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Abstract: The formation mechanism of dolomite [CaMg(CQO,),] remains a longstanding enigma in earth sciences. Previous studies

have identified certain microorganisms and clay minerals as catalysts in the crystallization of low-temperature protodolomite, a
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crucial precursor to ordered dolomite. However, the role of cyanobacteria and particularly their potential synergistic effects with
clay minerals remain poorly understood. In this study, we investigated bioprecipitation of carbonate minerals using the halotolerant
cyanobacterium Synechococcus elongatus FACHB-410 in the presence and absence of montmorillonite. Our results demonstrated
that protodolomite occurred as the predominant solid product in the montmorillonite-amended biosystems as confirmed by X-ray
diffraction (XRD) and Raman spectroscopy, whereas monohydrocalcite and low-magnesian calcite were the primary products in the
montmorillonite-free biosystems. Multiple microscopic techniques, including scanning electron microscopy (SEM), focused ion
beam microscopy (FIB-SEM), and transmission electron microscopy (TEM), revealed that protodolomite nucleated as
nanocrystals preferentially on montmorillonite surfaces. Density functional theory (DFT) simulations further elucidated that surface
electronegativity of montmorillonite played a key role in promoting protodolomite formation by strongly adsorbing Mg"™ ions

through electrostatic interactions, thereby facilitating their dehydration and significantly lowering the nucleation energy barrier.

Key words: dolomite problem; clay minerals; protodolomite; cyanobacteria; microbial mineralization.
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H A [CaMg(CO,), K —Fl 34 J7 2 Pk
E MR IREE T ), RS A BN T4
FF A AR AE 5 3 T2 (Ca” ) 5B 72 (Mg ) L
AL 1: 1 By BE JR B W ¢ Bl Dy ) Ta) B ok TR AR B 1 )2
(COS ) 22 # HE i (Gregg et al., 2015; Warren,
2000). H1 FTic 3¢ 7R, F 2 A7 78 5T D sk g 399 6
Z5r A T 6 M B IR £R A (Warren, 2000) . & 45 3
K EA & Mg/CaBE /R IEH(~5.2) HEA =
A7 VR IR 5 Y 1~2 > Hlom 9, (B TR A TV R T
TR h A6 W 1 = A DU (Warren, 2000) . 55 fip 4>
N BERRA I, O A B9 7E 2 IR 10 R0 %5 W b AT R
32 AF AL S 5, ik I TE Hh = A, B 4 R HE I
Yy (Land, 1998) . 3% — Bl gl & I &% T IR 2 K K
KA A A Zwk”. HAfir sy, Likr
JEEZR TR FMT A A SE K23
1 Bl g 2 BR A, He b 3 S 2 R A AR Mg” Y s K
G E MUK B AR K PR AR COoS I E
(Lippmann, 19735 2= i 4% , 2010; 1 35 3£ 4% , 2011;
Gregg et al., 2015; ¥ 4% P %5 , 2018; Kim ez al.,
2023).

RERR B = A TTRB N FE I BB G
TSR 28 R IR R T AR/ MERIAE R H & A
TOUE S, 451 4 v 25 3 7 | O 7 R R R A 9 A
VI K T B3R ) 48 (Vasconcelos ez al., 1995;
Deng et al., 2010; Brauchli er al., 2016; F i 45,
2018;Liu er al.,2019a;Fang et al.,2023). T X &&
W BE = IS sk A R A R A s A B R
IR K M HE 3l T 56T 1 2 A AR A% PR BIL A1 A F 5%
HPAME A S & NI R, — S A P D e
(5 dn, g G 40 TR L R 3 TR RN 7 R e o )

S AR 7 1 O ) 2 L A0 3R 5 W0 ) BE 68 7 5 3l 2%
PRSI B = A4 (W FR A TP H o= 4
5 A4 K (Vasconcelos ez al., 1995; Sanchez-Roman ez
al.,2008; 1 &5 ¥4, 2011, 2018; Krause ez al., 2012;
Zhang et al., 2015; Petrash et al., 2017; Qiu et al.,
2017; Huang et al., 2019; Liu ez al., 2020a, 2020b).
NS PAP AR 91 B & A S 7 NS G (E N
st Ca® 5 Mg™ 7 704, R A sE )
fely W s i o L T R A Sl R NN S A ]
(Rodriguez-Blanco et al., 2015; Zheng et al., 2021).
PR , S04 W0 WA R 02 = A B R A AR )
I Hh g K R AR CA L) H = A8 (MeKen-
zie and Vasconcelos, 2009) . 15 =X (14 7E FH LI 3= 22
TR B AE WA 5 T = e AR AR ST R s
Je R 9 3 AN pHL (L, DA TT S 35 B ()5 5 =
AT AR AN 5 55— 5 T, AR W A K o3 W 1 L A
REWE & REESW AU AT 1 E BB, BEOS  PE
W Mg® F Ca®, UM 33X 28 55 5 1 25 7K G Ak i
LN = AR O S AR KA 3 A ) AR (MeK-
enzie and Vasconcelos, 2009 ; Krause ez al.,2012).
AR R B B W B AT BIL R o3 A L BF 5k B
— BT AL I3 A = A L B b A R R 4
T AL VE T (Zhang et al.,2012;1Liu e al., 2019b;
Fang et al.,2023;Meng et al.,2024) . Hovb 26+ 879
AR T SC R R, DL A
A A AR 20 1 BURE 07 W) S A 2 K
KR A AL i )5 B = A B U0 E 45 b (Liu et al.,
2019b;Chen ez al.,2024) . X —{E I FZIH N T5 £
1) 2 THI 2% B 1) 2 BE B RE I X Ca® 5 Mg™ I R %
W B, i o G A3 50 K 20 7 R R AR R BE 42, AT
NI 5 A A AR A ) A ST PR (Liu ez al.
2019b). Fi L W)X F1 = A1 DUVE Y S IE AR BT
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T Z A AE R B D) I 34 G &R (Perez et al.,
2015; Wanas and Sallam, 2016 ; Bk 5 5 45 , 2020 ; &%
A, 2025) B R T8 L0 WTE A = A8 i 7
th AT AR T

o LAR ISR AE M HLEK R Bt A A
AW, AN T AR RS SR TUR I h Tz A A RS R
AEMA Y AR EEAEE (You et al.,2013) L
Hb S5 30 s vh 8 3 AETE 2 BRI AR T
(50) F = A3 18 Ji i 72 v 9 AR A AN Ve A (B 1
B, ARUURIR R b 26 L0 5 Ak 3 ol I
f7, B =35 B k6 222 W AR BAE T (Dong e al.
2009; WY B A, 20185 H i KL A%, 2024) . SR T, 56 T
oA Y 5 26 L0 W) o [ A T IR B = 0 A
b 1 B Y 52 M v N BB L BT X L b R AR F 5T
BT 4K R 3R (Synechococcus elongatus FACHB-
410) F 52 i A0 A WF ST AR He b, SRR R 2 v
WA R OE AR, S A W2 2: TR -0 )
O SR AR Ll o BT A S A 5 A S S A B
YRR BT AL S AL R T WA TR Y T R TR R
WY UVE i R b i 1 L O i R DD AR BR 55 b A )
— R WA AR ] R () B = A B Y ot
TR 44 1 P A B

1 SRRSOk

1.1 EHEESR

AHWFFEVEFH Y S. elongatus FACHB-410 g [
[ B 27 B 7K A A= W W 92 I IR K BE AT B % R AR AE R
MY T W A0 B, B 2.1%0~52.5%0 1) AR
it W HE N1 (Qiu et al.,2012).S. elongatus & 4 3% 1,
PR R T o N TR0 K B 77 HE O 0 b 647 5
Fr o N LR K B 3R AR LA 4% (L) @ NaCl
(27.80 g) , MgSO, (0.44 g) ,KCI (0.60 g) , NaNO,
(1.00 g) , CaCLe+2H,0 (0.10 g) ,NaHCO, (0.08 g),
KH,PO, (50.00 mg) , NH,Cl (26.70 mg) , H,BO,
(34.00 mg),CoCl#6H,0 (0.02 mg),ZnCl, (0.30 mg),
(NH,,Mo0,0,¢4H,0(0.30 mg) ,Nas EDTA(0.50 mg),
FeCl,»6H,0 (5.00 mg) , Tris & i (1.00 g) DA K&
VB,, (0.004 mg). K5 3% 3L B 8 30%,, pH=7.20.
¥ NaHCO, il VB, 7E & i T 40 fif , H Bk R H
0.22 pum P8 BEE 28 8 R TR, I 5% 7% 5k 3L 4y 41 43 U 38 ik
R ZRRIEAT K e iR K G M R R H =

R JE TR R AE 55 T NaHCO, 1 VB, BE
Fie Ll m A s R I SRS R AR E R
B 25 °C  FREE % BR5E 2 000 Ix . ¥k 3% ¥ 150
rpm. A W 40 A RKOIR A | B 3R 30 1) A ) A B 5
) pHAE T2 L% B2 (ODy,)
1.2 SRR E

A 5T R 2 R 0 W 2 B L A A o 52
J A7 R A (SWy=3) i 4 J5 7= T 55 E MRk WM B
sty TOUAL B A AR AT - S R 3 A A 0T D R
HEAT 3T 3 W, Bl S B B R AR 43 T 0.5 mol/L
NaCUF W 78 2 i 451 T Fre i+ 24 h 14l 1k
AbFR DL GE— ) )2 ) BH 2 7 28 A0 AR A AT 4 v
PO B R BOR AR /N T 0.5 pm AU 4143 L B S FH 2
BFORREWETR S KL, LR YRR E T
L B ORI AT & TEIR T AAKT .
1.3 MEYT LXK

FE bR N TR LU K BT 9R L R LK
MgSO, #1 CaCl,2H,O 1 ¥ £ 73 51 I8 4 4 9.63 g/L
( B 80 mmol/L. Mg*") Al 1.47 g/L ( B} 10 mmol/L
Ca™") , 9] i Mg/Ca BE /R Lo 8.1 L B W = 1 21
PR K A B A AR s A AR B (B
Lagoa Vermelha ¥ # ) A9 % {f #2 i& ( Vasconcelos
etal ., 1995) Bl J5 , 76 35 35 B o A Ak 21 S 9 5¢ i
A1 (2 g/ L) il £ i ek e A, [) A 352 6 AN S o 58 A 1Y)
PR A S R A AT E R ALK R
F WA pH ¥ 0.1 mol/L NaOH & % )8 77 =
7.20 FE A7 BEJE AE 121 CA&MFF & E &R KH
20 min. fFEEE SRR H B E /G R E S SR
2 TR TR, 1 A 2HL AR R WD 4R OD o {58 — 4 0.20. 75
6 HE 85 5% 46 v e T (25 °C) PR ¥ (150 rpm) 85 5% 30 d
J , 38 2 B0 (10 000 g, 10 min) W e ¥ W F T 3
Yy o, B O T K ARSI CTE W 5 F S K
CFEE VR 3, R R T T IR 820 W 3 #r
14 KUZEDTRT WERIE

AR R0 LW WOk RS S TRk
596 3% A (ICP-OES, ICAP-6300 # , %5 [{ Thermo
Scientific) M 52 [ W /i J& Ca®" \Mg™ B F 1k B A8 1k,
[A) B ff FH RS % pH 1T (UB-7, 2 [® Denver Instru-
ment) 42 V5V pH {E . 07 4k 7™ 0 14 40 A A R i X
S AT HHL(XRD, X1 &1, 3¢ [F Scintag, Cu Ka 48 5
U5 HEAT M, AR 210 - B 2°/min, 454
0 R 5°~55°(20) . kil — 2 P50 Wy Al AT 5% 34 R
FH T4k 5 A OO B 2 % 3% 4 (Raman, Alpha
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300-R A, f [/l WITec) #4745 40 7 . FE 5 19 T 30
Mgty o Y &k S HE B B8 (FE-SEM,
SUS010 %, H 4% Hitachi) Fll 3 £ 8 F R ——+1 i
T BB UK & 48 (FIB-SEM, Crossbeam 540 1
i [# Carl Zeiss 23 ® ) Y47 W 25, 1 45 & g 1% X
(EDS, X-MaxN 80 T # , Oxford) #k 17 7 & >F & &+
B Ah R B B R 7 BB (TEM, Talos
F200x %! , 3% [ Thermo Scientific) % A7 ¥ & 44 119 Tk
L 5 A) R A AR R AE R AT TR A AT
1.5 EFZEZHRELEOFTNEYNITE

WA ST, B I R AKGER () H S
AT UL TE BN A 5 2L B 28 3 1T AR U0 0 F 9 3 T
S — P JEUFH A 2 3 R S (DF T A8 JIE 52
T A= Wy 240 ML 2 T 9 R Rk 4 P T R A AR 8 A K
MR AR AR T I Mg(H,0), |, ik H Lk &
A6 B (Liu ez al., 2020b). NAFE IS i A &= BA
FMBCR AT RN R 7 RE &, S5 M
£ (010) fh i (i 2 52 3 ) X Mg (H,O) & W B 7E A
Fifi DFT 18 ¥ 48 1 I it 7 b 2% 8k CP2K B 7
(http://www.cp2k.org) 158 B, 7158 5 T i 0P
AR A (GPW) J7 k47 M 25 40 AT Ak o

2 LEEER

21 BEHET HEROKKEFE

FRE R 1 Pros R i 25 5, 2800 30 d A 85 57 , i 4
WO IE R pHEAEA EEB A KT H 2D
ENRPID 5 = R NI = L2 R NE DR 32 S0 B
HIKF] 9.58, 7 52 Wi A1 1 15 AN TR 1A 22 o0 9.27. W Al A
RIFW Ca™ YR PN B R FRARAE . A R R h
By Ca® ¥k B T K& % 1.35 mmol/L, & 52 I A1 1k & %
% 1.74 mmol/L. W # SZ 55 1A R WP g Mg® Ak
BT 0 3 22 5 IR A T R R T i Mg® ik B S R R
“h 78.86 mmol/L, T & 52 B A7 1k F& th Mg® v 2
R A% 2= 71.05 mmol/L. B 75 7 = A9, & 58 i A 1

WA A A R U P B B TR e
FE R HE K & (Mg/Ca=0.95).

22 HUFYNT YRR

221 XRDERHGH WMEVWTIKIKRN ™Y
XRD &5 R A0 178 A8 AR 3 052 i A 19 56 50 44 &=
W AN TR R A O BROK O R RV BE T i
A1 (Bl La). Horpr AIRBE J7 % A 19 (104) & T8I AT 565 e o7
F 29.817° 20(d,,=2.994 A) ([ 1b) , # #& Bischoff
225 0\ A8 (Bischoff ez al.,1983) , H: MgCO, FE /R
R 14.35% . M bk RS A S WA 5 TR
TR RN 52 B A i LRI E R R T A R AR T
AR AL BT 52 A AR AR U 2 AN L R BR SR (104)
T 55 0 0] Wom) AR R R RS (30.698° 20, di =
2.910 A) (& 1b) , %1% i) MgCO, B8 /R 43 R T &8
44.93% , Ak i iE (JF) A oA fHEEEN
SRR ER ) XRD &1 3% oA Hh 20 465 #) A7 5 i
[4n(101) . (021) F1(015) ], L7 5 0 2 14 58 45 K,
X R IR IR S 52 A 0 AR Al AR R A
YRR = A

222 REERASW N —LHNEME—F
JIE A A 2R SN 7= 0 B4 0 ) 4 B, R i A T B S
T . RO R B 7 W b AR AE PR OE S 2
SR Y — 2 HAR A 5 pm B ERCIR B0k ; 5 — 2K
SR AR BN R AR, HLIE L A IR (B 2a) . B
T 2 0 0 4 ) A 25 ] b B 2 fi . iz = 1145 (18] 2b)
AT R, BRE UKL AE 1 094 em A AT UL LAY
CO.™ [k X FR A 45 48 36 (v,) , 302 em " 4b AT WL CO,*
(14 5 Zh B 2URRAE 3 28 R AE 5 Sk P 1 2 A 8
235 40 & B W) 4 (Gunasekaran e al., 2006 ; Sun
et al.,2014) T T& RS B0 iy 5 4 1k 26 45 e Sy 5 i
AT EAR A AR SE S TR K 532 nm (1)
WO LB B R 5 A 7 A 5 2 98 6 T (Ritz
etal.,2016) , HAr & (55 RYA BORE AL, Z
S R S ), 5 A 1 B B R, 3R B LA
F4 ] fig 52 B 43 i R (18] 2a).

P oL 55

®1 AXEREBTYEMGTREGRAKELESEEL

Table 1 Wet chemistry parameter changes in the biomineralization systems with and without montmorillonite

UIREEEE S5 E 3R (30 d)
TR R o o 2 o
pH Ca”" (mmol/L) Mg"" (mmol/L) pH {E Ca®" (mmol/L)  Mg" (mmol/L)
W2 B 7.2040.01 10.0540.03 80.87+0.21 9.58+0.11 1.35+0.09 78.86+0.43
WA S A 7.2140.02 10.03+0.06 78.9640.18 9.2740.06 1.744+0.13 71.0540.25
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Fig.2 Light microscopic photograph (a) and raman spectra (b) of precipitates from the bioreactors with montmorillonite

223 FIB-SEM#Z R4 SEM A EDS 253
NLIELSE M AFTER ST M w9 &
BUMAREE T A, AR 2R, R R 10~15 pm
(P& 3). TRV, o] UL 2% 5] W5 41 40 i B 25 T 1% B 7 i
A AT (L 3) . 40 T — 5 A i A 1A &R AR Y i
o= DLBRCIR FIE 8 4R oy 3= R AR B8/, ol 2~
4y, I3 A T RIR 52 A 2 T B0 2 XA ([ 4a) .
155 43 B 0 OB AR HE — 20 48 7R X S B A 3R AR
40 K 2 ok 2 28 T (R de, 4d) . Hodh B R A =
A RURL AT W A 52 A R )2 (L 4d) , R W52 A AT
BEVEN RHBERER S5 0 s A iR K.

RARGE R = A WORL N TR A R T R A A AR
WFFE R FH FIB WAL 5 i A7 8 Y1), JF 456 EDS
T E b (B 5). 25 R R, Cafl Mg 55 & & &
B 8 R IK SRR SR A ST S A TE A

M b AFTE RS R oA RIS A 5
ARG EARE S E R R, R A B A iR
UREE 3 IRaE WS UE S|

224 TEMZRSH TEMZREXW JFH A
BRCR FURE 55 bR 52 0 A 2 B A A TR e O &R (A
6a). 52 i A1 F 2 0 S SIS BN 25, FE(001) i i
) 900 5 R 1.3 nm (8] 6b). Bt 5 T 52 i 47 2 1 #4 Ji
F oz A 0k 0o A Y 22 0 AT 5 AR AR,
(104) . (006) A1 (113) 55 f 1A AT 555 17 B 7T B¢ (18] 6¢).
B 4rHE TEM F — 45 W55 0.2 A (4 4% 18] 5, i 5 )5
Mz A (113) & 1 3 E — 2 (K 6d). 38 o =
WL B A X (HAADE) ,JR A = A R EIFE
WA R AR G5 K 1 30 2 4 K (] 6a.6e). X & 6e
B = A WAL E T T e R 0, 45 3R WoR , Cafil Mg
JCE BT R (E 61, 6g) , 7631 4 X Sl A5
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Fig.3 SEM images of precipitates from bioreactors without montmorillonite
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Fig.4 SEM images of precipitates from bioreactors with

montmorillonite
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Fig.5 FIB-SEM and EDS images of precipitates from biore-

actors with montmorillonite
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Wt — R = A AR E T & Ca Mg, Sigt & 7 i

¥ .k — 0 B S5 A8 fif A (B 7h) T, 58 i A1 2 1hi 72
S8 i B RS SE B9 Mg-O 52 B X Mg (HO) ¢ #Y
AR EE S AR TE R IR R R SR
M2 A R R RE AR L —1.18 eV. X —
SERAE B IR T S A AR R = A R
By 7 .
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Fig.6 TEM images of precipitates from reactors with clay minerals
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RAFHJE A = AR Ca Rl Mg JC 3 9 EDS 284714 43175

ABFGEUE S Tl 18 W5 M8 S. elongatus HA 75T
B TR Eh A W U UE (9 BE T, 3% — & B O K 4 7 3 1 D't
A AE 75 S B IR R UL UE 1Y 28 3 R ARt 1R iy S
BEdE  EAEFEM AT R &S, elongatus
F G5 T IE WK Dy i A R EE J7 il 1 (MgCO, 1Y
FEIR & HN 14.35%) , i — 0 WA SRR 5 C ol
B9 S. leopoliensis , Leptolyngbya boryana 5 W 40 v
KR &AL 7= 950 {2 (Obst et al., 2006 ; Wang et al.,
20233 Zhao et al., 2024) , F W% H AL 30T BETE
40 P B AT i M (Kamennaya ez al., 2012). H i
S B NN AR Y T B R SR A B S
TR 1) ik [ 22 AL % U0 AE OG L BRI L B T A

A A% BB — 1, 5— R AR AL /i 4808 (RuBis-
CO) R AL AR A, HoAE Ak i B e i T
il P CO, #e 4 HL 1 LA $ & Bk [ 2 %0 % (Badger
et al.,2002; Riding, 2006) . 7¢ iZ HL il 4, ¥ 40 & LA
HCO, & F B ML R , i 1 3 2h §% iz oF A i
W, IF7E & A RuBisCO B ¥ i & v 5% 4k CO, AN
OH (Gorgen er al.,2020). 774 1) OH i — L BT
) A, 5 30RO 5% pH T AR HE I W
AU, DT A flk T 2k 0 40 1 DL 0 A s T R R L R
SMEAFEE AR, S. elongatus 3¢ B 5% £ T8 AR 86
D5 il A7 B RV L 25 G DT 3R T AL 2 A B B AE L X
PR 4 Hf 2% TH R B E AR A % 5.2X10  mol/g
(Qiu ez al.,2018). 3k — 4¢P 7T 68 38 3= 95 A HIL ) 52 e
T AR AL R R (1) A B H ) AR 3 3 i
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F I R A P B IR B 2 7K & e, DA T 2 i B 5 - i
AR TR 4 5 (2) 78 48 I 36 T 4 o 25 18] HE A 1Y R
HEHE T AT DUAE S B AR 5 |5 % BE O M A R O ) HE
G R, %R AR R 0 BE AR TR = A B R
Fr i B I A B (8.1 10 * mol/g) (Kenward et al.,
2013) , X M4+ )2 10 A AR R T A Y TP LA
R AR R = A MRS .
AREEMNE AZNRAOS 50 ENE ik R
LT EE R A B A DFT iR, 50
A1 (010) &b T X 7K £ 85 25 28 B0t b 3 W BfF O 47
UESE S WA VR A R0 Mg® & AL A Liu 5 A
(2019b) B2k 52, # T HL 47 25 2 09 2 L7 9 (CAn 58 it
A R R B8 A8 A o 1R ANE W PR R s A
R IR AE AR AR A il Bl an, 56 =
Deep Springs 1 F1 38 B PN 58 iy 3 A 61 BB &1 0 7K 45 5
PEER I BT YA PR SAAEA S

1 Mk (Meister ez al., 20115 T84, 2018) . fH 15 1
YR XS TR R B R A AN AR AR
WFFE R BB Z Ab7E T MR TR G — 26+
TURR AT E RN THEMNH S LT RS
A Z v BT R 1 22 U IR AL (1A 8) . AT fig ML il 4
o (DENmEDCEERRS TR EA s A
1 3k 4R B L AR ) IR AR B B AR R R TR R
A R AN RR A T WA A0 TR A B R e TR R
pH B B, M N T 2= A B D3 A 1 1 A 4%
. 2) 35 40 04 200 i R FE A 3R 6 W 5 58 A R
[F] B AL T R et A7 F I R T A A A, B AR TR B
B 0 R BRSOk A AR L Liu 48 N (2019b) 1Y
W R B 7E THLR R R b, B 0 & 2
MR = AT SN E N TR
6 g/L B, i 2= 1 77 ek b i 5 10 iR E 2 g/L
B ALTTVE i IR 1 = A, FE XRD B g (104) i 5=
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IR Sy 5 5 T 96 A B S A . AR A 9 U A SR TS o i
(2 /L) M5 A AH H T 5 20 B8 R 52 B A1 22 TR A7 AE
IR A AE L D 7 i R B, O Ok B
ZEP P FEET YA L 3X — B B B i s
BB P 1 e T P AT S s T S i SC A
A, R IR SE BB 5 R = AT S A )
B Jmy PR T A g B R i ST B R R S D T RN 7 B
T SR 2 25 B (Vasconcelos et al., 1995; Roberts
et al., 2004 ; Sanchez-Roman ez al., 2011 ; Bontognali
et al.,2014; BE B4 2017 Qiu et al., 2017; 25 E =
4%,2018;Fan e al.,2023) . AW 5L XKW FER +0° 1)
ZHT,EMNHBEN A=A . T %
MERSEOFEMEYENEEEEEZ —, XH
RMERLEEZA0 s s MBAHMAEYH S
R R T T B B (Perri e al., 2007, 2013;
Bontognali ez al.,2010; You et al.,2013; Netto et al.,
2022).
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