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Abstract: Urban solid waste landfill-induced high-steep slope instability often leads to secondary disasters such as extensive
building destruction and casualties. To quantitatively evaluate the disaster risk of artificial landfill landslides, this study takes
Shenzhen’s “12¢20” Guangming landslide as a case study, employing the depth-integrated method-based Massflow software to
construct a dynamic numerical model that reproduces the entire evolution process of landslide initiation, high-speed movement,
and deposition. By coupling with impact pressure calculation methods for landslide masses, the destructive impact effects on
surrounding buildings were quantitatively evaluated. An uncertainty analysis framework was introduced, treating geotechnical
parameters and sliding surface properties as random variables. A probabilistic analysis model was developed through Latin
hypercube sampling, revealing the statistical characteristics of landslide travel distance under multifactorial influences and
establishing a correlation model between landslide motion exceedance probability and building impact damage. Building
vulnerability was further considered when conducting risk assessments for structures and nearby personnel. The study
demonstrates that the depth-integrated method effectively captures the dynamic evolution of landslides, with simulated failure
surface morphology, travel distance (1 139 m), and deposition pattern highly consistent with field monitoring data; impact pressure
from landslide masses on buildings exhibits a rapid rise to peak values followed by gradual attenuation, with peak pressure
decreasing significantly with distance from the landslide source; probabilistic analysis of landslide travel distance based on
parameter uncertainty shows the actual deposition zone entirely falls within the 95% confidence interval, and building damage
areas align with hazard zoning results. The proposed risk assessment framework integrating depth-integrated modeling and
uncertainty analysis provides a novel methodology for quantitative evaluation of engineered landfill landslides, offering significant
theoretical and practical implications for solid waste landfill safety management in the context of “zero-waste city” development.

Key words: quantitative risk assessment; solid waste stockpile; Guangming landslide; depth-averaged method; probabilistic

uncertainty analysis; engineering geology.
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Table 2 Impact response parameters of buildings under simulated landslide loading
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Table 3 Impact load parameters and stable accumulation characteristics of buildings under simulated landslide loading

FUEMERRIE i e woReh Ay A R w4

FaE EBURE Kb ) foknhali fardl B whfi 7 4%

S J£(m) J1(kPa) (MN/m) (MN/m) L J#(m) (kPa) (MN/m) (MN/m)
A 17.1 349.9 2.9 2.5 E 3.0 20.32 0.1 0.1
B 16.6 285.7 2.5 2.4 - - - -
C 8.4 133.1 0.6 0.4 - - — -
D 6.1 81.89 0.4 0.3

HAE I 3h 1 2 R AE IS8 R X T E AR 3
U = PR S i N NS O VAR C - L o
NI

3 OH BB R OK Sl Ry R SR K
5 DA A 7R

31 REIEMERET

T ff 5 SIS AR 1 R At 1, 51 AT S
HEZR (0 /K25, 2021) K 52 Wi T 30 3l B9 G B )
WIS R (BRS¢ G TE o BALB KR T 2 80r,)
g IR IR M 3 43 A A BE LS L DL AL S HOR
Bt 5 M X I SIS SRR IE e B T e B S
BOERIRL, R BT 88 AL 7 il R 7 ik (LHS) SE L 2
B s () (Y i ACRE | I 38 3 AR 20 O 1 TR
12 B P B Y R R ARE R 0 I B0 2l BE s L e i A
B Lo HIREAE P (L = Lea)) 40 M T R 0 30 06 10 1
DX HE— 25 K T S B AR AR ORI 5 i S
07 2 0 197 RE 7 HEAT R A, Al SO KU A HE AR
AR S AR 6 TR, O R E U 1 R B
PEVPAl 4 (28 S

Bt X 7R TR X A AR SR A 2 A XU
FEAR IR ZR 0 T 4, R (E AT € A (Galas-
so et al.,2021) :

R(L.,..)=P(L>L,,,)DsC,,(11)

KD P(L > Lo, ) Wz 2h B 8 e il g 50
Wl A7 0 A R C O PRI I R B SRS
% I Y I A (R / HESRE5 K ) A8 T T g K IX.
B2 R RO 3 B8 bR AU s D, =Y 5
EREE S @R TEURLIE S OE A B R

[

D, = s
Foi

K (12) W, F, o T 8 58 00 A i 2 S0 4 8- 24 b
1 F e REEFVOGC 0D A,y R 05 B BRON F

BOHBEIE B 1.5~2.0). 4t % Fo.. 08, % 18 i

(12)

3t o T T 500 ) 4 00 I3 e A e
%ﬁﬁﬁ&ﬁﬁ?ﬁ%%ﬁﬁﬁ%&ﬁw%>3

FLIGZS T [ i R i 5 m B A 25 30k B R
R TEE ) Ao 2VE R, B S R e il AR TR T 3%
NN
FL’
T
X (13) L HEHTY R AE 3 B L ET R 55 3090 2 W
FEOARYE I A2 N, YR B o < ., BTE5HY
DREFZ 4 ol I T T3 A S e R R R AZ 1 it )
(™ Uz R 55, 2023)
— St 1 (14)
L' B
(1), B, A bt aof 20K R BC(IUE 1.8~2.5) ,
FH A6 1 ik ol i 2 04 8l 3 %8005
BEXE N MG 55 £ PEAl L 2% Zhang e al.(2021)
32 Y B 233 B A XU AR
R, y=P(L>L,..)VE,, (15)
XS P, Vo N H 288 B Rl A D
W 5 23 ) 4 A R AR B 52 5 BN N 200 N R0R R
[, ICHh A% 75 30 1) A SR 1 R A2 b 1 7 B8 T
Do, N AR R R B0, 0 3 58 38 T 446 43 M 5 7 S 4

(13)

(]

crit

T U 25 5 VAT gy D9 TR SR A DRINE [H] o Ay I 1] £

3.2 HESHIER

PL2.279 4 i iy o AR S 80 SRR, 25
P37 W A (k7 , 2018 Fh /N2, 20215 Yin et al.,
2016) 55 Hi 5t  F By iR TR BTSSR ) , X 5 5078
SR AT FE IR 4 R
3.3 EERARMESHBER R ITEN
331 BEHERERMEEN R LHS kAl
10 000 A FEHLFEAS , I 45 & A FE A A 2 14 23 B



4992 HERFL2=  http://www .earth-science.net 250 &
T
; kA
RS REL T TR, 8 WFEIB BRI BRI, 2 SRR
B ENER A
v v
S sk T SEITARAAEARAL, gﬂ)‘%ﬁgwﬁ%ﬁﬂ& ]
v !
SN ARAT S BENE || REE
BN 2 S ok e
T TEMES
= sty =
> AR AR A B R Hr | [pHAsE
¥ ¥ ¥ A 2 ¥ L
By | | mapEe || 2apER v | 2RI [ADSmE
s EalEEGh RISERH | | ™5 Wik
L A
Lokt

PFL6 7R IR T 45 P XU, D HE 8 2 2 512 it 2 9

Fig.6 Implementation framework for vulnerability assessment of elements at risk
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Table 4 Statistical parameters of random variables including
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Fig.7 Uncertainty quantification of model predictions via hypothesis testing
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Table 5 Parameters for building risk level assessment
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Table 6 Summary of building risk assessment results including vulnerability analysis
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Table 7 Parameters for building risk level assessment
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Fig.9 Multidimensional risk assessment incorporating vulnerability of elements at risk
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