性能评价实验 本次研究通过酸盐反 应动力学实验、酸蚀裂缝导流能力实验、酸液体系 腐蚀速率实验,评价了酸液表观黏度、酸液配伍性、 酸液流变性能、铁离子稳定能力、酸化助排剂表界 面张力.

通过酸液性能综合评价实验,获得了本次用酸的表观粘度 39 mPa•s,在 90 ℃和 170 s⁻¹剪切速率情况下,60 min 后仍能保持 17.62 mPa•s 的粘度.酸液配伍性良好,状态稳定,无分层、无絮凝物沉淀.铁离子稳定能力为 682.31 mg/mL.酸液能够满足酸化

压裂要求(表3).

2.2 水力加砂压裂实验

针对GRY1井,通过室内实验确定了压裂液为 低浓度羟丙基瓜尔胶络合交联压裂液,满足高温地 层要求,压裂液配方:0.45%HPG+0.2%高效粘土 稳定剂+0.3%助排剂+0.1%杀菌剂+0.3%调理 剂+0.55%FAL-120交联剂+胶囊破胶剂+过硫 酸铵,支撑剂选取 30/50目,抗 69 MPa中密高强 陶粒.

2.2.1 岩石力学实验 储层岩石的力学特性对于 开展水力压裂的工艺以及改造效果具有至关重要 的影响,因此,开展单轴压缩、巴西劈裂与常规三轴 压缩实验,对碳酸盐岩的弹性模量、应力一应变曲 线、抗拉强度、内摩擦角、粘聚力等试验数据进行定 量分析,确定白云岩的基本力学性能.

数字控制式电液伺服试验机 RMT-150C 岩石 力学试验系统(图4)用于本次的巴西劈裂和单轴压 缩实验.该仪器所测试的岩石试样标准样尺寸直径 为50 mm,高度应在100 mm左右.

通过试验得到了白云岩在高温下的力学参数. 当温度由室温增加至150℃时,在40、50与60 MPa 下峰值强度增加27.0、65.2与32.1 MPa,峰值强度 提升7.2%、18.0%与8.1%.随着温度的升高,碳酸 盐岩的峰值强度与峰值应变有增加趋势,但数值随 着围压的升高产生一定波动,这与岩石本身的裂隙 发育情况有关.泊松比与弹性模量随温度升高变化 不大(表4).

随着温度升高,碳酸盐岩颗粒产生热膨胀效 应,天然裂隙由于热膨胀作用被压实,裂隙咬合更 加紧密,并减小了接触面的粗糙度,增加了岩石颗 粒间与裂隙面间的咬合摩擦(表5).含天然裂隙的 碳酸盐岩基质,在天然裂隙未被激活的状态下,高 温下力学性能较好.

本项目所使用的碳酸盐岩试样虽然本身裂隙 较为发育,但起裂强度占比较高,均在0.7以上(参 考花岗岩的起裂强度占比约为0.4),即在加载过程 表3 酸液体系性能评价结果汇总

	项目	实验结果
酸液	表观黏度(mPa·s)	39
	剪切速率(s ⁻¹)	170
자 비 자 ☆ 네 씨	温度(℃)	90
• 附 温 时 男 切 住	剪切时间(min)	60
	表观黏度(mPa·s)	17.62
再会 20字 再コノデーは4-	常温2h	酸液状态稳定,无分层、无絮凝物沉淀
酸液配征往	90℃,加热2h	酸液状态稳定,无分层、无絮凝物沉淀
建立了独立刘	pH	6
状离丁稳定剂	铁离子稳定能力(mg/mL)	682.31
酸化助排剂	表面张力(mN/m)	26.2
腐蚀速率	$(g/m^2 \cdot h)$	3.82
酸岩反	应动力学方程	$J=1.846\ 6\times 10^{-5}C^{0.363\ 7}$

图 4 实时高温真三轴试验系统 Fig.4 Real-time high temperature true triaxial test system

中,轴向应力一应变曲线在峰值强度70%内均为线 性增长,基本不产生新裂纹(图5).这说明本次研究 的碳酸盐岩基质的力学性能较为稳定,且有较强的 脆性.随着温度增加,起裂强度与损伤强度占比有 降低的趋势,即在高温下,裂隙在应力应变曲线中 的发育点逐渐前移,而峰值强度却随之增高,即本 碳酸盐岩在温度应力耦合环境中,试样在达到峰值 强度产生脆性破坏前对裂隙的增长具有一定的包 容性,可在破坏前积累足够多的弹性应变能,弹性 应变能积累程度越多,破坏时的脆性越强.

2.2.2 真三轴水力压裂实验 深部地层压裂是十 分复杂的物理过程,压裂模拟实验是认识裂缝扩展 机制的重要手段,通过模拟地层条件下的压裂过

表4 常规三轴试验结果

Table 4 Results of conventional triaxial tests

温度	围压	峰值强度	故传亡亦	弹性模量	아무 무너 나는
(°C)	(MPa)	(MPa)	喗诅应受	(MPa)	伯仫叱
	0	198	0.003 76	63 048	0.275 0
今阳	40	373	0.007 00	60 793	0.091 0
全區	50	361.9	0.007 00	61 576	0.076 0
	60	395	0.007 35	62 594	0.074 0
	40	404	0.007 17	60 551	0.060 0
70	50	412.7	0.007 23	64 960	0.074 5
	60	465	0.008 37	59 887	0.079 0
	40	391.8	0.007 35	59 436	0.113 0
110	50	390.2	0.006 98	62 826	0.090 5
	60	434.5	0.007 35	62 405	0.114 5
	40	400.2	0.007 59	61 223	0.113 0
150	50	427.1	0.007 66	62 905	0.085 0
	60	429.0	0.007 96	59 574	0.055 0

表5 剪切强度参数随温度的变化

Table 5 Variation of rock shear strength parameters with temperature

·····p ··			
温度(℃)	摩擦角(°)	粘聚力(MPa)	
室温	46.14	47.41	
70	37.15	68.26	
110	31.13	84.27	
150	24.74	116.80	

程,可以对裂缝起裂与扩展过程进行监测,对形成 的裂缝进行直接观察.

本次实验采用大尺寸真三轴水力压裂试验系统(图6),试样尺寸为300 mm×300 mm×300 mm. 通过加载实际的地层应力,分别进行了不同压裂

Fig.5 Variation of cracking strength as a percentage of temperature (a), variation of damage intensity percentage with temperature (b)

图 5 起裂强度占比(a)和损伤强度占比(b)随温度的变化

温度(°C)

图 6 大尺寸真三轴水力压裂试验系统 Fig.6 Large-scale true triaxial hydraulic fracturing test system

表6 真三轴水力压裂试验方案

Table 6 True triaxial hydraulic fracturing test scheme							
试样	应力状态	か理支式	裂缝	排量			
编号	(MPa)	处理力式	发育	(mL/min)			
1	$\sigma_{\rm m}=60$:	正常	较少	1.0			
2	- V Y	正常	较多	1.0			
3	$\sigma_{\rm h} = 38.5;$	正常	较少	1.5			
4		酸化处理(5%HCl)	较少	1.0			
5	$\sigma_{\rm H}$ =50	酸化处理(5%HCl)	较多	1.0			

液、裂缝发育程度、排量的5组实验,实验方案 见表6.

岩样1的岩石裂缝不发育,使用清水压裂,压后 裂缝主要沿最小主应力方向,分布在试样的前面和 后面,形态较为单一,为1条垂直于井筒轴线(水平 最小主应力方向)的主裂缝.对试样的逐层剖切也 表明,主裂缝中具有红色示踪剂为新鲜裂缝,而部 分层理中存在示踪剂但裂缝并未贯穿试样(图7). 岩样2的岩样裂缝比1号岩样裂缝发育程度高,压裂液和泵速均相同,压后裂缝主要分布在试样的上面和右面,右面的裂缝形态最为复杂,由1条 垂直于井筒轴线(水平最小主应力方向)的主裂缝 和1条开启的层理缝组成.形成的裂缝形态纵横交 错,具有一定的复杂度.对试样的逐层剖切也表明, 主裂缝和层理缝具有红色示踪剂,确定为压裂形成 的新鲜裂缝(图8).

温度(°C)

岩样3裂缝发育程度与岩样1类似,但是采用 大排量的压裂方式,压后裂缝主要垂直于最小主应 力方向,分布在试样的前面和后面,其中前面形态 更为复杂,为1条垂直于井筒轴线(水平最小水平主 应力方向)的主裂缝和1条分支裂缝组成.形成的裂 缝形态较为单一,复杂度低.对试样的逐层剖切也 表明,主裂缝中具有红色示踪剂为新裂缝,而层理 中并未存在(图9).

岩样4裂缝发育程度较低,采用酸液压裂液,酸 化压裂后裂缝垂直最小主应力方向,分布在试样的 前面和后面,其中前面形态更为复杂.由1条垂直于 井筒轴线(水平最小主应力方向)的主裂缝和多条 层理裂缝组成.形成的裂缝形态较为复杂,曲折度 较高.对试样的逐层剖切也表明,主裂缝中具有红 色示踪剂为新鲜裂缝,同时沿层理中也存在示踪 剂,并且贯穿整个试样(图10).表明在压裂过程中 裂缝激活层理,导致破裂网络复杂度更高.

岩样5裂缝发育,压裂液采用酸液,压裂裂缝主 要分布在试样的前面,裂缝形态最为复杂,由1条垂 直于井筒轴线(水平最小主应力方向)的主裂缝和3 条开启的天然裂缝组成,其中激活的天然裂缝与主 裂缝之间交叉纵横,破裂形态复杂(图11).对试样 的逐层剖切也表明,主裂缝和天然裂缝具有红色示

起裂强度水平

图 7 岩样1水力压裂后岩石破裂 Fig.7 Rock fracture diagram after hydraulic fracturing of rock sample 1

图 8 岩样 2 水力压裂后岩石破裂 Fig.8 Rock fracture diagram after hydraulic fracturing of rock sample 2

踪剂,同时主裂缝明显存在腐蚀痕迹,天然裂缝存 在摩擦痕迹,表明酸化压裂利于裂缝剪切激活.

3 现场压裂试验

酸化压裂中的酸岩反应是裂缝表面刻蚀的重要作用,通过室内的酸岩反应实验,明确了酸液对 热储岩石的溶蚀机理,并获得了最佳的酸液配方; 加砂压裂主要是采取力学破裂和支撑的方式对热 储进行改造,通过室内实验获得了热储原位力学性质,明确了裂缝扩展的机理,以上的室内实验均为现场热储改造提供了充足的理论依据,指导现场 作业.

3.1 试压裂试验

3.1.1 酸化压裂测试压裂试验(D22井) 在正式压裂前进行了小型试压裂,以确定施工方案.试压裂阶段排量为0.59~3.61 m³/min,累计泵入线性胶

图 10 岩样 4 水力压裂后岩石破裂 Fig.10 Rock fracture diagram after hydraulic fracturing of rock sample 4

33.50 m³,测压降 0.5 h,施工曲线如图 12 所示.得出的主要认识是:①升排量阶段,0升至 3.5 m³/min,井口压力升高至 50.7 MPa,显示出地层破裂压力较高,折算破裂压力梯度 0.025 MPa/m,表明近井污染比较严重;②压力稳定阶段,施工排量稳定在 3.5 m³/min,压力由 50.7 MPa下降到 33.7 MPa,压力降幅 17 MPa,显示近井裂缝比较发育;③阶梯降排量阶段,排量分别为 3.5、3.0、2.0 和 1.0 m³/min,对应的井口压力分别为 33.7、28.2、22.2 和 17.2 MPa, 计算出总摩阻为 21.3 MPa,其中压裂液摩阻

17.45 MPa,射孔孔眼摩阻 3.85 MPa;④压降测试阶段,通过裂缝延伸压力曲线分析,瞬时停泵压力 12.41 MPa,折算裂缝延伸压力 43.46 MPa,延伸压 力梯度 0.014 MPa/m.通过G函数分析,折算井底闭 合应力 35.79 MPa,闭合应力梯度 0.012 MPa/m.

根据小型试压裂结果,结合数值模拟,分析不同酸液用量对裂缝参数的影响.当模拟压裂酸液用量增加到 100 m³后,酸蚀裂缝长度扩展随酸液用量的增加而变缓,且酸液对于裂缝高度影响较小,裂缝导流能力变化不显著,优选酸液用量 100 m³可以

图 11 岩样 5水力压裂后岩石破裂 Fig.11 Rock fracture diagram after hydraulic fracturing of rock sample 5

Fig.12 The construction curve of the mini-test fracturing phase of well D22

达到增产目的,模拟裂缝剖面如图 13 所示.以此确 定了本次酸化压裂试验压裂液用量 400 m³,排量 2.5~3.5 m³/min,酸液用量 100 m³,酸液排量 1.5~2.5 m³/min.

3.1.2 加砂压裂测试压裂试验(GRY1井) 现场小型试压裂获得地层参数如下:①瞬间停泵压力41.76 MPa,压力梯度为0.011 MPa/m,瞬时停泵的数据为4.03 MPa(图14);②通过3种数学方法求解地层闭合压力等相关参数(表7),G函数分析获得井底的闭合压力39.06 MPa,闭合压力梯度0.010 3 MPa/m,地面闭合的压力1.37 MPa,液体造缝有效率为13.5%,停泵后地层2.8 min裂缝闭合,

分析地层滤失较大,评估净压力2.69 MPa.算术平 方根函数分析井底闭合压力38.51 MPa,闭合压力 梯度0.0102 MPa/m,地面闭合压力0.84 MPa,液体 造缝有效率19.7%,停泵后地层3.3 min裂缝闭合, 地层滤失较大,净压力3.25 MPa.双对数函数分析 井底闭合压力38.84 MPa,闭合压力梯度 0.0102 MPa/m,地面闭合压力1.16 MPa,液体造缝 有效率15.2%,停泵后地层3.3 min裂缝闭合,地层 滤失较大,净压力2.92 MPa.

对GRY1井小型试压裂认识如下:地层闭合应 力平均为38.8 MPa,液体造缝有效率16.2%,停泵 后地层2.8~4.7 min裂缝闭合,地层滤失较大,评估 净压力2.76 MPa;由于天然裂缝或溶洞在储层中发 育,会引起严重的压裂液滤失,从而发生造缝效率 低,大规模加砂较困难导致地层砂堵;裂缝闭合压 力低,裂缝内支撑剂难稳定压实,而且陶粒进溶洞 无法固砂,后期生产易出砂,小型压裂效果并不 明显.

结合室内压裂物理模拟实验和小型压裂测试 结果,对压裂施工相关参数进行了优化.①考虑到液 体滤失严重,地层裂缝发育不易固砂,因此降低砂 量,避免堵砂,总砂量设计为2m³;②设计加砂方式 为段塞式,利于打磨天然裂缝提高裂缝宽度;③总 液量为280m³,与加砂量相对应.

Fig.14 The construction curve of the mini-test fracturing phase of well GRY1

3.2 正式压裂裂缝起裂与扩展

3.2.1 酸化压裂裂缝扩展(D22 井) D22 井酸化压 裂井口压力曲线如图 15 所示,酸压采用多级注入的 施工工艺,分两次注入主体酸液(15% HCl 酸液体 系),累计注入液量 492 m³,其中酸液 96 m³,施工时 间总计 160 min.①第1阶段前置胶液注入,井口压 力最高升至 50.68 MPa,发生破裂,在约 40 min 时压 力由 49.1 MPa下降至 43.8 MPa,表明人工裂缝与远 端天然裂缝沟通.②第2阶段酸液注入,在稳定的 3 m³/min的排量下,并口压力由 34.8 MPa持续下降 至 28.1 MPa,降幅 6.7 MPa,显示酸液对热储裂缝的 改造作用明显,裂缝导流能力显著增强.③第 3 阶段 继续注入胶液,暂堵微小裂缝,使酸液进入具有导 流能力的裂缝中.④第 4 阶段再次注入酸液,虽然降 排量无法明显指示出酸液的溶蚀效果,但 124~ 128 min的稳定低排量阶段,仍然可以看出压力的下 降,说明酸液继续对热储进行改造.此外,在酸压过 程中,以 D22 并为中心,均匀布设了 28 个 smartsolo 高分辨率节点式智能地震检波器,用以监测压裂产 生的地震波.

整个酸压改造过程表明,D22 井高于庄组热储 破裂压力为50.68 MPa,人工裂缝的产生主要在前 置胶液注入阶段,但是压裂产生的裂缝数量和规模 均有限.地震检波器采集的数据在原始记录和噪声 压制后记录中均未发现微震事件.原因可能是压裂 时间过短,在少量压裂液进入碳酸盐岩地层时,产 生的事件能量较小,经过3000 m的滤波后,地面检 波器未能收集到有效的微震事件信号.因此,可以 认为本次热储改造过程中酸化溶蚀起到主要作用, 且第2阶段的酸液注入主导了D22 井井周高渗通道 的形成. 11 井小町匠刻洞洋八七井田

表, GKII并小型压装测试力机结果							
Table 7GRY1 well mini-fracture test analysis results							
八七十分	井下闭合压力	闭合压力梯度	地层闭合时间	瞬时停泵压力	液体效率		
万机万法	(MPa)	(MPa/m)	(min)	(MPa)	(%)		
G函数法	38.51	0.103	4.70	41.7	19.6		
双对数法	39.06	0.102	2.84	41.7	13.5		
平方根法	38.84	0.102	3.27	41.7	15.2		

图 15 D22 井酸化压裂压力曲线

Fig.16 GRY1 hydraulic sand fracturing pressure curve

3.2.2 水力加砂压裂裂缝扩展(GRY1井) GRY1 井水力加砂压裂压力曲线如图16所示.在压裂前期 排量呈阶梯型增长时,井口压力响应出现跃变,反 映出流体在裂缝内运移受到较大摩阻.在排量稳定 后,井口压力基本呈稳定状态,仅出现一次压降,而 后迅速回升稳定,表明井周裂缝不是很发育,压裂 形成的人工裂缝沟通了天然裂缝.在后期加砂过程 中,井口压力总体保持稳定,并出现频繁波动,表明 储层裂隙相对发育,压裂液不断开启微裂隙,引起 缝内压力频繁波动.最后一次加砂沙比达到12%, 之后井口压力出现下降,说明水力压裂效果较好, 沟通了大量天然裂缝.

3.3 产能评价

3.3.1 D22 井降压试验 D22 井酸化压裂后进行了 144 h的抽水试验,其中抽水时间96 h,恢复水位时 间48 h.抽水试验分3个落程,持续时间分别为48、

Table 8Data sheet of pumping test after reconstruction of well D22								
春 落程	静止水位埋深	动水位埋深	水位降深	涌水量	单位涌水量	水温	稳定时间	
	(m)	(m)	(m)	(m ³ /h)	$(m^3/h \cdot m)$	(°C)	(h)	
S3	101.43	160.66	59.23	44.10	0.745	66.5	40	
S2	101.43	136.54	35.11	33.40	0.951	66.0	21	
S1	101.43	114.77	13.34	18.9	1.417	60.5	9	

表8 D22 井改造后抽水试验数据

表9 GRY1井压裂后抽水试验成果表

Table 9 Data sheet of pumping test after reconstruction of well GRY1

落程	水位降深(m)	涌水量(m ³ /h)	单位涌水量(m ³ /h·m)	延续时间(h)	稳定时间(h)
S1	25.33	69.379	2.739	72	10
S2	16.42	61.186	3.726	48	10
S3	8.32	51.242	6.159	48	10

31、17 h. 抽水试验获得热水头为 101.43 m, 动水位 埋 深 为 160.66 m, 水 位 降 深 59.23 m, 涌 水 量 44.10 m³/h, 单位涌水量 0.745 m³/h•m, 井口水温 66.5 ℃. 从产能上来看, 增产改造后, 涌水量由 4.72 m³/h 增 加 到 44.10 m³/h, 单位 涌 水量 由 0.024 m³/h•m 增加到 0.745 m³/h•m, 增产改造效果 十分显著. 试验所得数据见表 8.

3.3.2 GRY1井压降实验 GRY1井压裂后压裂后 进行了3个降深的抽水试验,最大降深25.33 m,最 大涌水量69.379 m³/h,稳定恢复水位为38.48 m.压 裂前后水位降深由43.74 m降至25.33 m,水位变化 的幅度为18.41 m;单位涌水量由3.009 m³/h•m 翻倍 式增加至6.159 m³/h•m,单位涌水量增加1倍多,压 裂后效果增加104.66%,压裂效果明显.抽水试验 数据详见表9.

4 讨论

4.1 热储评价与目的层筛选

由于碳酸盐岩热储层往往发育天然缝洞,具有 更强的非均质性,并筒附近与远井带、临井之间的 热储性质常常表现出巨大的差异,加之钻完井工艺 的不同,这些因素均对热储改造方法的选择、改造 方案的设计及改造效果产生显著影响.

对于近井带的热储性质可以通过测井、抽水降 压试验等手段进行评估(罗利等,2001;李曦宁, 2019).本次研究在雄安新区D22井酸化压裂前,进 行了详细的测井和解译工作,包括常规测井和成像 测井,获得了近井热储的孔渗分布规律.成像测井 获得了过井裂缝统计信息,包括倾向、倾角、开度、 密度等,指示出热储的裂缝分布规律.综合测井结果,借助合适的手段可对近井和井间热储的天然孔 渗特征进行有效预测(Yue *et al.*, 2022),为后期的 改造提供基础.

地热井的储层改造与石油井存在差异,地热井 改造更加关注井间的有效连通,希望获得更大的热 交换面积而又不发生短路.在选择改造目的层位 时,需要综合考虑对井的裂缝分布情况.本次研究 拟将 D22 井和 D16 井打造成地热对井系统,因此 D22 井目的层段筛选原则为:(1)选层应结合临井 D16 井参考资料优化选层,确保对井系统改造后的 连通性;(2)选层应基于低产水层,以增加改造后的 换热面积;(3)充分考虑白云岩、裂缝发育地质情 况,选层应充分研究二三类裂缝层选层可能性.

4.2 改造方案优选

酸化压裂和加砂压裂均是碳酸盐岩热储层有效的改造措施.酸化压裂注入的酸液与储层矿物发生反应,在裂缝表面形成粗糙面,在停止注入后,裂缝不会完全闭合,为流体提供了渗流路径.加砂压裂使用支撑剂替代酸液,从而允许在更高的闭合应力下保持裂缝的导流能力.

上述两种改造措施针对的储层条件是不同的. (1)温度条件:由于酸岩反应速率受温度影响较大, 在高温储层内,反应速率非常大,导致酸化压裂的 作用范围较小.因此,酸化压裂不适用于高温热储. (2)地应力条件及地层力学性质:当地层的闭合应 力较高或储层岩石较软时,酸液溶蚀后的裂缝面粗 糙度支撑作用会变得不明显,导致裂缝导流能力不 足.正如 Zhang *et al.*(2018)的研究表明,在低的闭 合应力下,酸化裂缝具有最高的导流能力,但是在 很高的闭合应力下,加入支撑剂的裂缝具有最高的 导流能力.因此,加砂压裂在闭合应力较高或岩石 较软的储层中的改造效果更加显著.(3)储层天然裂 缝发育程度:天然裂缝是碳酸盐岩热储的重要特 征,对于天然裂缝十分发育的储层,支撑剂可能出 现脱砂的风险.因此加砂压裂不适用于天然裂缝发 育的储层,酸液则能激活支撑剂无法到达的天然 裂缝.

4.3 改造方案设计与优化

增产方案设计与优化是确保现场试验顺利进行的重要保障.本次研究进行了酸化压裂和加砂压 裂两种增产技术的现场应用,包含了化学、力学、渗 流等过程.在方案设计过程中进行了大量的室内实 验,为压裂液的筛选、泵注工艺优化提供了支撑.雄 安新区D22井改造前进行了全岩矿物分析,明确了 热储岩性;岩心溶蚀实验,确定了浓度15%盐酸作 为酸液主剂;压裂液性能评价实验,明确了压裂液 的流变特性;酸蚀裂缝导流实验,明确了多级注入 工艺产生的改造效果.献县GRY1井改造前进行了 岩心力学参数实验、大规模水力压裂实验等.

室内试验为改造方案设计提供数据与支撑,现 场压降试验结果则可以用于进一步优化方案.如 D22井的小型压裂试验确定了地层的破裂压力、裂 缝延伸压力、摩阻等关键参数,在正式酸压阶段调 整了排量及注入速度.GRY1井通过小型压裂试验 的双对数函数、平方根函数和G函数分析获得了地 层闭合应力、液体效率等,调整了液量、加砂量和加 砂方式,获得了良好的改造效果.

4.4 华北地区深部碳酸盐岩热储改造潜力

华北地区地热资源丰富,以雄安新区蓟县系 高于庄组热储为例,经计算全区高于庄组热储地 热资源总量为1274.82×10¹⁶J,地热流体储存量 16.00×10⁸m³,采灌均衡条件下地热流体可开采量 为78.94×10⁶m³/a,采灌均衡条件下地热流体可开 采热量为221.50×10¹⁴J/a,折合标准煤75.86万吨 (吴爱民等,2018;戴明刚等,2019;马峰等, 2020).虽然地热开发潜力巨大,但碳酸盐岩热储 的非均质性特征决定了其在天然条件下无法实现 大规模开采,热储改造是必要措施.本文探索的酸 化压裂和水力加砂压裂技术分别适用于超低渗、 低渗碳酸盐岩热储,改造后涌水量至少达到2倍 以上,证明增产改造技术是实现深部碳酸盐岩热 储规模化开发的有力保障.

5 结论

本文选取华北平原典型高于庄组地热井,进行 了酸化压裂和加砂压裂两种改造技术的现场应用, 分析了改造不同阶段的压力监测曲线,进行了改造 效果的评估,得到结论如下:

(1)蓟县系高于庄组热储是华北平原深部第二 热储,本文首次对该套热储层开展了系统的改造机 理与现场试验研究,取得了良好的增产效果,证明 了该工艺用于华北平原高于庄组热储增产的可行 性,为今后华北平原深部碳酸盐岩热储增产改造提 供借鉴经验.

(2)酸化压裂技术可以有效解决近井污染、扩展裂隙通道,提高地热井的产能.用于天然渗透率较低、存在近井污染的情况.本次雄安新区地热井的酸化压裂使得涌水量由4.72 m³/h增加到44.10 m³/h,单位涌水量由0.024 m³/h•m增加到0.745 m³/h•m,增产改造效果十分显著.

(3)加砂压裂适用于存在一定渗透能力的储层. 本次献县地热井的加砂压裂使得单位涌水量由 3.009 m³/h•m 翻倍式增加至 6.158 m³/h•m,单位涌 水量增加1倍多,压裂后效果增加104.66%,压裂效 果明显.

(4)地热井增产改造需要综合考虑热储特征及 后期的开发利用和储层保护需求,在改造目的层筛 选上既要保证改造后的连通性,又要确保足够的换 热面积而不过早出现热突破.本次研究中选择相对 低产水层的二三类裂缝层作为目的层.

(5)正式改造前的室内实验和小型压裂试验是确保改造效果的重要基础.本次研究系统地进行了酸岩化学反应机理、岩石力学参数、大规模岩石水力压裂实验、施工工艺设计实验等,并结合现场小型压裂试验,确定最终的施工方案,取得了良好的改造效果.

(6)无论是酸化压裂还是加砂压裂,压裂液配 比和施工方案对增产效果尤其重要,需要前期进行 系统的实验分析和数值模拟,另外现场需时刻关注 施工压力曲线,根据压力变化研判施工效果并及时 调整方案.

References

Chen, M. X., Wang, J. Y., Deng, X., 1996. The Map of

Geothermal System Types in China and Its Brief Explanation. *Chinese Journal of Geology*, 31(2):114-121(in Chinese with English abstract).

- Dai, M. G., Lei, H. F., Hu, J. G., et al., 2019. Evaluation of Recoverable Geothermal Resources and Development Parameters of Mesoproterozoic Thermal Reservoir with the Top Surface Depth of 3 500 m and Shallow in Xiong' an New Area. Acta Geologica Sinica, 93(11): 2874-2888(in Chinese with English abstract).
- Gong, Y.L., 2003. Thermal Structure and Thermal Evolution of Bohai Bay Basin in Eastern China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
- He, T.Z., Sun, Z.T., 2019. Application of Acid Fracturing Technology for Increasing the Production of Geothermal Wells in Tongxiang Area, Zhejiang Province. Urban Geology, 14(4): 49-54(in Chinese).
- Huang, X., Shen, C.B., Du, L., et al., 2021. Geothermal Geological Characteristics of the Xianxian High and Fucheng Sag in the Middle Cangxian Uplift, Bohai Bay Basin. *Geoscience*, 35(4): 997-1008(in Chinese with English abstract).
- Ji, Y.H., 2017. Application of Acid Fracturing Technology in Geothermal Well of Carbonate Rock in Southwest of Shandong Province. *Site Investigation Science and Technology*, (4): 62-64(in Chinese with English abstract).
- Li, D. W., Wang, Y.X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. *Earth Science*, 40(11): 1858-1869(in Chinese with English abstract).
- Li, P.W., He, Z.L., Luo, P., et al., 2020. Characteristics of and Main Factors Controlling the Dolomite Reservoir of Gaoyuzhuang-Wumishan Formations in the Jixian System, the North of North China. *Oil & Gas Geology*, 41(1): 26-36, 49(in Chinese with English abstract).
- Li, W., Kong, X.J., Yuan, L.J., et al., 2019. Study on Geothermal Acid Fracturing Increasing Reinjection Test in Tongzhou Area, Beijing. Urban Geology, 14(4): 43-48 (in Chinese).
- Li, X.N., 2019. Study on Comprehensive Logging Evaluation Method of Fractured-Vuggy Reservoir (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
- Li, Y. Z., Tian, J., 2009. Application of Acid Well Flushing in 2 Wells of Niutuo Geothermal Field in Hebei. *Exploration Engineering(Rock & Soil Drilling and Tunnel*-

ing), 36(6): 16-18(in Chinese with English abstract).

- Lin, T.Y., Ke, B.L., Yang, M., et al., 2018. The Acid– Fracturing Stimulation Mechanism and Application in Hydrothermal-Carbonate Geothermal Reservoir. Urban Geology, 13(3): 21-26(in Chinese with English abstract).
- Lin, W.J., Liu, Z.m., Wang, W.L., et al., 2013. The Assessment of Geothermal Resources Potential of China. Geology in China, 40(1): 312-321(in Chinese with English abstract).
- Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. *Earth Science*, 45(6): 2221-2231(in Chinese with English abstract).
- Luo, L., Hu, P.Y., Zhou, Z.Y., 2001. Log Identification for Fracture in Carbonate. Acta Petrolei Sinica, 22(3): 32-35, 7(in Chinese with English abstract).
- Ma, F., Wang, G.L., Zhang, W., et al., 2020. Structure of Geothermal Reservoirs and Resource Potential in the Rongcheng Geothermal Field in Xiongan New Area. Acta Geologica Sinica, 94(7): 1981-1990(in Chinese with English abstract).
- Ma, F., Wang, G. L., Zhang, W., et al., 2021. Influence Mechanism of Ancient Buried Hill Geothermal Development on Land Subsidence. *Geology in China*, 48(1): 40-51(in Chinese with English abstract).
- Mao, X., Luo, L., Wang, X. W., et al., 2020. Distribution Characteristics of Cenozoic Volcanic Rocks and Its Geothermal Exploration Potential in Bohai Bay Basin. Geoscience, 34(4): 858-864(in Chinese with English abstract).
- Qiu, N.S., Xu, W., Zuo, Y.H., et al., 2017. Evolution of Meso-Cenozoic Thermal Structure and Thermal-Rheological Structure of the Lithosphere in the Bohai Bay Basin, Eastern North China Craton. *Earth Science Frontiers*, 24(3): 13-26(in Chinese with English abstract).
- Sun, D. S., 2001. Meso-Cenozoic Composite Extensional Structure in the Central Area of Jizhong Depression (Dissertation). Northwest University, Xi'an (in Chinese with English abstract).
- Tan, X. F., Wang, H., Kang, F.X., 2016. Experimental Study on Fracturing of GRY1 Hot Dry Rock Hole in Chenzhuang Town, Lijin County. *Exploration Engineering(Rock & Soil Drilling and Tunneling)*, 43(10): 230-233(in Chinese with English abstract).

- Tang, B.N., Zhu, C.Q., Qiu, N.S., et al., 2020. Characteristics of the Karst Thermal Reservoir in the Wumishan Formation in the Xiongan New Area. Acta Geologica Sinica, 94(7): 2002-2012(in Chinese with English abstract)
- Wang, G.L., Liu, Y.G., Zhu, X., et al., 2020. The Status and Development Trend of Geothermal Resources in China. *Earth Science Frontiers*, 27(1): 1-9(in Chinese with English abstract).
- Wang, G.L., Zhang, W., Lin, W.J., et al., 2017. Research on Formation Mode and Development Potential of Geothermal Resources in Beijing-Tianjin-Hebei Region. *Geology in China*, 44(6): 1074-1085(in Chinese with English abstract).
- Wang, Z.T., 2021. Terrestrial Heat Flow of Jizhong Depression, China, Western Bohai Bay Basin and Its Influencing Factors. *Geothermics*, 96: 102210. https://doi.org/ 10.1016/j.geothermics.2021.102210
- Wei, G.R., 2020. Study on the Development Law of Karst Thermal Fracture Cave Reservoir in Jixian System, Xiong' an New Area. *Petrochemical Industry Technolo*gy, 27(8):248-249(in Chinese with English abstract).
- Wu, A.M., Ma, F., Wang, G.L., et al., 2018. A Study of Deep-Seated Karst Geothermal Reservoir Exploration and Huge Capacity Geothermal Well Parameters in Xiongan New Area. Acta Geoscientia Sinica, 39(5): 523-532(in Chinese with English abstract).
- Xu, Z.Y., 1991. Well Completion and Fracturing Techniques in Xi' an. *Coal Geology of China*, (2): 83-85(in Chinese with English abstract).
- Yue, G.F., Wang, G.L., Ma, F., et al., 2021. Evaluation of Fault Slip Probability of Geothermal Large-Scale Development: A Case Study of Deep Karst Geothermal Reservoir in Xiongan New Area. *Geology in China*, 48 (5): 1382–1391(in Chinese with English abstract).
- Yue, G. F., Wang, G. L., Ma, F., et al., 2022. Fracture Characteristics and Reservoir Inhomogeneity Prediction of the Gaoyuzhuang Formation in the Xiong'an New Area: Insights from a 3D Discrete Fracture Network Model. *Frontiers in Earth Science*, 10: 849361. https://doi. org/10.3389/feart.2022.849361
- Zhang, C. H., 2021. Study on Anteklise Geothermal Energy Reservoiring Mechanism in Cangxian County, Hebei Province. *Coal Geology of China*, 33(7): 72-77(in Chinese with English abstract).
- Zhang, D.Z., Liu, Z.G., Lu, H. L., 2013. Hebei Geother-

mal. Geological Publishing House, Beijing(in Chinese).

- Zhu, L.J., Liu, G.L., 2015. Summary of Acidizing Fracturing Technology. *Anhui Chemical Industry*, 41(2): 9–12 (in Chinese).
- Zhang, L.F., Zhou F.J., Wang J., et al., 2018. An Experimental Investigation of Long-Term Acid Propped Fracturing Conductivity in Deep Carbonate Reservoirs. 52nd US Rock Mechanics/Geomechanics Symposium, Washington, ARMA-2018-545: 1-9.

中文参考文献

- 陈墨香,汪集旸,邓孝,1996.中国地热系统类型图及其简 要说明.地质科学,31(2):114-121.
- 戴明刚, 雷海飞, 胡甲国, 等, 2019. 雄安新区顶面埋深在 3500m以浅的中元古界热储可采地热资源量和开发参 数评估. 地质学报, 93(11): 2874-2888.
- 龚育龄,2003.中国东部渤海湾盆地热结构和热演化(博士 学位论文).南京:南京大学.
- 何铁柱,孙振添,2019.酸化压裂工艺在浙江桐乡地热井增 产中的应用.城市地质,14(4):49-54.
- 黄旭, 沈传波, 杜利, 等, 2021. 沧县隆起中段献县凸起和阜 城凹陷岩溶型地热资源特征. 现代地质, 35(4): 997-1008.
- 姬永红,2017.酸化压裂技术在鲁西南碳酸盐岩地热井中的 应用.勘察科学技术,(4):62-64.
- 李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重 大问题. 地球科学, 40(11): 1858-1869.
- 李朋威,何治亮,罗平,等,2020.华北北部地区蓟县系高于 庄组-雾迷山组白云岩储层特征与形成主控因素.石 油与天然气地质,41(1):26-36,49.
- 李文, 孔祥军, 袁利娟, 等, 2019. 北京通州地区地热井酸化 压裂增灌试验研究. 城市地质, 14(4): 43-48.
- 李曦宁,2019. 缝洞型储层综合测井评价方法研究(博士学 位论文). 北京:中国石油大学.
- 李砚智,田京振,2009.酸化洗井在河北牛驼镇地热田两口 井中的应用.探矿工程(岩土钻掘工程),36(6): 16-18.
- 林天懿, 柯柏林, 杨淼, 等, 2018. 碳酸盐岩热储酸化压裂增 产机理研究及应用. 城市地质, 13(3): 21-26.
- 蔺文静,刘志明,王婉丽,等,2013.中国地热资源及其潜力 评估.中国地质,40(1):312-321.
- 刘明亮,何曈,吴启帆,等,2020.雄安新区地热水化学特征 及其指示意义.地球科学,45(6):2221-2231.
- 罗利,胡培毅,周政英,2001.碳酸盐岩裂缝测井识别方法. 石油学报,22(3):32-35,7.
- 马峰,王贵玲,张薇,等,2020.雄安新区容城地热田热储空

间结构及资源潜力.地质学报,94(7):1981-1990.

- 马峰, 王贵玲, 张薇, 等, 2021. 古潜山热储开发对地面沉降 的影响机制研究. 中国地质, 48(1): 40-51.
- 毛翔, 罗璐, 汪新伟, 等, 2020. 渤海湾盆地新生代火山岩分 布特征及其地热勘探潜力. 现代地质, 34(4): 858-864.
- 邱楠生,许威,左银辉,等,2017.渤海湾盆地中-新生代岩 石圈热结构与热-流变学演化.地学前缘,24(3): 13-26.
- 孙冬胜,2001. 冀中坳陷中区中新生代复合伸展构造(博士 学位论文). 西安:西北大学.
- 谭现锋, 王浩, 康凤新, 2016. 利津陈庄干热岩 GRY1 孔压 裂试验研究. 探矿工程(岩土钻掘工程), 43(10): 230-233.
- 唐博宁,朱传庆,邱楠生,等,2020.雄安新区雾迷山组岩溶 裂隙发育特征.地质学报,94(7):2002-2012.
- 王贵玲,刘彦广,朱喜,等,2020.中国地热资源现状及发展 趋势.地学前缘,27(1):1-9.

- 王贵玲,张薇,蔺文静,等,2017.京津冀地区地热资源成藏 模式与潜力研究.中国地质,44(6):1074-1085.
- 魏广仁,2020. 雄安新区蓟县系岩溶热储缝洞储层发育规律 研究. 石化技术,27(8):248-249.
- 吴爱民,马峰,王贵玲,等,2018. 雄安新区深部岩溶热储探 测与高产能地热井参数研究.地球学报,39(5): 523-532.
- 许宗余,1991.西安地区地热井成井及压裂增产的新工艺. 中国煤田地质,(2):83-85.
- 岳高凡,王贵玲,马峰,等,2021.地热规模化开发断层滑动 概率评估:以雄安新区深部岩溶热储为例.中国地质, 48(5)1382-1391.
- 张财华,2021.河北沧县抬拱带地热能蕴藏机制研究.中国 煤炭地质,33(7):72-77.
- 张德忠,刘志刚,卢红柳,2013.河北地热.北京:地质出版社.
- 朱丽君,刘国良,2015.酸化压裂工艺技术综述.安徽化工, 41(2):9-12.