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Abstract: On January 7, 2025, an M7.1 earthquake struck Dingri, Xizang, causing severe casualties. This study employs data
from 12 permanent and 6 temporary seismic stations deployed around the epicentral area to process the aftershock sequence
using the AIRES (Artificial Intelligence Real-time Earthquake processing System). The goal is to evaluate the performance of
AIRES under a sparse seismic network configuration. AIRES, based on deep learning algorithms, automatically conducts
earthquake detection, phase picking, event association, and source parameter inversion from real-time waveforms. Comparison
with the manual catalog demonstrates that AIRES detected 11 242 aftershocks, which is 2.53 times the size of the manual
catalog, effectively lowering the magnitude of completeness to M;1.5. The average differences between the two catalogs are
4.69 km in epicenter, 5.71 km in focal depth, and —0.02 in local magnitude. The aftershocks are distributed in a north-
south-trending zone approximately 80 km long and 30 km wide, exhibiting distinct segmentation and bending features. The study
demonstrates that AIRES maintains robust detection capability and location accuracy even under sparse network conditions,
providing strong technical support for real-time monitoring of dense aftershock sequences and earthquake emergency response.
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