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Abstract: Artificial solution mining technology, which converts evaporite minerals in brine aquifers into brine, is crucial for the
sustainable development of salt lake resources. However, the dynamic evolution of aquifer hydraulic conductivity induced by
mineral dissolution during water injection remains insufficiently understood, hindering accurate process prediction. In this study, a
Python-based modeling tool, MF6PQC, coupling MODFLOWG6 and PhreeqcRM, was developed to systematically investigate
the effects of reactive transport on the hydraulic conductivity of brine aquifers and the overall solution mining process. Simulation
results show that aquifer heterogeneity governs the spatiotemporal evolution of hydraulic conductivity. During the early stage of
dissolution mining, hydrogeochemical reactions preferentially occur in high permeability zones. The dissolution of highly reactive

minerals such as carnallite significantly enhances porosity and hydraulic conductivity, ultimately forming preferential flow paths

EETHE: B & E 50 & TR # 4R 2 K55 H (No. 2023YFC2908600); 7 Wi 4 “ B € e A « i 3t A1 @l A A 31 %135 H (No. QHKLYC-
GDCXCY-2024-049); K H #A Rl £ 3 4100 H (No. 42502241); H -1 5 Bl22 3 41 1 9% B35 B (No. 2024M760016).

EBE A LT (1995— ), B 5, 32 W F0 b i s K BUE AT SE . ORCID : 0000-0002-7776-4282. E-mail : zitao. wang@aust. edu. cn

AR 2R, W AIAFSE R, N F R W R A 5T . E-mail: lijs@isl. ac. cn

SIAMER LT, R, RN, 2025 AT RAE T R4 TR 68 5 =108 8 R B S B AL HLE] . Bk FL# ,50(12) : 4879 —4893.
Citation: Wang Zitao, Li Jiansen, Yu Dongmei, 2025.Dynamic Evolution Mechanism of Hydraulic Conductivity in Heterogeneous Salt Lake Brine

Aquifers during Artificial Solution Mining.Earth Science,50(12) :4879—4893.



4880 HIERRL2E  http://www.earth-science.net

5550 %

driven by positive advection-dispersion feedback. Relatively homogeneous aquifers or those with extensive, well-connected high-

permeability zones facilitate uniform lixiviant distribution and achieve higher solid-to-liquid conversion efficiency. In contrast,

strongly preferential or poorly connected formations interrupted by low permeability barriers limit mineral contact and dissolution,

thereby reducing overall solution mining efficiency. This study deepens the understanding of hydraulic conductivity evolution in

brine aquifers during water injection and provides a theoretical basis for optimizing salt lake brine resource exploitation.

Key words: salt-lake brine; reactive transport modeling; spatial heterogeneity; aquifer hydraulic conductivity; preferential flow;

environmental science.
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Fig.1 Interactions among various physical fields during

artificial solution mining
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Table 1 Evaporite minerals and their physicochemical parameters
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Ak NaCl 58.43 27.1 45~80 2.17
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akEe CaSO0,+2H,0 172.16 73.9 2~11 2.32
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Initial distributions of the heterogeneous InK fields (scenario A is the homogeneous base case)
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Table 6 Carnallite solid-liquid conversion efficiency and affected volume fraction under different heterogeneity scenarios
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