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Abstract: The bed failure model is the important initiated model for debris flow in channel. However, there is no detail critical
condition for bed failure model. In this paper, a series of laboratory experiments were carried out to study the initiation of debris
flow by runoff in the channel. The experiments were conducted for the initiation models and critical condition with different particle
size, saturated density, internal friction angle, and permeability coefficient. It was found that the slope threshold of debris flow
initiation in bed failure model with no cohesion sediment increased with the increasing of sediment saturation density and internal
friction. The minimum slope was about 17 degree in the experiments for the bed failure. When the bed slope is greater than the
threshold slope, the thickness of the saturated layer of the bed failure decreases with the increase of the bed slope, the minimum

sediment saturation thickness may be 0. The critical discharge of debris flow in fluvial transport model is much larger than that in
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bed failure model. The critical discharge of debris flow in bed failure model is the production of the permeability coefficient of

sediment, the depth of saturated water and the width of channel.

Key words: debris flow; fluvial transport; bed failure; critical discharge; engineering geology.
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Fig.1 Schematic diagram of the channels (not to scale)
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Fig.2 Grain size distributions of the materials
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Fig.3 The debris flow initiated in fluvial transport model in
run 2

a. K IE I 5 b. T LR AT T 2 H 5 o A8 KR 22 A0 I B8 A i i OF

BTG AT UL 198 T BB AR Ak Sl 4.5 em) s d BURE R R AT 5 56 2 K SE G,

b, e, d B AT B A B T4 4k

32 EKEREXBEXEAR

Pl 4R 50 8 IR S0 B JIE R 3 B2 2R 187, Y Vb HE:
TR R 12 em B35 R ECH 0.036 cm/s(3K 2) A
AP AR T Y M 13.0 em?/s, 52 B 5256 W) 4R
T 11.2 em®/s, WA S Bl J5 P % RS 0 O e B
) R TE TR . S AR AN K, DA RE SO % R — 4%
MR LR (K das 20 R LR,0~0.5 m B, 15 M L 3ie 4 M
BN R 0.5 m B, N [F]) . Bl & 7K U 4k 22 3F A KA W
24k 22 1) B Y, Of 1 e Y HEFR W R E 4R T,
HE] A e (P 4b) . A 2 2k a4 B TR
U HE R AR K 5 3 T 4k B2 1) T Ui 8N L U8 VD HE AR
Yy AR K B R BE 1S 0. > AR Ve %) 2R T I A I O AE A2
255 1.8 m, 26 47 M )55 1.7 m if (BT 24 K I
Wi R RS A ; 40 El 5a, 5b) i N 14.1 em®/s i),
e U HE W 2k el 3B LU A1 U L R 33 L FE O~
1.5 m( & 6a~6¢). e £ I 1 1 S B 43 o i 7 R R
M, AH 2 5 T A8 U8 A U UURRAE 1~2 m A 7 (] 6,
B 7a~7c) , WUFEAS U6 A i %5 8 0, 0 2.03 g/em’, i

=181818 9 85| 2lal

Pl 4 3 B R R T (B 8 ST M)
Fig.4 The wetting lines and surface flow in run 8
a JB i (0~0.5 m Bo);b. &1 i (0~0.35 m )

RT3t o B R Bl i e A I A

B 8 55 14 RS20 B8l IS M B oy 187, e b
He R JE B 10 em, B35 R ECH 0.069 em/s(F 2).
Aty B 7 A 3R TH U A UL A R 20.7 em?/s, SE B SE 5 W)
G 17.6 cm®/s. YR E AT MIEA F) 1.7 m, 221
iKE] 1.6 m(&l 8a) , it i 24 20.3 em’/s B, J& 10 HE
WAE 0~1.1 m B R K, T WL A Ui (1 8b). Jie
A ] e U HE R R iF Az B IF DORRAE T B AR 2 T
(& 8b) , KA A Ve A i N $aA I A BURE

4 JRIRIASAR X B (B R A S i

2 S5 e Y MERR W) A R AR K B (¢=0,¢,=1)
MRRE R EFA TR2 DB NRERBF. 59
B 0% R K, I 5 Prancevic er al. (2014) Fl 43 it 45
(2024 ) 525 KA A5 T X e AR SCH R IR R AR i e
FHF RZ/NT 1.0, /0T 85T 1.04, H i 4
BIRRE R F A RT 1.0, B, A8 SCI SE 55T
AR M5 45 R AR — B, 58 50 Fi i B A
TE PV X5 P9 PR 488 A R AR K 8 B2 DA B 8 K (3) TRy



4976 HiERFL#  hitp://www.earth-science.net

5550 %

KI5 JevbHEFRY b 2 T (5 S S 50)

Fig.5 Surface flow on the mixture in run 8
a. TR B3 T ON B EE R WER 8 s b. R 10 2158 T BiF O F
WA e 4%)

IR 552 REF R ML, H R E R
BOF A GE AW R R KRR kA R A,
Prancevic et al. (2014 ) F1 4y %k 45 (2024 ) 52 56 50 4

FEACERAE T F- 34 VA B 458 A R0 A K % B DL S A 5K (3)
TR RS R B B2 0 5588 RACF O R LB, 52
EREF AR W OR R KRR E .
Prancevic et al.(2014) FI4 it 45 (2024 ) 1Y JiE IR W 0
i€ R F R IMZ W B LA ST &, R4S
X 3 FR AN L6 W AR K % FE o A 25 1R /1N, {H Prancev-
ic ez al. (2014) F 45k 45 (2024) (9 3% 18T 1t K PR K
(c=10.17H ¢ = 0.18) , X F5 [ 152 R KL /NI
A F3) AR SCFR T K IR R 05 f2 fiff Prancevic
et al.(2014) FI A3k 45 (2024) B9 Fa € R FOE K
SR ENEEARK AKX RERMFESH
JEE 82 £ o 19 1E VI IE HE , Prancevic ez al.(2014) fl 4%
XA (2024) B N BE R A ¢ R 2 450, NS4 ¢ 1 IE
VI 13 A SCHY N EEHEE F p K24 33°, N R4 411 ¢ Y IE
Y 4 0.65, ¥ A Prancevic ez al. (2014) Fl 4% 4t &F
(2024) 1 65% 247 .

TE S R 2R Fa 18 52 36 v 0 {8 3 B2 0 43l kg 17°
(SEEG 4 RE K1) A1 18" (S2 50 4 B K2 N K3) , 5 23 50
(O H W ERESEORA - (KD, HWNT
Prancevic ez al.(2014) Fl 435 45 (2024) #EL K 19.6°
/N BB 3 BE 0, 55 /NT- Prancevic ez al.(2014) i)
Y 22° B E 3% BE 0, I PR I 2 I EE AR AR o BN i
Vo F 3 B 0 A /0 - A = (4) v 76 A 3R T U S L
T MK B o SRR —BURT, BI(E 3 EE 0 5 N BE 8 A
¢ BUE F 10 1K % 52 o, 5 BIE B 0 G R A,
B AR 5 X (4) 76 WA RN LR RS ]
F & 10 AT UL AR 7K %85 BE o X R 3% BE 0 A7 3 K 52
Ye Vb UUFR A B R B, 100 7K 5% B o 8K /DN B % BE 6
N BRI B ool 1.8 g/em’ B, BIE YR B 0 JL T2
N EEEE AR p 19—, PR AT DA K B0 A7k B3 7 1 oK % 32
0.0 1.8 g/em ZEAT B, BAE B 6 S N EEHE AR ¢ 1Y
— 2 KB E o, KT 1.8 g/em® i}, BE 3 0 78 N
FEEE AR ¢ 1 — 1 B Al L 2 HE

FE I IR 2% e =X Ui A U i S 38 o, X e e A TR
AT RN K A B B R R B T DA AR AR IR R R R
I St i . B 11 & Q 58 ik R B K KR 58 B
W MK G H, Z B X L AR K R B H i A =X
(6) A7) IR, & — A FUIE AR 4 e K
e B 0 eV HERR YR B HL BRI AR ¢ MK
oL TERE REEF, = 12 MK 1L LLE
B RS IR 2 R R 42 3 T8 IS IR 2R B2 %) Ik 1t R AC
HAE Q = KWH, 2 Wi, JE B IR 2% B2 1 Uit & i



5 12 1) G R IR K RATE IR U R E I A RS 4977

P60 RE LI e A ik sl i 7R (B 8 IS )
Fig. 6 The initiation of debris flow from sidewall in run 8

B th A 0~1.8 m 3208 BE; a2 Bh AT b i 3 s o 2 3l E

-

A

it

7 AT LI F U 1 i A Bl (5 8 UK SE )
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