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ensuring energy security. Shale reservoirs exhibit characteristics of low porosity and permeability, complex pore structures, and
diverse mineral compositions, resulting in extremely complex wettability characteristics. Wettability, as a key parameter
controlling oil phase occurrence and flow, directly affects shale oil development efficiency. Traditional wettability studies mainly
rely on macroscopic contact angle measurements, which struggle to accurately reveal wetting behavior in nanoscale pores and its
control mechanisms on oil phase mobility. This study aims to establish a multi-scale wettability characterization method for shale
reservoirs and reveal the intrinsic relationships among wettability characteristics, pore structure, and oil phase mobility. Based on
Gulong shale samples, macro- and microscopic contact angle measurements were employed to characterize multi-scale wettability
features, nuclear magnetic resonance technology was used to independently evaluate oil phase mobility in different-scale pores, and
systematic correlation analysis was conducted to explore the control mechanisms of wettability on mobility. The study found that
although microscopic contact angles are systematically larger than macroscopic values, the measurement trends from both methods
are highly consistent, validating the reliability of cross-scale characterization. Different from previous single-scale understanding,
this study reveals that pore structure and mobility require synergistic evaluation: optimal reservoirs may not be those with the
highest proportion of large pores, but rather those with balanced pore structure (60% —80% large pore proportion) and high
mobility in all pore sizes; additionally, mineral components exhibit differentiated control effects on multi-scale pore system
recovery rates, with quartz content showing significant positive correlation with both large and small pore recovery rates, while
different clay minerals demonstrate scale-dependent complex influences. Through correlation analysis, qualitative relationships
between wettability and mobility, as well as quantitative evaluation models between mineral components and mobility, were
established. This research provides new evaluation methods for shale oil reservoir sweet spot identification, emphasizing the need
to comprehensively consider the synergistic effects of pore structure, wettability, and mobility.

Key words: shale oil; microscopic wetting; mobility evaluation; recovery factor; petroleum geology.
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Table 1 Summary of mineral composition characteristics of shale samples
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Fig.1

Contact angle measurements of air-water (top) and oil-water (bottom) systems
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Table 2 Basic physical properties of shale samples
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Fig.2 Pore development characteristics in the studied shale
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Fig.4 Effect of surface roughness on microscopic wetting morphology

B0 SRR AN DG I A 4 A RE & LR 6 OIR LR 4

(4T A T8 R AR L L B R G 1 T, D A A A R s
WYt 14 K, R WM AR AR e FE T RSB . ZY 1 M GY3
INFLBR 2R B8 1) T, U (1 728 AR AH X /0N, 6 B /N FL B o
) 3R 7 T AR A A (AL D).

(ELASVE B2, T A8 Lk {8 A B 2 X /N LB R
S EARELERW GES TR, ZYL.GY2 M GY3
SASEE S T REAE 1 ms BREUT S A AR A L0 G A
FEAE R R 29 1 ms o K /N FLBR B 4 FE1E
GY4 H it i T H K2 % % (0.064 mD) 2 B AL KR
GERRRIE BB, T A E i e, ik A
SR L R 2 20 ms. % BB GY 4 RE 50
PR AT BE X GE it o B 4 SR AR TR R ST 0 A
45 0 B e G R R, 32 BT B AT AHALAL
B 45 b 4 AIF A0 R 3 AN FE S HEAT 40 BT
332 BLOXWHERSW B0 Lmas Rk
BH Bt 0 10 3 38, S T) RUEE ALt o 17 3l A
K AT N R E 2R (K 6). A B 5T 3 T % R 3k
P T0A5 5 2840, 20 35 KALBR R 48 F /LB &R
G 11 R

RALCRWCRI A A
SLRmz - S[

LP,cent
= = 100%, (1)
SLP,.»u/ * SLP,dry ’

AINMLR YRR A

o Ssp,mz * SSP,mu

R,

Ry X 100%, (2)

Sspar ™ Sspoary
K (D) ~(2) R A1 Rep 53 51 A K ALAT/INFL R 5
Sip a1 S F AL FTI ST R FL AL B NMR f5 5 38
JE 53S0 b con T Ssp o N F2 B 3 B0 J7 R AL RN AL A5
5 R 5 S b FI S, A VR FTH HT O AL AN LAY H)
LR R i

TEA A R0 R, 8 43 A R E B AR T
AR MR I E (K 6a) , 57 5 & GY 2 B 5 78 400~
800 r/min fI% 34 B .0 B, KL R 3Ry 171 85, f Rl
R IIZALBR R Ge b i 2 i AR B AT 0 I
AT, X —RERALZER T HEZRELR R
G5 () A7 A6 52 24 0 AR s B LA . Hh T R AL BR A /AL
B B R 22 5, B0 AE T ANFLBR 3 40 A X
i ISR 48 1 3 A AT RE B A B BN R AL B R



4678 HiBERBL2%  http://www.earth-science.net 50 &
500 T T
7ZY1 e 11 311 I Loool GY2 — i
e I S——r I — R
400 F | = 400 r/min | =400 r/min
=800 r/mim 800 =800 r/min
~330F ———1200r/min |~ 1200 r/min
Z 300k | —2000r/min | 3 ——— 2000 r/min
- ———2400r/min | _  600F ——— 2400 r/min
% 250 I —— 4000 r/min % I ——— 4000 r/min
o 200 F I s I
1o I qo 400f I
150 b
| |
100 F 200k :
50 -
| |
0 L 1 1 0 1 i
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
st 74 1 (8] (ms) i FZ B 18] (ms)
1400 I 1200 I
GY3 — i T GY4 — 3 T
1200 | | — -l I — iR
| e 400 r/min | e 400 r/min
e 80 () r/min =800 r/min
1000 |
o I e ] 200 r/min | —~ 800} I =1 200 r/min
3 | w2000 r/min Z | =2 000 r/min
= B0 | —— 2400 t/min |~ | —— 2400 t/min
= ——4000r/min |2 600F —— 4000 r/min
‘JELIP 600 |- = |
il
il | 4 400 |
400 |
| |
200 | =din I
|
0 L L 0 1 !
0.01 0.1 1 10 100 1000 10000 0.01 0.1 1 10 100 1000 10 000

il B[] (ms)

i R ] (ms)

PSR AL AN IS 5 A [8) 50 i Ak B0 1) A% L AR T, TRT 3% % e

Fig.5 NMR T, spectra comparison of samples before/after oil saturation and at various centrifugal speeds
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Fig.6 Recovery factor curves of multi-scale pore systems in shale oil at different centrifugal speeds
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Table 3 Mobility evaluation of shale samples
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